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Abstract 
This paper presents two methods for adding domain 
knowledge to similarity-based learning through feature 
construction, a form of representation change in which 
new features are constructed from relationships de- 
tected among existing features. In the first method, 
domain-knowledge constraints are used to eliminate 
less desirable new features before they are constructed. 
In the second method, domain-dependent transforma- 
tions generalize new features in ways meaningful to 
the current problem. These two uses of domain knowl- 
edge are illustrated in CITRE where they are shown 
to improve hypothesis accuracy and conciseness on a 
tic-tat-toe classification problem. 

Introduction 
One advantage of explanation-based learning (EBL) is 
its ability to learn from few examples by exploiting 
domain-specific constraints represented in a domain 
theory. Similarity-based learning (SBL), on the other 
hand, requires relatively large numbers of training in- 
stances, but is more readily applicable because a do- 
main theory need not be available. Recent research 
in machine learning has begun to focus on methods of 
integrating EBL and SBL techniques (see the section 
entitled Combining Empirical and Explanation-based 
Learning in [Segre, 19891). This paper proposes an 
integrated approach that incorporates domain knowl- 
edge into SBL systems through feature construction. 

Feature construction is the process of defining 
new features based on useful relationships discovered 
among existing features. Constructed features are typ- 
ically used to re-represent the training instances in 
hopes of making the target concept easier to learn 
[Matheus, 19891. Because the space of new features 
is usually intractable to search, practical feature con- 
struction requires strong and appropriate constraints. 
Domain knowledge can provide the appropriate con- 
straints, similar to the way that domain theories con- 
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strain learning in EBL. Unlike EBL, however, domain 
knowledge used in feature construction need not be 
a complete theory, but may comprise simple, disjoint 
pieces of problem-specific information. The use of this 
sort of knowledge-driven feature construction provides 
a way of adding simple domain knowledge to SBL sys- 
tems. Since only the features representing the training 
instances are affected by this approach, the underlying 
inductive algorithm need not be altered. 

Several machine learning systems perform feature 
construction; recent examples include DUCE [Muggle- 
ton, 19871, FRINGE [Pagallo, 19891, MIRO [Drastal 
and Raatz, 19891, PLSO [Rendell, 19851, STABB [Ut- 

f 
off, 19861, and STAGGER [Schlimmer, 19871 (see 
Matheus, 19891 for a description of these and other 

feature construction systems). Only a few of these 
systems, however, explicitly use domain knowledge 
during feature construction (e.g., MIRO). This pa- 
per describes two methods for using domain knowl- 
edge in feature construction, and outlines their im- 
plementations in CITRE [Matheus and Rendell, 1989, 
Matheus, 19891. Experimental results are presented 
that demonstrate the successful application of these 
methods on a tic-tat-toe classification problem. 

CITRE 
CITRE is a decision-tree-based learning system that 
performs feature construction by selecting relation- 
ships for new features from positive tree branches. Al- 
though similar in this respect to FRINGE [Pagallo, 
19891, CITRE d’ff i ers in its use of a variety of new- 
feature selection methods, its use of domain knowl- 
edge to filter out undesirable features, its potential for 
generalizing new features, and its evaluation of con- 
structed features. 

Figure 1 illustrates CITRE’s learning algorithm. A 
learning problem is submitted to CITRE as a set of 
original features F = a set of tralnlng lnst$;s-l) PA cded primitives and . . . 

= {il , . . . , ira} described in 
terms of the primitives. The instances and features 
are used to construct an initial decision tree based on 
the information-theoretic splitting criteria employed 
by ID3 [Quinlan, 19831. The constructed tree is then 
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Figure 1: Illustration of CITRE’s learning algorithm. 

pruned using pessimistic pruning [Quinlan, 19871, and 
passed as input to CITRE’s feature-construction mod- 
ule. New features are constructed by selecting relation- 
ships from the decision tree as described below. The 
new features F* are added to the active feature set, and 
the entire process is repeated. This iterative learning 
algorithm terminates when either the current tree con- 
tains no positive branches consisting of more than one 
feature, or all potential new features from the current 

. . tree are already present in the active feature set. Al- 
though the version of CITRE described in this paper 
constructs only Boolean features, the system is capa- 
ble of working with learning problems having nominal, 
ordinal, or continuous-valued primitives. 

Feature Construction in CITRE 

Feature construction can be viewed in terms of four 
aspects (see [Matheus, 19891): 

1. the detection of when new features are required 

2. the selection of relationships used to define new fea- 
tures 

3. the generalization of new features 

4. the global evaluation of constructed features 

Descriptions of CITRE’s approach to detection, selec- 
tion, and evaluation can be found in [Matheus and 
Rendell, 1989, Matheus, 19891. This paper focuses on 
CITRE’s methods of domain-knowledge filtering dur- 
ing selection and new-feature generalization. 

