

Open access • Journal Article • DOI:10.1080/00029890.1995.11990565

Adding Distinct Congruence Classes Modulo a Prime — Source link 🖸

Noga Alon, Noga Alon, Melvyn B. Nathanson, Imre Z. Ruzsa

Institutions: Tel Aviv University, Institute for Advanced Study, Lehman College, Hungarian Academy of Sciences

Published on: 01 Mar 1995 - American Mathematical Monthly (Taylor & Francis)

Topics: Multiplicative group of integers modulo n, Restricted sumset, Sumset, Congruence (manifolds) and Prime (order theory)

Related papers:

- Cyclic Spaces for Grassmann Derivatives and Additive Theory
- The Polynomial Method and Restricted Sums of Congruence Classes
- · On the addition of residue classes mod p
- · On the Addition of Residue Classes
- · Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Adding distinct congruence classes modulo a prime

Noga Alon * Melvyn B. Nathanson † Imre Ruzsa ‡

1 The Erdős-Heilbronn conjecture

The Cauchy-Davenport theorem states that if A and B are nonempty sets of congruence classes modulo a prime p, and if |A|=k and |B|=l, then the sumset A+B contains at least $\min(p,k+l-1)$ congruence classes. It follows that the sumset 2A contains at least $\min(p,2k-1)$ congruence classes. Erdős and Heilbronn conjectured 30 years ago that there are at least $\min(p,2k-3)$ congruence classes that can be written as the sum of two distinct elements of A. Erdős has frequently mentioned this problem in his lectures and papers (for example, Erdős-Graham [4, p. 95]). The conjecture was recently proven by Dias da Silva and Hamidoune [3], using linear algebra and the representation theory of the symmetric group. The purpose of this paper is to give a simple proof of the Erdős-Heilbronn conjecture that uses only the most elementary properties of polynomials. The method, in fact, yields generalizations of both the Erdős-Heilbronn conjecture and the Cauchy-Davenport theorem.

2 The polynomial method

Lemma 1 (Alon-Tarsi [2]) Let A and B be nonempty subsets of a field F with |A| = k and |B| = l. Let f(x, y) be a polynomial with coefficients in F and

^{*}Institute for Advanced Study, Princeton, NJ 08540, and Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. E-mail: noga@math.tau.ac.il. Research supported in part by the Sloan Foundation, Grant No. 93-6-6. Alon also wishes to thank Doron Zeilberger for helpful discussions.

 $^{^\}dagger Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468. E-mail: nathansn@dimacs.rutgers.edu. Research supported in part by grants from the PSC-CUNY Research Award Program$

[‡]Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary. E-mail: h1140ruz@ella.hu. Research supported in part by DIMACS, Rutgers University, and by the Hungarian National Foundation for Scientific Research, Grant No. 1901.

of degree at most k-1 in x and l-1 in y. If f(a,b)=0 for all $a \in A$ and $b \in B$, then f(x,y) is identically zero.

Proof. This follows immediately from the fact that a nonzero polynomial $p(x) \in F[x]$ of degree at most k-1 cannot have k distinct roots in F. We can write

$$f(x,y) = \sum_{i=0}^{k-1} \sum_{j=0}^{l-1} f_{i,j} x^i y^j = \sum_{i=0}^{k-1} v_i(y) x^i,$$

where

$$v_i(y) = \sum_{j=0}^{l-1} f_{i,j} y^j$$

is a polynomial of degree at most l-1 in y. Fix $b \in B$. Then

$$u(x) = \sum_{i=0}^{k-1} v_i(b)x^i$$

is a polynomial of degree at most k-1 in x such that u(a)=0 for all $a\in A$. Since u(x) has at least k distinct roots, it follows that u(x) is the zero polynomial, and so $v_i(b)=0$ for all $b\in B$. Since $\deg(v_i(y))\leq l-1$ and |B|=l, it follows that $v_i(y)$ is the zero polynomial, and so $f_{i,j}=0$ for all i and j. This completes the proof. \square

Lemma 2 Let A be a finite subset of a field F, and let |A| = k. For every $m \ge k$ there exists a polynomial $g_m(x) \in F[x]$ of degree at most k-1 such that

$$g_m(a) = a^m$$

for all $a \in A$.

