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ABSTRACT

This article presents an approach to the assessment of operational manufacturing systems
complexity based on the irregularities hidden in manufacturing key performance indicator
time-series by employing three complementary algorithmic complexity measures:
Kolmogorov complexity, Kolmogorov complexity spectrum’s highest value and overall
Kolmogorov complexity. A series of computer simulations derived from discrete manufactur-
ing systems are used to investigate the measures’ potentiality. The results showed that the
presented measures can be used in quantitatively identifying operational system complexity,
thereby supporting operational shop-floor decision-making activities.
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1. Introduction

Manufacturing companies have to cope with an
uncertain and volatile environment driven by factors
such as rapidly changing customer demands, polit-
ical regulations, technological advancements and
global market competition to remain profitable and
competitive (H. ElMaraghy et al., 2013). The
internal complexity of a manufacturing company is
linked to these factors, where they manifest them-
selves as an increased number of product variants,
high product complexity, a high number of diverse
customers, and increased number and variety of
business targets (Alkan, 2019). This ultimately
results in an increase in operational uncertainty
which may result in unpredicted/unexpected manu-
facturing system behaviours (Alkan, Vera, Ahmad,
Ahmad, et al., 2018; Irani, 2010).
An increase in complexity may decrease the

responsiveness of manufacturing systems and make
them harder to manage and control (Alkan, 2018).
As an example, increasing product variety can tend
to encourage manufacturing systems to have a
higher degree of flexibility for handling multiple
components due to the increased variety of product
parts. This often results in complex and sophisti-
cated system structures where a high number of
mechatronic components and software algorithms
need to cooperate to achieve a set of pre-defined
production goals. Without proper IT systems and
complexity management strategies, an increase in
system complexity may decrease the operational effi-
ciency of the entire facility, and result in line-

balancing problems especially during disruptive
events where system managers are required to make
correct decisions on time.
One effective way to design manufacturing sys-

tems that are diagnosable, predictable and product-
ive is the systematic assessment of complexity,
allowing us to identify excessive/harmful complexity,
and hence to take steps to reduce it and/or manage
its implications. Analysis and quantification of com-
plexity also allow us to develop and implement the
correct strategies required for its management
(Efthymiou et al., 2016). The literature reveals two
types of manufacturing systems complexity, i.e.
structural (static) and operational (dynamic)
(Frizelle & Woodcock, 1995). Structural complexity
is linked to the time-independent characteristics of a
manufacturing system and relates to the types and
variety of sub-systems and their interactions
(Deshmukh et al., 1998). Operational complexity, on
the other hand, is induced by systems’ time-depend-
ent characteristics and involves the aspects of flows,
lags and stochasticity (Frizelle & Suhov, 2001).
Please note that there is a close bi-directional rela-
tionship between the structural and operational
complexity of manufacturing systems (Alkan, 2018).
In the manufacturing context, complexity is often

defined as the uncertainty associated with the infor-
mation required to describe the overall state of a
manufacturing system and/or its components
(Deshmukh et al., 1998). In this context, uncertainty
is measured by Shannon metric based on
Boltzmann’s entropy (Shannon, 2001) which is the
average rate at which information is generated by a
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stochastic source of data. In the literature, there are
many studies employing Shannon entropy to meas-
ure structural (Deshmukh et al., 1998; Efstathiou
et al., 2002; Frizelle & Woodcock, 1995; Kohr et al.,
2018; Z. Zhang, 2012) and operational complexity
(Calinescu et al., 1998; Chryssolouris et al., 2013;
Efthymiou et al., 2014; Frizelle & Suhov, 2001; Kohr
et al., 2018; Mourtzis et al., 2013; Sivadasan et al.,
2010; Vrabi c & Butala, 2011; Y. Wu et al., 2007; Y.
R. Wu et al., 2013; T. Zhang & Efstathiou, 2006).
Although, entropic measures provide an objective
way for quantifying complexity, they are criticised
for involving subjectivity in defining the resource
states (e.g. busy, idle, etc.) (Papakostas et al., 2009),
and being tied to the level of detail (Sivadasan
et al., 2006).
Another quantitative approach towards the defin-