During selection, CITRE selects pairs of Boolean re- 
lations (i.e., feature-value pairs) from the nodes in pos- 
itively labeled branches of a decision tree, and conjoins 
them to form new Boolean features, e.g., and(coZor = 
red, size = big). This selection is achieved by one of 
five methods: root, fringe, root-fringe, adjacent, or all. 
The root method selects the relations in the first two 
nodes of each positive branch, the fringe method se- 
lects the last two (i.e., the method used by FRINGE), 
the root-fringe method selects both root and fringe 
pairs, the adjacent method selects all adjacent pairs 
along each branch, and the all method selects every 
possible combination of feature pairs along each in- 
dividual branch. The adjacent selection method was 
used for the experiments described in this paper (see 
[Matheus, 19891 for comparisons of other methods). 

The selected pairs of relations are passed through a 
domain-knowledge filter eliminating pairs that do not 
satisfy the constraints imposed by the available do- 
main knowledge. Domain knowledge is represented in 
CITRE as predicates that define relationships required 
of all selected pairs. For example, in the tic-tat-toe 
experiments described below, information about piece 
adjacency was encoded as a domain-knowledge con- 
straint restricting operands to pairs of spatially adja- 
cent features. A virtually unlimited number of domain- 
knowledge constraints may be defined in this way. On 
the other hand, domain-knowledge constraints are not 
required; in their absence, all selected relation pairs 
are used to define new features. 

Domain-knowledge filtering reduces the space of new 
features and can result in a more tractable space con- 
taining a higher percentage of useful features. Unlike 
a domain theory in EBL, CITRE’s constraints need 
not define complete relationships between the goal con- 
cept and the primitives. As a result, simple common- 
sense types of information can be made available to 
the learning algorithm, e.g., in board games spatial 
proximity is often an important factor. 

After selection, CITRE performs feature generuliza- 
tion using domain-dependent generalization operators. 
The available generalization operators are applied se- 
quentially to each potential new feature, resulting in 
one or more generalized new features. In the tic-tat-toe 
experiments, four generalization operators were used 
to spatially translate candidate features up, down, left, 
and right on the game board. This process of feature 
generalization can help identify potentially useful fea- 
tures more quickly and with fewer training examples. 
As with filtering, all available domain knowledge is ap- 
plied to every new feature. 

Together, domain-knowledge filtering and general- 
ization operators provide a simple, systematic method 
for incorporating specific domain knowledge into fea- 
ture construction, and thereby into the SBL induc- 
tive processes. As the experiments in the next sec- 
tion demonstrate, the addition of domain knowledge 
in this way can result in significant improvements in 
hypothesis accuracy, hypothesis conciseness, and over- 
all learning time. 

Tic-tat-toe Classification 
The use of domain knowledge in CITRE is demon- 
strated in this section on a tic-tat-toe classification 
problem. This learning problem was selected because 
of the disjunctive form of the target concept (which 
poses difficulties for many SBL algorithms), and be- 
cause of the availability of simple domain knowledge 
relevant to board games. The target concept for this 
classification problem is “a win for x.” The feature 
set comprises nine nominal primitives corresponding to 
the nine board locations (labeled pll, ~12, ~13, ~21, 
~22, ~23, ~31, ~32, and p33 in Figure 2). All features 
range over the values of x, o, and blank. Using these 
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win for x win for 0 draw 

Figure 2: The tic-tat-toe board on the left shows the 
feature labels for each of the nine board squares. Ex- 
amples of win for x, win for o, and draw are shown 
to the right. Below each example is the number of in- 
stances of that type found in the set of all obtainable, 
final tic-tat-toe boards. 

primitives, the target concept can be expressed by the 
following disjunctive relationship: [(pll = 2) A (~12 = 
z)A(p13 = zc)]V[(p21 = z)A(p22 = z)A(p23 = z)]V[(p31 = 
%)A@32 = z)A(p33 = s)]V[(pll = ~)A@21 = z)A(p31 = 
z)]V[(pl2 = 4A(p22 = z)A(p32 = z)]V[(pl3 = z)A(p23 = 
z)A(p33 = e)]V[(pll = s)A(p22 = ~)A@33 = e)]V[(pl3 = 
c) A (~22 = z) A (~31 = z)]. 

Although the instance space defined by the nine fea- 
tures has cardinality 3’ = 19,.683, the rules for tic-tac- 
toe permit only 958 final tic-tat-toe boards, of which 
626 are wins for x, 316 are wins for o, and 16 are draws 
(see Figure 2). This entire set of instances was used 
as the test set in all experiments. Ten training sets for 
each of five training sizes (100, 200, 300, 400, and 500 
examples) were randomly drawn from this set. 