Proof. Let $A=\{a_0,a_1,\ldots,a_{k-1}\}$. We must show that there exists a polynomial $u(x)=u_0+u_1x+\cdots+u_{k-1}x^{k-1}\in F[x]$ such that

$$u(a_i) = u_0 + u_1 a_i + u_2 a_i^2 + \dots + u_{k-1} a_i^{k-1} = a_i^m$$

for i = 0, 1, ..., k-1. This is a system of k linear equations in the k unknowns $u_0, u_1, ..., u_{k-1}$, and it has a solution if the determinant of the coefficients of the unknowns is nonzero. The Lemma follows immediately from the observation that this determinant is the Vandermonde determinant

$$\begin{vmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^{k-1} \\ 1 & a_1 & a_1^2 & \cdots & a_1^{k-1} \\ \vdots & & & & \\ 1 & a_{k-1} & a_{k-1}^2 & \cdots & a_{k-1}^{k-1} \end{vmatrix} = \prod_{0 \le i < j \le k-1} (a_j - a_i) \ne 0.$$

Theorem 1 Let p be a prime number, and let $F = \mathbf{Z}/p\mathbf{Z}$. Let A and B be nonempty subsets of the field F, and let

$$A + B = \{a + b \mid a \in A, b \in B, a \neq b\}.$$

Let |A| = k and |B| = l. If $k \neq l$, then

$$|A + B| \ge \min(p, k + l - 2).$$

Proof. Let |A| = k and |B| = l. We can assume that

$$1 \le l < k \le p.$$

If k + l - 2 > p, let l' = p - k + 2. Then

$$2 < l' < l < k$$

and

$$k + l' - 2 = p.$$

Choose $B' \subseteq B$ such that |B'| = l'. If the Theorem holds for the sets A and B', then

$$|A + B| \ge |A + B'| \ge k + l' - 2 = p = \min(p, |A| + |B| - 2).$$

Therefore, we can assume that

$$k+l-2 \le p$$
.

Let C = A + B. We must prove that

$$|C| \ge k + l - 2$$
.

Suppose that

$$|C| < k + l - 3.$$

Choose m so that

$$m + |C| = k + l - 3.$$

We shall construct three polynomials $f_0, f_1,$ and f in F[x, y] as follows: Let

$$f_0(x,y) = \prod_{c \in C} (x + y - c).$$

Then $deg(f_0) = |C| \le k + l - 3$ and

$$f_0(a,b) = 0$$
 for all $a \in A, b \in B, a \neq b$.

Let

$$f_1(x,y) = (x-y)f_0(x,y).$$

Then $deg(f_1) = 1 + |C| \le k + l - 2$ and

$$f_1(a,b) = 0$$
 for all $a \in A, b \in B$.

Multiplying f_1 by $(x+y)^m$, we obtain the polynomial

$$f(x,y) = (x - y)(x + y)^m \prod_{c \in C} (x + y - c)$$

of degree exactly k + l - 2 such that

$$f(a,b) = 0$$
 for all $a \in A, b \in B$.

Then

$$f(x,y) = \sum_{\substack{i,j \ge 0\\i+j \le k+l-2}} f_{i,j} x^i y^j$$
$$= (x-y)(x+y)^{k+l-3} + \text{ lower order terms.}$$

Since $1 \le l < k \le p$ and $1 \le k + l - 3 < p$, it follows that the coefficient $f_{k-1,l-1}$ of the monomial $x^{k-1}y^{l-1}$ in f(x,y) is

$$\binom{k+l-3}{k-2} - \binom{k+l-3}{k-1} = \frac{(k-l)(k+l-3)!}{(k-1)!(l-1)!} \not\equiv 0 \pmod{p}.$$