ition of manufacturing systems complexity is based
on chaos and non-linear dynamics theory. Examples
include (Chryssolouris et al., 2004; Donner et al.,
2008; Giannelos et al., 2007; Katzorke & Pikovsky,
2000; Massotte, 1996; Papakostas & Mourtzis, 2007;
Schmitz et al., 2002; Scholz-Reiter et al., 2002;
Wiendahl & Scheffczyk, 1999). These methods
include phase space reconstruction techniques, max-
imal Lyapunov exponent testing, and the use of
bifurcation diagrams (Alkan & Harrison, 2019).
Nevertheless, these approaches can be considered as
limited, since they are unable to capture the effects
of stochastic events such as machine breakdowns
(Efthymiou, 2013), and (with the exception of
Lyapunov exponent testing methodology) are tied to
the schematic analysis of dynamic behaviours
(Efthymiou et al., 2012). According to Efthymiou
(2013), these approaches also require relatively large
data sets and are highly sensitive to disturbances in
measurement.
Manufacturing systems complexity can also be

assessed through qualitative and hybrid measures.
Hybrid measures merge information theory and sur-
vey-based assessments and are often employed to
provide an industrially readable picture of complex-
ity. Example studies include (Ahmad et al., 2016;
Alkan et al., 2016b, 2017; H. A. ElMaraghy, 2005;
W. ElMaraghy & Urbanic, 2003; Garbie & Shikdar,
2010; Kim, 1999; S. Samy & ElMaraghy, 2012;
Sarkis, 1997; Schoettl et al., 2014; Windt et al.,
2008). Hybrid measures are often considered advan-
tageous as they are easy to apply in real systems and
considered an effective approach in comparing sys-
tem alternatives during design stages (Alkan et al.,
2016a). According to Alkan, Vera, Ahmad, Ahmad,
et al. (2018), these measures are limited in the sense
that they are often designed for a specific purpose
or application. Moreover, they are incapable of cap-
turing intricate structural patterns, and therefore

lack the deeper insight into manufacturing systems
complexity that more quantitative measure promise.
In addition to its objectivity, complexity has also

a subjective nature; being dependent on the context
and observer (Gell-Mann, 1995). This type of com-
plexity is termed as “perceived complexity” and often
assessed using structured or semi-structured surveys
and questionnaires (Calinescu et al., 1998; Falck
et al., 2012; Kohr et al., 2018; Mattsson et al., 2011,
2016). Although these approaches can capture the
perceived level of complexity and highlight problems
in existing systems, they are incapable of evaluating/
comparing alternative systems in early design stages
since no physical mock-up or process trials are
available (Alkan, Vera, Ahmad, Ahmad, et al.,
2018). Also, they are limited to survey stages, and
their results are dependent on the subjective inter-
pretation of the interviewees (Alkan, Vera, Ahmad,
& Harrison, 2018).
Although the existing approaches have resulted in

valuable results, only a few of them (Chryssolouris
et al., 2013; Efthymiou et al., 2014; Schmitz et al.,
2002; Vrabi c & Butala, 2011) have attempted to inves-
tigate the relationship between complexity and manu-
facturing key performance indicators (KPIs).
Henceforth, this article aims to contribute to a better
understanding of the above-mentioned link between
complexity and manufacturing systems’ KPIs through
the application of three complementary Kolmogorov
complexity measures. Towards this aim, a data-driven
operational manufacturing systems complexity quan-
tification approach is proposed and illustrated on two
discrete production system simulation models. The
proposed approach includes the first-time implemen-
tations of both Overall Kolmogorov complexity
(KLO) and Kolmogorov complexity spectrum max-
imum value (KLM) measures in the domain of manu-
facturing, and quantitatively links operational
complexity to manufacturing KPIs; thereby support-
ing operational shop-floor decision-making activities
in an explicit way.
The rest of the paper is organised as follows.

Section 2 reports the research background, i.e. the
terminology, manufacturing KPIs and Kolmogorov
complexity measures used within this research.
Section 3 presents the research methodology.
Section 4 addresses the case studies investigated in
this research, and discusses the obtained results. In
Section 5, the validity of the approach is discussed.
Finally, Section 6 concludes the paper and outlines
future work.