For each independent variable tested in the experi- 
ments below, ten test runs were made at each of the 
five training sizes while the following dependent vari- 
ables were recorded: 1) accuracy of the final hypothesis 
on classifying the test-set instances, 2) length of the fi- 
nal hypothesis measured as the number of primitives 
required to define all internal nodes, and 3) CPU time 
consumed during the entire learning process. These 
recorded values were averaged and statistically ana- 
lyzed using a t-test with 95% confidence intervals. 

CITRE without Domain Knowledge 
CITRE was run without domain-knowledge filtering or 
generalization in this first series of experiments. The 
results are shown in Figure 3 for the adjacent method 
and for the decision-tree algorithm without feature 
construction (referred to as the none method). Fea- 
ture construction improves accuracy by greater than 
15% at the higher training sizes. The final hypothe- 
ses, however, are less concise. Although part of this 
increase in length is due to the additional nodes re- 
quired to improve hypothesis accuracy, the adjacent 
method produces excessively long final hypotheses at 
the higher training sizes (for example, at training size 
400, final hypotheses are at least twice as long as nec- 
essary for the corresponding level of accuracy). CPU 
times are also much greater than those for the none 
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Figure 3: Results of CITRE’s application to tic-tac- 
toe classification without the use of domain knowledge: 
* = adjacent, o = none. 

method (over 700 times as much at training size 500). 
This increase is due to the additional time required to 
construct new features and to re-run the tree-induction 
procedure over several generations. In summary, the 
adjacent method alone improves accuracy significantly 
but results in lg?s concise hypotheses and requires large 
amounts of CPU time. 

Domain-Knowledge Filterjng 

The next series of experiments tested the use of 
domain-knowledge filtering by adding two knowledge 
constraints: piece adjacency and piece type. Piece 
adjacency encodes the importance of piece proximity 
in board games by constraining new features to rela- 
tions between features physically adjacent on the game 
board (e.g., pll and ~12, but not pll and ~13). Piece- 
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Figure 4: Results with the addition of domain- 
knowledge filtering: o = adjacent + filtering, 0 = 
adjacent + filtering with deferred pruning, * = 
adjacent, o = none. 

type knowledge encodes the importance of distinguish- 
ing between the players of the game (Z versus o) by 
constraining new features to relations between features 
possessing the same value (e.g., pl 1 = x and p12 = x, 
but not pll = x and ~12 = 0). New features were re- 
quired to satisfy both domain-knowledge constraints. 
Although these pieces of domain knowledge are rel- 
evant to a larger class of board-game problems, the 
specific predicates that defined them in these experi- 
ments were tailored for tic-tat-toe. 

Figure 4 compares the domain-knowledge filtering 
results to the previous experiment. Feature construc- 
tion with filtering improves hypothesis accuracy (sig- 
nificant at size 500), however, the improvement is much 
less than was achieved with the adjacent method with- 

out filtering. Although the hypothesis lengths and 
CPU times are substantially reduced, these improve- 
ments are less meaningful in light of the lower accu- 
racy. This poorer performance suggests that the con- 
straints imposed by the domain knowledge were per- 
haps too restrictive, preventing the construction of 
useful features. However, although some potentially 
useful features would have been filtered out for fail- 
ure to satisfy the piece-adjacency and piece-type con- 
straints, the most useful features were still realizable 
(e.g., and(pl1 = x, and(p22 = x,p33 = x))). The 
reason more of these features were not constructed is 
that the pruning of trees during feature construction 
severely reduces the length of positive branches, and 
thereby the pool of potential new feature (the effects 
of pruning are discussed more fully in [Matheus, 19891). 

To overcome this problem, an approach was imple- 
mented in which pruning is deferred until after the fi- 
nal tree is constructed. - With this approach feature -- 
construction operates on all the information in the un- 
pruned trees, while the benefits of pruning are main- 
tained in the final hypotheses. The results of deferred 
pruning tests are graphed as the @ plots in Figure 4. 
For filtering, deferred pruning greatly improves accu- 
racies and has insignificant effects on conciseness and 
learning time. These results compare favorably with 
the accuracy results of the pure adjacent method (i.e., 
the * plot in Figure 4). 

Feature Generalization 
In the next series of experiments new features were gen- 
eralized by spatially translating them up, down, left, 
and right on the game board. All translations were 
made in a single direction but could be extended up 
to two places in distance. As a result, the minimum 
number of new features generalizable from a single new 
feature was zero and the maximum was three. Fig- 
ure 5 shows the new feature and(pl1 = x,p21 = x) 
translated one place down, one place to the right, and 
two places to the right, resulting in three new features: 
and(p21 = x, ~31 = x), arid(pl2 = x,p22 = x), and 

xl 
X +-I- 

Figure 5: An example of the spatial translations used 
in feature generalization. The constructed feature 
and(pl1 = x,p21= 
right one square, 

x) is translated down one square, 
and right two squares to produce 

three new features. 
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and(pl3 = x, ~23 = x). Although the predicates used 
to perform the generalizations are specific to tic-tac- 
toe, spatial translations of this sort are relevant to a 
wide range of learning problems. 

