〇 Open access • Journal Article • DOI:10.1080/00029890.1995.11990565

Adding Distinct Congruence Classes Modulo a Prime - Source link

$\underline{\text { Noga Alon, Noga Alon, Melvyn B. Nathanson, Imre Z. Ruzsa }}$
Institutions: Tel Aviv University, Institute for Advanced Study, Lehman College, Hungarian Academy of Sciences
Published on: 01 Mar 1995 - American Mathematical Monthly (Taylor \& Francis)
Topics: Multiplicative group of integers modulo n, Restricted sumset, Sumset, Congruence (manifolds) and Prime (order theory)

Related papers:

- Cyclic Spaces for Grassmann Derivatives and Additive Theory
- The Polynomial Method and Restricted Sums of Congruence Classes
- On the addition of residue classes mod p
- On the Addition of Residue Classes
- Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Adding distinct congruence classes modulo a prime

Noga Alon * Melvyn B. Nathanson ${ }^{\dagger}$ Imre Ruzsa ${ }^{\ddagger}$

1 The Erdős-Heilbronn conjecture

The Cauchy-Davenport theorem states that if A and B are nonempty sets of congruence classes modulo a prime p, and if $|A|=k$ and $|B|=l$, then the sumset $A+B$ contains at least $\min (p, k+l-1)$ congruence classes. It follows that the sumset $2 A$ contains at least $\min (p, 2 k-1)$ congruence classes. Erdős and Heilbronn conjectured 30 years ago that there are at least $\min (p, 2 k-3)$ congruence classes that can be written as the sum of two distinct elements of A. Erdős has frequently mentioned this problem in his lectures and papers (for example, Erdős-Graham [4, p. 95]). The conjecture was recently proven by Dias da Silva and Hamidoune [3], using linear algebra and the representation theory of the symmetric group. The purpose of this paper is to give a simple proof of the Erdős-Heilbronn conjecture that uses only the most elementary properties of polynomials. The method, in fact, yields generalizations of both the Erdős-Heilbronn conjecture and the Cauchy-Davenport theorem.

2 The polynomial method

Lemma 1 (Alon-Tarsi [2]) Let A and B be nonempty subsets of a field F with $|A|=k$ and $|B|=l$. Let $f(x, y)$ be a polynomial with coefficients in F and

[^0]of degree at most $k-1$ in x and $l-1$ in y. If $f(a, b)=0$ for all $a \in A$ and $b \in B$, then $f(x, y)$ is identically zero.

Proof. This follows immediately from the fact that a nonzero polynomial $p(x) \in F[x]$ of degree at most $k-1$ cannot have k distinct roots in F. We can write

$$
f(x, y)=\sum_{i=0}^{k-1} \sum_{j=0}^{l-1} f_{i, j} x^{i} y^{j}=\sum_{i=0}^{k-1} v_{i}(y) x^{i}
$$

where

$$
v_{i}(y)=\sum_{j=0}^{l-1} f_{i, j} y^{j}
$$

is a polynomial of degree at most $l-1$ in y. Fix $b \in B$. Then

$$
u(x)=\sum_{i=0}^{k-1} v_{i}(b) x^{i}
$$

is a polynomial of degree at most $k-1$ in x such that $u(a)=0$ for all $a \in A$. Since $u(x)$ has at least k distinct roots, it follows that $u(x)$ is the zero polynomial, and so $v_{i}(b)=0$ for all $b \in B$. Since $\operatorname{deg}\left(v_{i}(y)\right) \leq l-1$ and $|B|=l$, it follows that $v_{i}(y)$ is the zero polynomial, and so $f_{i, j}=0$ for all i and j. This completes the proof.

Lemma 2 Let A be a finite subset of a field F, and let $|A|=k$. For every $m \geq k$ there exists a polynomial $g_{m}(x) \in F[x]$ of degree at most $k-1$ such that

$$
g_{m}(a)=a^{m}
$$

for all $a \in A$.
Proof. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$. We must show that there exists a polynomial $u(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1} \in F[x]$ such that

$$
u\left(a_{i}\right)=u_{0}+u_{1} a_{i}+u_{2} a_{i}^{2}+\cdots+u_{k-1} a_{i}^{k-1}=a_{i}^{m}
$$

for $i=0,1, \ldots, k-1$. This is a system of k linear equations in the k unknowns $u_{0}, u_{1}, \ldots, u_{k-1}$, and it has a solution if the determinant of the coefficients of the unknowns is nonzero. The Lemma follows immediately from the observation that this determinant is the Vandermonde determinant

$$
\left|\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \cdots & a_{0}^{k-1} \\
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{k-1} \\
\vdots & & & & \\
1 & a_{k-1} & a_{k-1}^{2} & \cdots & a_{k-1}^{k-1}
\end{array}\right|=\prod_{0 \leq i<j \leq k-1}\left(a_{j}-a_{i}\right) \neq 0
$$