2. Research background

This section provides background to the topics dis-
cussed throughout the article.
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2.1. Manufacturing KPIs

KPIs are measurable metrics that show how success-
fully a company meets its key business goals. In
general, manufacturing KPIs can be grouped into
five main categories: cost, quality, flexibility, sustain-
ability and time (Chryssolouris, 2013). These catego-
ries can be extended to a set of sub-categories
including: availability, utilization, throughput,
rework ratio, scrap ratio, machine flexibility, cus-
tomer satisfaction, cycle time, flow time, corrective
maintenance ratio, first time pass yield, mean time
to failure, mean time to repair, overall equipment
effectiveness, production effectiveness, production
process ratio, quality, etc. In a manufacturing enter-
prise, KPIs can be tracked and monitored at various
distinct levels, including machine, workstation, pro-
duction line, enterprise, etc. KPIs are mainly dis-
played to shop-floor staff, managers and supervisors
in order to support their decision-making activities
(Amrina & Vilsi, 2015). The frequency at which
KPIs are monitored and assessed is vital, and mainly
depends on the nature of the manufacturing oper-
ation. In general, KPIs are tracked in real-time,
however, they can be displayed periodically or on-
demand (Assad et al., 2019).

2.2. Time-series

The application of the Kolmogorov complexity
measures necessitates the consideration of manufac-
turing KPIs in a time-series format. A time series is
a time-stamped chronological sequence of observa-
tions on a variable of interest (Montgomery et al.,
2015). Time series can usually be measured non-
uniformly over time (i.e. discrete-time data), and
hence can be represented with a time stamp vector
ti and corresponding measurements xi. However,
they can also be uniformly sampled at a constant
sampling period Dt: The analysis of time-series can
be achieved through two successive steps (Deb et al.,
2017). The first step covers the obtainment of the
structure and underlying pattern of the data,
whereas the second step addresses the preparation
of the statistical models to make future predictions.
Analysis of the time series can be used for many
purposes including economic forecasting, operation
and quality control, evaluation of censuses, etc. The
decomposition of the sequence into three elements,
i.e. pattern, seasonality and residual, is a standard
approach (Brockwell & Davis, 2016). Trend is a pat-
tern of continuous change or general inclination of
a set of data points over time along any axis on a
graph. Seasonality is the occurrence of fluctuations
at specific and regular intervals, such as fluctuations
across weekly, monthly, or quarterly periods. A
residual is the vertical difference between a

regression line and a data point. Analysis of the time-
series will typically be split into univariate and multi-
variate analyses. Time-series consisting of single
observations recorded sequentially over equivalent
spans of time are known as univariate time-series.
Multivariate time-series, on the other hand, involve
many time series that interact simultaneously with
dependent data. Examples of multivariate time-series
include measuring behavioural patterns in various
brain regions over time or measuring atmospheric
temperature, air pressure and humidity over time, etc.

2.3. Kolmogorov complexity

Kolmogorov complexity is an algorithmic complex-
ity measure representing the degree of uncertainty
in a binary time-series, and named after Andrey
Kolmogorov who chiefly proposed this subject in
1963. According to Cover and Thomas (2012),
Kolmogorov complexity represents “complexity of

any binary finite time-series is linked to the length of

the shortest binary computer program that can repro-

duce this string on the Universal Turing Machine (U)

and then halt.” Although Kolmogorov complexity
cannot be directly measured, Lempel and Ziv (1976)
proposed a data compression algorithm based on
the Kolmogorov’s idea, which is used in measuring
randomness in finite-time-series. Lempel-Ziv’s
approach has been used in several disciplines,
including, biomedical engineering (Ib!a~nez-Molina
et al., 2015; Rivolta et al., 2014; Y. Zhang et al.,
2016) and environmental science (Mihailovi!c,
Mimi!c, Dre skovi!c et al., 2015; Mihailovi!c, Mimi!c,
Nikoli!c-Djori!c et al., 2015). The following section
provides three complementary algorithmic complex-
ity metrics aiming to measure Kolmogorov com-
plexity based on the Lempel-Ziv data
compression algorithm.