As shown in Figure 6, generalization improves accu- 
racy by more than 18% relative to the control method 
(except at training size loo), and by as much as 10% 
over the adjacent method alone. Conciseness is not 
significantly affected by generalization, as the final hy- 
potheses continue to be longer than necessary. CPU 
times, however, increase to more than 1000 times that 
required by the control method at size 500. The im- 
proved accuracy achieved with generalization would be 
attractive if conciseness and CPU times could be im- 
proved. This situation suggests a combined approach 
using generalization and domain-knowledge filtering. 

100 

90 

80 

70 

1 

1 
60 -I- I I I I I I 

O 100 200 300 400 500 
Number of Training Examples 

O& 
0 100 200 300 400 500 

Number of Training Examples 

10 

8 

6 

4 

2 

0 
0 100 200 300 400 500 

Number of Training Examples 

Figure 6: Results with feature generalization: e = 
adjacent + generalization, * = adjacent, o = none. 

Combining Filtering and Generalization 

The final experiment combined domain-knowledge fil- 
tering and feature generalization. The results are 
graphed in Figure 7 along with plots for the adjacent 
method without filtering or generalization and the 
none method. The combined method significantly 
improved hypothesis accuracy relative to the control 
method. Although the accuracies are slightly less than 
those achieved by generalization alone (except at train- 
ing size loo), they are slightly better than achieved 
with filtering alone. As hoped for, the combined 
method achieves these improved accuracies while re- 
ducing hypothesis length and learning times relative 
to the individual methods of filtering and generaliza- 
tion. 
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Figure 7: Results for the combined use of generaliza- 
tion and domain-knowledge filtering: * = adjacent 
+ generalization + filtering (with deferred pruning), 
* = adjacent, o = none. 
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Conclusions 
An approach was presented for incorporating domain 
knowledge into SBL through feature construction. Its 
use was demonstrated in a version of CITRE that in- 
corporates domain knowledge during feature construc- 
tion in two ways: as constraints on the types of features 
that may be constructed, and as transformations for 
generalizing new features. In empirical tests on tic-tac- 
toe classification, domain knowledge used in this way 
improved hypothesis accuracy and conciseness, and re- 
duced the computational costs of feature construction. 

This approach offers two main advantages. First, 
because the domain knowledge is used in feature con- 
struction, the underlying inductive algorithm is not af- 
fected. As a result, this approach should be readily 
applicable to existing SBL systems through the ad- 
dition of a feature construction component. Second, 
this approach works with domain knowledge ranging in 
quality from irrelevant information to complete domain 
theories. When the domain knowledge is inappropri- 
ate, few if any useful features will be constructed and 
performance will fall to the level achievable using the 
primitives alone. With complete domain knowledge, 
useful features can be constructed from few examples 
and optimal accuracy and conciseness can be achieved. 

The specific results of CITRE’s application to tic- 
tat-toe classification were presented to demonstrate 
the central idea of using domain knowledge during fea- 
ture construction. There are many improvements that 
could be made both to the general approach and to 
the specific techniques used in CITRE. In particular, 
the use of domain-knowledge filtering as described in 
this paper is rather rigid: if a new feature is incon- 
sistent with the knowledge, it is not constructed. A 
more flexible approach would use knowledge as a guide 
for suggesting new features while retaining the abil- 
ity to construct features unanticipated by the domain 
knowledge. For example, when the domain-knowledge 
filtering constraints were found to be too severe in the 
second experiment, the constraints might have been re- 
laxed to permit the construction of additional features. 
This idea is evident in MIRO [Drastal and Raatz, 19891 
where domain knowledge used to construct new fea- 
tures is retracted if the active features do not permit 
the construction of a consistent hypothesis. 

Another issue that deserves further consideration is 
the generalization of new features. The method used 
in the tic-tat-toe experiments is very primitive: a fea- 
ture is translated into features having a similar level 
of descriptive power (i.e., at the same level of gener- 
alization). A true generalization would, for example, 
take a feature that detects an x in the first and sec- 
ond squares and generalize it to a feature that detects 
an occurrence of two x’s side-by-side anywhere on the 
board. Generalized features of this sort can lead to 
faster learning from fewer examples, but because they 
also increase the complexity of the search space, they 
require even stronger constraints. 
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