Theorem 1 Let p be a prime number, and let $F=\mathbf{Z} / p \mathbf{Z}$. Let A and B be nonempty subsets of the field F, and let

$$
A \hat{+} B=\{a+b \mid a \in A, b \in B, a \neq b\} .
$$

Let $|A|=k$ and $|B|=l$. If $k \neq l$, then

$$
|A \hat{+} B| \geq \min (p, k+l-2\}
$$

Proof. Let $|A|=k$ and $|B|=l$. We can assume that

$$
1 \leq l<k \leq p .
$$

If $k+l-2>p$, let $l^{\prime}=p-k+2$. Then

$$
2 \leq l^{\prime}<l<k
$$

and

$$
k+l^{\prime}-2=p
$$

Choose $B^{\prime} \subseteq B$ such that $\left|B^{\prime}\right|=l^{\prime}$. If the Theorem holds for the sets A and B^{\prime}, then

$$
|A \hat{+} B| \geq\left|A \hat{+} B^{\prime}\right| \geq k+l^{\prime}-2=p=\min (p,|A|+|B|-2) .
$$

Therefore, we can assume that

$$
k+l-2 \leq p .
$$

Let $C=A \hat{+} B$. We must prove that

$$
|C| \geq k+l-2
$$

Suppose that

$$
|C| \leq k+l-3 .
$$

Choose m so that

$$
m+|C|=k+l-3 .
$$

We shall construct three polynomials f_{0}, f_{1}, and f in $F[x, y]$ as follows: Let

$$
f_{0}(x, y)=\prod_{c \in C}(x+y-c) .
$$

Then $\operatorname{deg}\left(f_{0}\right)=|C| \leq k+l-3$ and

$$
f_{0}(a, b)=0 \text { for all } a \in A, b \in B, a \neq b .
$$

Let

$$
f_{1}(x, y)=(x-y) f_{0}(x, y) .
$$

Then $\operatorname{deg}\left(f_{1}\right)=1+|C| \leq k+l-2$ and

$$
f_{1}(a, b)=0 \text { for all } a \in A, b \in B
$$

Multiplying f_{1} by $(x+y)^{m}$, we obtain the polynomial

$$
f(x, y)=(x-y)(x+y)^{m} \prod_{c \in C}(x+y-c)
$$

of degree exactly $k+l-2$ such that

$$
f(a, b)=0 \text { for all } a \in A, b \in B
$$

Then

$$
\begin{aligned}
f(x, y) & =\sum_{\substack{i, j \geq 0 \\
i+j \leq k+l-2}} f_{i, j} x^{i} y^{j} \\
& =(x-y)(x+y)^{k+l-3}+\text { lower order terms. }
\end{aligned}
$$

Since $1 \leq l<k \leq p$ and $1 \leq k+l-3<p$, it follows that the coefficient $f_{k-1, l-1}$ of the monomial $x^{k-1} y^{l-1}$ in $f(x, y)$ is

$$
\binom{k+l-3}{k-2}-\binom{k+l-3}{k-1}=\frac{(k-l)(k+l-3)!}{(k-1)!(l-1)!} \not \equiv 0 \quad(\bmod p) .
$$