3. Research methodology

In the study presented here, operational complexity
of a manufacturing system is defined as the degree
of irregularity arising in its KPI time-series. In this
definition, it is assumed that an increase in com-
plexity is accompanied by an increase in the diffi-
culty in predicting and controlling operational
system efficiency. Towards this, operational com-
plexity is assessed through three complementary
Kolmogorov complexity measures, i.e. Kolmogorov
complexity spectrum, Kolmogorov spectrum highest
value and the overall Kolmogorov complexity. The
presented method consists of three distinct steps: i)
obtaining a KPI time-series either by an on-site
measurement process or a discrete-event simulation
(DES) model, ii) transforming the KPI time series
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into a Kolmogorov complexity spectrum, and iii)
calculating the complexity of the time-series based
on the overall Kolmogorov complexity measure.
Figure 1 depicts an overview of the methodology.

3.1. Data preparation

One of the key goals of non-linear time series ana-
lysis is to assess complexity which is hidden in the
dynamics of the system. In the proposed approach,
relevant history for the system’s KPI time-series (xi)
is collected through the periodical on-site measure-
ments. In today’s manufacturing settings, real-time
production data can be collected through Internet-
of-Things-enabled (IoT-enabled) field devices and
stored within time-series databases such as InfluxDB
(Shahid, 2019) and Prometheus (Volz & Rabenstein,
2015). Hence, the approach can be easily embraced
by Industry 4.0 aligned data-analytics and visualisa-
tion systems in which KPI time-series are used to
enhanced flexibility in decision-making and produc-
tion forecasting. In addition to this, KPI time-series
data can be gathered/analysed via discrete event
simulation (DES) models in the case where the
physical system mock-up is not available. DES mod-
els can be used in optimising various system design
and operational parameters, such as the configur-
ation of resources, processing times, buffer capaci-
ties, set-up time of machines, etc., and hence can be
an effective tool in measuring operational complex-
ity of manufacturing systems with respect to given
operational conditions and parameters. Please note

that, as Kolmogorov complexity measures are very
sensitive to the length of time series, the observation
period and sample size are essential validation crite-
ria for both on-site measurements and DES models
in the proposed method. According to Yentes et al.
(2013), measurements of algorithmic complexity
measures are especially sensitive to very small data
sets, thus, they suggest calculating measures over a
sample of at least 200 observation points. Hence, we
will consider 200 as a minimum sample size for KPI
time series observed over equal time intervals.
However, as part of future work described at the
end of this paper, there are plans to perform more
sensitivity analysis for the presented measures.

3.2. Measuring kolmogorov complexity

Once the selected KPI time-series is attained, its
Kolmogorov complexity over a range of amplitude
can be investigated. The steps of the calculation of
Kolmogorov complexity of a finite time-series (xi)
i¼ 1,2,3… ,N by the Lempel and Ziv compression
algorithm (LZA) are given as follows.

 Encode the time-series by creating a binary
sequence consisting of the characters 0 and 1
according to the rule described below.

SðiÞ ¼
0 if xi<xt
1 if xi # xt

 

(1)

In this equation, xt represents the threshold
which is often selected as the mean value of the
time-series (X.-S. Zhang et al., 2001).

 Calculate the complexity counter c(N) represent-
ing the total number of distinct patterns/charac-
ters contained in the encoded binary string. This
value is approaching an ultimate value b(N)
when the length of the sequence N approaches to
infinity.

cðNÞ ¼ OðbðNÞÞ (2)

bðNÞ ¼
N

log2N
(3)

 Calculate the Kolmogorov complexity according
to the rule described below,

KL ¼
cðNÞ

bðNÞ
¼ cðNÞ

log2N

N
(4)

The KL represents the quantity of information con-
tained in the encoded time-series. For cases where
the length of the time-series is large enough, this
value approaches 0 for periodic or regular time-ser-
ies, and 1 for fully random time-series (Mihailovi!c,
Mimi!c, Dre skovi!c et al., 2015).
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Figure 1. Overview of the methodology.
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3.3. Preparation of the kolmogorov complexity

spectrum

According to Mihailovi!c, Mimi!c, Dre skovi!c et al.
(2015), the KL measure cannot differentiate between
time-series with different amplitude variations and
similar randomness trends. Moreover, the procedure
in establishing the threshold for the KL measure
may cause information losses regarding the structure
of the time-series. To eliminate these drawbacks,
Mihailovi!c, Mimi!c, Nikoli!c-Djori!c et al. (2015) pro-
posed a novel methodology which can be used to
explore highly enhanced stochastic components of a
time series by analysing Lempel-Ziv complexity of a
range of amplitudes: which is called as “Kolmogorov

spectra of complexity.” The approach is as follows.