By Lemma 2, for every $m \geq k$ there exists a polynomial $g_m(x)$ of degree at most k-1 such that $g_m(a) = a^m$ for all $a \in A$, and for every $n \geq l$ there exists a polynomial $h_n(y)$ of degree at most l-1 such that $h_n(b) = b^n$ for all $b \in B$. We use the polynomials $g_m(x)$ and $h_n(y)$ to construct a new polynomial $f^*(x,y)$ from f(x,y) as follows: If x^my^n is a monomial in f(x,y) with $m \geq k$, then we replace x^my^n with $g_m(x)y^n$. Since $\deg(f(x,y)) = k+l-2$, it follows that if $m \geq k$, then $n \leq l-2$, and so $g_m(x)y^n$ is a sum of monomials x^iy^j with $i \leq k-1$ and $j \leq l-2$. Similarly, if x^my^n is a monomial in f(x,y) with $n \geq l$, then we replace x^my^n with $x^mh_n(y)$. If $n \geq l$, then $m \leq k-2$, and so $x^mh_n(y)$ is a sum of monomials x^iy^j with $i \leq k-2$ and $j \leq l-1$. This determines a new polynomial $f^*(x,y)$ of degree at most k-1 in x and l-1 in y. The process of constructing $f^*(x,y)$ from f(x,y) does not alter the coefficient $f_{k-1,l-1}$ of the term $x^{k-1}y^{l-1}$, since this monomial does not occur in any of the polynomials $g_m(x)y^n$ or $x^mh_n(y)$. On the other hand,

$$f^*(a,b) = f(a,b) = 0$$

for all $a \in A$ and $b \in B$. It follows immediately from Lemma 1 that the polynomial $f^*(x,y)$ is identically zero. This contradicts the fact that the coefficient $f_{k-1,l-1}$ of $x^{k-1}y^{l-1}$ in $f^*(x,y)$ is nonzero, and completes the proof. \square

Theorem 2 (Dias da Silva-Hamidoune [3]) Let p be a prime number, and let $F = \mathbf{Z}/p\mathbf{Z}$. Let $A \subseteq F$, and let $|A| = k \ge 2$. Let $2^{\wedge}A$ denote the set of all sums of two distinct elements of A. Then

$$|2^{\wedge}A| \ge \min(p, 2k - 3).$$

Proof. Let $A \subseteq F$, $|A| \ge 2$. Choose $a \in A$, and let $B = A \setminus \{a\}$. Then |B| = |A| - 1 and, by Theorem 1,

$$|2^{\wedge}A| > |A + B| > \min(p, |A| + |B| - 2) = \min(p, 2|A| - 3).$$

This completes the proof of the Erdős-Heilbronn conjecture.□

Let $k+l-2 \le p, \ 1 \le l < k \le p$. Let $A=\{0,1,2,\ldots,k-1\}$ and $B=\{0,1,2,\ldots,l-1\}$. Then $A\hat{+}B=\{1,2,\ldots,k+l-2\}$ and $2^{\wedge}A=\{1,2,\ldots,2k-3\}$. This example shows that the lower bounds in Theorem 1 and Theorem 2 are sharp.

3 Further applications of the method

The polynomial method is a powerful new technique to obtain results in additive number theory. For example, it gives the following simple proof of the Cauchy-Davenport theorem. Let A and B be subsets of $\mathbf{Z}/p\mathbf{Z}$, and let C=A+B. Let |A|=k and |B|=l. We can assume that $k+l-1 \leq p$. If $|C| \leq k+l-2$, let m=k+l-2-|C|, and consider the polynomial

$$f(x,y) = (x+y)^m \prod_{c \in C} (x+y-c).$$

Then f(a,b) = 0 for all $a \in A$ and $b \in B$. The polynomial has degree k + l - 2, and the coefficient of the monomial $x^{k-1}y^{l-1}$ is exactly

$$\binom{k+l-2}{k-1} \not\equiv 0 \pmod{p}.$$

The proof proceeds exactly as the proof of Theorem 1.

As a final example of the method, we state and prove the following new result.

Theorem 3 Let A and B be nonempty subsets of $F = \mathbf{Z}/p\mathbf{Z}$, and let

$$C = \{a + b \mid a \in A, b \in B, ab \neq 1\}.$$

Let |A| = k and |B| = l. Then

$$|C| \ge \min(p, k + l - 3).$$

Proof. If k+l-3 > p, let l' = p-k+3. Then $3 \le l' < l$. Choose $B' \subseteq B$ such that |B'| = l' and let

$$C' = \{a + b' \mid a \in A, b \in B', ab' \neq 1\}.$$

Since $C' \subseteq C$, it suffices to prove that $|C'| \ge k + l' - 3$. Equivalently, we can assume that $k + l - 3 \le p$, and we must prove that $|C| \ge k + l - 3$.