By Lemma 2, for every $m \geq k$ there exists a polynomial $g_{m}(x)$ of degree at most $k-1$ such that $g_{m}(a)=a^{m}$ for all $a \in A$, and for every $n \geq l$ there exists a polynomial $h_{n}(y)$ of degree at most $l-1$ such that $h_{n}(b)=b^{n}$ for all $b \in B$. We use the polynomials $g_{m}(x)$ and $h_{n}(y)$ to construct a new polynomial $f^{*}(x, y)$ from $f(x, y)$ as follows: If $x^{m} y^{n}$ is a monomial in $f(x, y)$ with $m \geq k$, then we replace $x^{m} y^{n}$ with $g_{m}(x) y^{n}$. Since $\operatorname{deg}(f(x, y))=k+l-2$, it follows that if $m \geq k$, then $n \leq l-2$, and so $g_{m}(x) y^{n}$ is a sum of monomials $x^{i} y^{j}$ with $i \leq k-1$ and $j \leq l-2$. Similarly, if $x^{m} y^{n}$ is a monomial in $f(x, y)$ with $n \geq l$, then we replace $x^{m} y^{n}$ with $x^{m} h_{n}(y)$. If $n \geq l$, then $m \leq k-2$, and so $x^{m} h_{n}(y)$ is a sum of monomials $x^{i} y^{j}$ with $i \leq k-2$ and $j \leq l-1$. This determines a new polynomial $f^{*}(x, y)$ of degree at most $k-1$ in x and $l-1$ in y. The process of constructing $f^{*}(x, y)$ from $f(x, y)$ does not alter the coefficient $f_{k-1, l-1}$ of the term $x^{k-1} y^{l-1}$, since this monomial does not occur in any of the polynomials $g_{m}(x) y^{n}$ or $x^{m} h_{n}(y)$. On the other hand,

$$
f^{*}(a, b)=f(a, b)=0
$$

for all $a \in A$ and $b \in B$. It follows immediately from Lemma 1 that the polynomial $f^{*}(x, y)$ is identically zero. This contradicts the fact that the coefficient $f_{k-1, l-1}$ of $x^{k-1} y^{l-1}$ in $f^{*}(x, y)$ is nonzero, and completes the proof.

Theorem 2 (Dias da Silva-Hamidoune [3]) Let p be a prime number, and let $F=\mathbf{Z} / p \mathbf{Z}$. Let $A \subseteq F$, and let $|A|=k \geq 2$. Let $2^{\wedge} A$ denote the set of all sums of two distinct elements of A. Then

$$
\left|2^{\wedge} A\right| \geq \min (p, 2 k-3)
$$

Proof. Let $A \subseteq F,|A| \geq 2$. Choose $a \in A$, and let $B=A \backslash\{a\}$. Then $|B|=|A|-1$ and, by Theorem 1,

$$
\left|2^{\wedge} A\right| \geq|A \hat{+} B| \geq \min (p,|A|+|B|-2)=\min (p, 2|A|-3) .
$$

This completes the proof of the Erdős-Heilbronn conjecture. \square
Let $k+l-2 \leq p, 1 \leq l<k \leq p$. Let $A=\{0,1,2, \ldots, k-1\}$ and $B=$ $\{0,1,2, \ldots, l-1\}$. Then $A \hat{+} B=\{1,2, \ldots, k+l-2\}$ and $2^{\wedge} A=\{1,2, \ldots, 2 k-3\}$. This example shows that the lower bounds in Theorem 1 and Theorem 2 are sharp.

3 Further applications of the method

The polynomial method is a powerful new technique to obtain results in additive number theory. For example, it gives the following simple proof of the CauchyDavenport theorem. Let A and B be subsets of $\mathbf{Z} / p \mathbf{Z}$, and let $C=A+B$. Let $|A|=k$ and $|B|=l$. We can assume that $k+l-1 \leq p$. If $|C| \leq k+l-2$, let $m=k+l-2-|C|$, and consider the polynomial

$$
f(x, y)=(x+y)^{m} \prod_{c \in C}(x+y-c) .
$$

Then $f(a, b)=0$ for all $a \in A$ and $b \in B$. The polynomial has degree $k+l-2$, and the coefficient of the monomial $x^{k-1} y^{l-1}$ is exactly

$$
\binom{k+l-2}{k-1} \not \equiv 0 \quad(\bmod p)
$$

The proof proceeds exactly as the proof of Theorem 1.
As a final example of the method, we state and prove the following new result.

Theorem 3 Let A and B be nonempty subsets of $F=\mathbf{Z} / p \mathbf{Z}$, and let

$$
C=\{a+b \mid a \in A, b \in B, a b \neq 1\} .
$$

Let $|A|=k$ and $|B|=l$. Then

$$
|C| \geq \min (p, k+l-3\} .
$$

Proof. If $k+l-3>p$, let $l^{\prime}=p-k+3$. Then $3 \leq l^{\prime}<l$. Choose $B^{\prime} \subseteq B$ such that $\left|B^{\prime}\right|=l^{\prime}$ and let

$$
C^{\prime}=\left\{a+b^{\prime} \mid a \in A, b \in B^{\prime}, a b^{\prime} \neq 1\right\} .
$$

Since $C^{\prime} \subseteq C$, it suffices to prove that $\left|C^{\prime}\right| \geq k+l^{\prime}-3$. Equivalently, we can assume that $k+l-3 \leq p$, and we must prove that $|C| \geq k+l-3$.