 Convert the time series into a sequence consist-
ing of the characters that lay in the interval [0,1]
based on the rule described below.

xi ¼
ðXi%XminÞ

ðXmax % XminÞ
(5)

where X is a time series obtained by a measuring
process or as an output from a simulation model,
Xi is the ith value in X, Xmax¼max(X) and
Xmin¼min(X).

 Convert the normalised time series into a set of
binary sequences Ski , i¼ 1,2,3… ,N,
k¼ 1,2,3… ,N, by comparing them with a series
of thresholds (xt, k), k¼ 1,2,3… ,N, where each
threshold element is equal to the corresponding
element in the considered time series (xi),
i¼ 1,2,3… ,N.

Ski ¼
0 if xi<xt, k
1 if xi # xt, k

 

(6)

 Apply LZA on each element of 0-1 sequences
(Ski ) to obtain Kolmogorov complexity spectrum
(ci), i¼ 1,2,3… ,N. The Kolmogorov complexity
spectrum enables the exploration of the time ser-
ies over a range of amplitudes. Here, the max-
imum value of the Kolmogorov complexity
spectrum is denoted as the Kolmogorov com-
plexity spectrum highest value (KLM). KLM car-
ries the information about the highest complexity
among all complexities in the spectrum, and

hence should be considered while analysing the
randomness within system behaviours encrypted
as a time-series.

3.4. Measuring overall kolmogorov complexity

The overall Kolmogorov complexity (KLO) pro-
posed by Mihailovi!c, Mimi!c, Nikoli!c-Djori!c et al.
(2015) offers a better understanding of complexity
of dynamical systems, i.e. their time evolution and
predictability. This measure is based on the
Kolmogorov spectrum of complexity and can be cal-
culated as follows:

KLO ¼
1
N

ð

X

KC
s dx (7)

where, KC
s is the spectrum of Kolmogorov complex-

ity, dx is differential of the normalised amplitude,
while X is a domain of all normalised amplitudes
over which this integral takes values (Mihailovi!c,
Mimi!c, Nikoli!c-Djori!c et al., 2015). The complexity
spectrum allows us to visualise complexity hidden
in the coding rules of commonly used KL measure.
In this sense, KLM and KLO can be considered as
improved indicators, as KL only conveys average
information about a time-series. This is also import-
ant, as KLO can differentiate between time-series
with different amplitude variations and similar ran-
dom components, thereby providing a distinction
between different time series having close values of
the KL and KLM measures. Thus, if available, the
KLO can provide a better understanding of the
Kolmogorov complexity of time-series.

4. Case studies and results

This section illustrates the implementation of the
presented complexity measures using two DES mod-
els of discrete manufacturing systems derived from
machining and assembly industries.

4.1. Case study one

A simple manufacturing system producing one
product has been implemented in a discrete event
simulation model, for demonstrating the presented
Kolmogorov complexity measures. The system con-
figuration consists of six machines, each of which
can only process one product at a time. The manu-
facturing system is illustrated in Figure 2. The sys-
tem is considered balanced and the dispatching rule
first-in-first-out is used for the selection of the prod-
uct order to be performed by the workstations. The
performance indicator chosen is the average product
flow time, which is the average value of the differen-
ces between the completion (end) time and the
arrival time of jobs processed in a particular time
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Figure 2. Example manufacturing system configuration.
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unit. The process cycle time of machines and prod-
uct arrival rate are deterministic and kept constant
in all simulations.
It is often argued that the more complex a system

is, the more it will cost to develop and operate and
the less reliable it will be (Alkan, Vera, Ahmad,
Ahmad, et al., 2018). Based on this viewpoint, the
performance of the Kolmogorov complexity measure
is studied in the above-mentioned simulation model
with varying machine reliabilities. Accordingly, the
negative exponential distribution model with a
mean denoted as k is assigned for mean time
between failure (MTBF), and the normal distribu-
tion model with mean l and standard deviation r2

is employed for the meantime to repair (MTTR) of
system resources. Five scenarios with varying MTBF
and MTTR values, which are given in Table 1, are
investigated. Each simulation simulates 4000 units
of time with average mean flow time recorded for
each time unit. For each simulation, the inter-arrival
time for the product is kept constant at five-
time units.
Figure 3 shows the average mean flow time series