Suppose that $|C| \le k + l - 4$. Choose m so that |C| + m = k + l - 4, and consider the polynomial

$$f(x,y) = (xy - 1)(x + y)^m \prod_{c \in C} (x + y - c).$$

Then f(a,b) = 0 for all $a \in A$ and $b \in B$. The polynomial has degree k + l - 2, and the coefficient of the monomial $x^{k-1}y^{l-1}$ is

$$\binom{k+l-4}{k-2} \not\equiv 0 \pmod{p}.$$

The proof continues exactly as the proof of Theorem 1. \Box

Let $k+l-3 \le p$, $k,l \ge 2$, and choose $d \in \mathbf{Z}/p\mathbf{Z}$, $d \ne 0$, such that

$$(1 + (k-1)d)(1 + (l-1)d) = 1.$$

Let $A = \{1, 1+d, 1+2d, \ldots, 1+(k-1)d\}$ and $B = \{1, 1+d, 1+2d, \ldots, 1+(l-1)d\}$. Define C as in Theorem 3. Then $C = \{2+id \mid i=1,\ldots,k+l-3\}$. This example shows that the lower bound in Theorem 3 is sharp for all $k, l \geq 2$. If k = 1, the correct lower bound is |B| - 1 = k + l - 2.

4 Remarks

The results in this paper hold for addition in any field F, where p is equal to the characteristic of F if the characteristic is a prime, and $p = \infty$ if the characteristic is zero.

Dias da Silva and Hamidoune [3] proved the generalization of the Erdős-Heilbronn conjecture for h-fold sums: Let $h \geq 2$, and let $h^{\wedge}A$ denote the set of all sums of h distinct elements of A. If $A \subseteq \mathbf{Z}/p\mathbf{Z}$ and |A| = k, then

$$|h^{\wedge}A| \ge \min(p, hk - h^2 + 1).$$

This result can also be proved by the polynomial method, and we shall present this and other results in a subsequent paper [1].

Nathanson [7] contains proofs of the Cauchy-Davenport theorem and some of its generalizations, as well as a full exposition of the original Dias da Silva-Hamidoune proof of the Erdős-Heilbronn conjecture for h-fold sums. Partial results on the Erdős-Heilbronn conjecture had previously been obtained by Rickert [9], Mansfield [6], Rödseth [10], Pyber [8], and Freiman, Low, and Pitman [5].

References

- [1] N. Alon, M. B. Nathanson, and I. Z. Ruzsa. The polynomial method and sums of congruence classes. in preparation.
- [2] N. Alon and M. Tarsi. Colorings and orientations of graphs. *Combinatorica*, 12:125–134, 1992.
- [3] J. A. Dias da Silva and Y. O. Hamidoune. Cyclic spaces for Grassmann derivatives and additive theory. *Bull. London Math. Soc.*, 26:to appear, 1994.
- [4] P. Erdős and R. L. Graham. Old and New Problems and Results in Combinatorial Number Theory. L'Enseignement Mathématique, Geneva, 1980.
- [5] G. A. Freiman, L. Low, and J. Pitman. The proof of Paul Erdős' conjecture of the addition of different residue classes modulo a prime number. preprint, 1992.
- [6] R. Mansfield. How many slopes in a polygon? Israel J. Math., 39:265–272, 1981.
- [7] M. B. Nathanson. Additive Number Theory: 1. Inverse Theorems and the Geometry of Sumsets. Springer-Verlag, New York, 1994.
- [8] L. Pyber. On the Erdős-Heilbronn conjecture. personal communication.
- [9] U.-W. Rickert. Über eine Vermutung in der additiven Zahlentheorie. PhD thesis, Tech. Univ. Braunschweig, 1976.
- [10]Ö. J. Rödseth. Sums of distinct residues mod p. Acta Arith., 1994. to appear.