Suppose that $|C| \leq k+l-4$. Choose m so that $|C|+m=k+l-4$, and consider the polynomial

$$
f(x, y)=(x y-1)(x+y)^{m} \prod_{c \in C}(x+y-c) .
$$

Then $f(a, b)=0$ for all $a \in A$ and $b \in B$. The polynomial has degree $k+l-2$, and the coefficient of the monomial $x^{k-1} y^{l-1}$ is

$$
\binom{k+l-4}{k-2} \not \equiv 0 \quad(\bmod p)
$$

The proof continues exactly as the proof of Theorem 1.
Let $k+l-3 \leq p, k, l \geq 2$, and choose $d \in \mathbf{Z} / p \mathbf{Z}, d \neq 0$, such that

$$
(1+(k-1) d)(1+(l-1) d)=1
$$

Let $A=\{1,1+d, 1+2 d, \ldots, 1+(k-1) d\}$ and $B=\{1,1+d, 1+2 d, \ldots, 1+(l-1) d\}$. Define C as in Theorem 3. Then $C=\{2+i d \mid i=1, \ldots, k+l-3\}$. This example shows that the lower bound in Theorem 3 is sharp for all $k, l \geq 2$. If $k=1$, the correct lower bound is $|B|-1=k+l-2$.

4 Remarks

The results in this paper hold for addition in any field F, where p is equal to the characteristic of F if the characteristic is a prime, and $p=\infty$ if the characteristic is zero.

Dias da Silva and Hamidoune [3] proved the generalization of the ErdősHeilbronn conjecture for h-fold sums: Let $h \geq 2$, and let $h^{\wedge} A$ denote the set of all sums of h distinct elements of A. If $A \subseteq \mathbf{Z} / p \mathbf{Z}$ and $|A|=k$, then

$$
\left|h^{\wedge} A\right| \geq \min \left(p, h k-h^{2}+1\right)
$$

This result can also be proved by the polynomial method, and we shall present this and other results in a subsequent paper [1].

Nathanson [7] contains proofs of the Cauchy-Davenport theorem and some of its generalizations, as well as a full exposition of the original Dias da SilvaHamidoune proof of the Erdős-Heilbronn conjecture for h-fold sums. Partial results on the Erdős-Heilbronn conjecture had previously been obtained by Rickert [9], Mansfield [6], Rödseth [10], Pyber [8], and Freiman, Low, and Pitman [5].

References

[1] N. Alon, M. B. Nathanson, and I. Z. Ruzsa. The polynomial method and sums of congruence classes. in preparation.
[2] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica, 12:125-134, 1992.
[3] J. A. Dias da Silva and Y. O. Hamidoune. Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc., 26:to appear, 1994.
[4] P. Erdős and R. L. Graham. Old and New Problems and Results in Combinatorial Number Theory. L'Enseignement Mathématique, Geneva, 1980.
[5] G. A. Freiman, L. Low, and J. Pitman. The proof of Paul Erdős' conjecture of the addition of different residue classes modulo a prime number. preprint, 1992.
[6] R. Mansfield. How many slopes in a polygon? Israel J. Math., 39:265-272, 1981.
[7] M. B. Nathanson. Additive Number Theory: 1. Inverse Theorems and the Geometry of Sumsets. Springer-Verlag, New York, 1994.
[8] L. Pyber. On the Erdős-Heilbronn conjecture. personal communication.
[9] U.-W. Rickert. Über eine Vermutung in der additiven Zahlentheorie. PhD thesis, Tech. Univ. Braunschweig, 1976.
[10] Ö. J. Rödseth. Sums of distinct residues mod p. Acta Arith., 1994. to appear.

[^0]: *Institute for Advanced Study, Princeton, NJ 08540, and Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: noga@math.tau.ac.il. Research supported in part by the Sloan Foundation, Grant No. 93-6-6. Alon also wishes to thank Doron Zeilberger for helpful discussions.
 \dagger Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468. E-mail: nathansn@dimacs.rutgers.edu. Research supported in part by grants from the PSC-CUNY Research Award Program
 ${ }^{\ddagger}$ Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H1364, Hungary. E-mail: h1140ruz@ella.hu. Research supported in part by DIMACS, Rutgers University, and by the Hungarian National Foundation for Scientific Research, Grant No. 1901.