sampled per time unit for each scenario.
Operational complexity is calculated based on each
of the three Kolmogorov complexity measures and
is given in Table 1. The results are found to be in
line with the previous hypothesis indicating an
inverse relationship between the complexity and
reliability of engineering systems. Accordingly, a
decrease in system reliability is found to be accom-
panied by an increase in operational complexity for
all three measures. This is reasonable, as systems
become operationally unpredictable as the stochas-
ticity involved in their operations increase, and this
leads to a greater diversity within the consequent
KPI time series which is reflected in higher
Kolomogorov complexity values. Figure 4 illustrates
Kolmogorov complexity spectra for individual pro-
duction scenarios. Note that, in each case, the shape
of the Kolomogorov complexity spectrum is qualita-
tively similar (although they differ in amplitude).
This clearly indicates the presence of varying pro-
cess stochasticity induced by the system reliability.
KLO, is, therefore found to be very useful in detect-
ing the impact of stochasticity on KPI time series.

4.2. Case study two

In this section, the presented algorithmic complexity
measures are demonstrated on an industrial case
study derived from a mixed model assembly line.
The case study was originally designed in SimEvent/
MATLAB to demonstrate the capabilities of
SimEvent in analysing the impact of job scheduling
on throughput.

4.2.1. Description of the plant

The assembly line (Figure 5) can produce up to
forty product variants; each requiring two parts
(Part A and Part B) that correspond to that particu-
lar variant. To manufacture a particular variant,
parts corresponding to the variant are brought
together in the manufacturing area, where Part A
goes through a specific blanking operation, and Part
B goes through a specific milling operation. Both
parts are then fastened, and the combined product
goes through a finishing operation. Milling and fas-
tening operations require human workers, whereas
the finishing operation is performed by a robotic
station. Human workers are responsible for loading
and unloading products from two milling machines
and one fastening machine. The finished products
then enter the inspection area, where the finished
product is certified to be completed or rejected and
scrapped. The rejection rate is assumed to be 5% in
the inspection area for all cases. Human workers are
responsible for loading and unloading products
from three inspection machines. The assembly line
is considered to be balanced and operates on a 24 h
basis with 3 repeated shifts.

4.2.2. Description of experiments

Operational complexity of the assembly line is
studied using statistical design of computer experi-
ments. The goal here is to maximize the knowledge
regarding the cause-effect relationships between
complexity drivers and operational complexity. The
performance of the assembly line is tracked based on
the average queue length of the buffer located
between manufacturing and inspection areas. The
average queue length of this specific buffer is selected
as a performance indicator since any operational dis-
turbance in the manufacturing area or the inspection
area would lead to irregularities in the pattern of the
time spent in the inspection buffer. This is also an
appropriate indicator of whether two sub-systems,
i.e. manufacturing and inspection, are working in a
harmony. The assembly line is simulated in the
MATLAB environment and analysed under various
operational scenarios. For each scenario, the average
queue length time series is tracked and used in the
operational complexity calculations without any sig-
nal filtering. In the simulations, three human workers
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Table 1. Operational complexity results of systems with
varying machine reliability.

MTBF
MTTR Complexity results

Case k l r2 KL KLM KLO

1 50 10 0.5 0.6580 0.6610 0.2895
2 150 5 0.25 0.3170 0.3260 0.1509
3 300 1 0.1 0.2153 0.2183 0.1139
4 500 0.5 0.05 0.1286 0.1286 0.0727
5 1000 0.25 0.0125 0.1017 0.1017 0.0555
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are employed for both manufacturing and inspection
areas. The rejection rate during inspection is
assumed to be 5% and kept constant for each scen-
ario. The dispatching rule first-in-first-out is
employed for processing the orders. A simulation

runs for 2,000,000 time units, and average queue
length KPI is sampled every 250-time units. The ratio
of demand to maximum throughput per time unit is
selected as 0.85 as is recommended by Efthymiou
et al. (2014) and kept constant for every scenario.
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Figure 3. The average product flow time time-series for individual production scenarious with varying machine reliability.

Figure 4. Kolmogorov complexity spectrum c1 of product flowtime time series x1 obtained through the discrete event
simulation model.
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4.2.3. Effects of the job scheduling

In this section, the operational complexity of the
assembly line is investigated in the context of differ-
ent job scheduling schemes. Five job scheduling
schemes are employed to organise 20weeks of pro-
duction processed in weekly batches. In each batch,
200 product orders belonging to 40 different var-
iants with a uniform random distribution are sched-
uled based on the following schemes:

 Schedule 1: Shortest job first on the blanking
machine: This schedule prioritises the operations
with the shortest cycle time on the blanking
machine first and the longest ones at the end.

 Schedule 2: Shortest job first on the Milling
machines: This schedule prioritises operations
based on their milling cycle times from shortest
to longest.

 Schedule 3: Shortest job first on the Fastening
machine: This schedule is designed based on the
product fastening time; shortest fastening cycle
time first and the longest ones at the end.

 Schedule 4: Shortest job first using the cumula-
tive manufacturing time: This schedule prioritises
product orders based on their cumulative cycle
time on all the machines. The operations having
the shortest cumulative cycle time is, therefore,
put first and the longest ones put to the end.

 Schedules 5: Random schedule: This schedule is
generated using a random permutation of the set
of jobs.

Computer simulations are carried out using
MATLAB SimEvents software with 5 replications for
each of the five scenarios resulting in a total of 25
simulation experiments. In each simulation, average
queue length KPI time-series of the inspection buf-
fer was recorded as 8000 data points with a warm-
up period of 250 discarded points. In order to iso-
late the effect of scheduling on the selected KPI,
machine cycle times are assumed to be determinis-
tic. Figure 6 illustrates the operational complexity of
the assembly line for each job scheduling scheme.

Table 2 displays complexity scores for individual
production scenarios. It should be noted that
Kolmogorov complexity measures are expected to be
to zero if the system behaviours can be easily pre-
dicted, whereas, unpredictability/randomness is
associated with higher complexity scores. According
to the results, operational complexity of the assem-
bly line is found to be below 0.1 for all cases indi-
cating that the system is deterministic with very low
complexity and very high predictability.
Nevertheless, operational complexity of the system
is found to be affected by the employed scheduling
policies. Schedule 5 (i.e. random job ordering) pro-
duced the highest operational complexity (KLO ¼

0.0396, KL ¼ 0.0595, and KLM ¼ 0.0926). This is
reasonable, as schedule 5 follows a random product
order, whereas, other schedules execute operations
by prioritising particular variants. It is interesting to
note that, schedules 1 and 4 have displayed the low-
est operational complexity with the same
Kolmogorov complexity value (KL ¼ 0.0265). This
indicates the presence of a similar degree of random
components in their performance time-series. The
KLO measure, however, distinguished between the
complexity of the two schedules as can be seen in
Figure 7. This additional information is not con-
tained in KL and KLM measures and allows us to
conclude that schedule 1 (KLO ¼ 0.0275) has larger
variability of amplitudes and produced more oper-
ational complexity than schedule 4 (KLO ¼ 0.0261)
if the whole spectrum of Kolmogorov complexity is
taken into account. This is also reasonable as sched-
ule 4 provides a more holistic approach in job
scheduling; thereby minimising the impacts of oper-
ational uncertainties in the long run to a greater
extent than approaches prioritising particular
aspects/areas of a manufacturing system. It is inter-
esting to note that, schedules 2 (KLO ¼ 0.0280, KL
¼ 0.0398, and KLM ¼ 0.0763) and 3 (KLO ¼
0.0290, KL ¼ 0.0364, and KLM ¼ 0.0596) have pro-
duced relatively high operational complexity by
comparison with both schedules 1 and 4 based on
KL and KLO measures.
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Figure 5. SimEvent model of the assembly line.
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4.2.4. Effects of process stochasticity

This section investigates the relationships between
process stochasticity and operational complexity
using the KL, KLM and KLO algorithmic complex-
ity measures for data from discrete event simula-
tions. Towards this aim, 8 computer experiments
with 5 replications each producing 40 KPI time-ser-
ies were analysed. Stochasticity is only introduced to
the cycle time of system resources, where the vari-
ation in operation completion times are assumed as
2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20%.
The warm-up time and run time of simulations are
kept constant and the same as the experiments pre-
sented in the previous section. Only one product
variant (Variant 1) was fed to the system to better
analyse the effects of stochasticity in isolation.
Figure 8 shows the relationship between process

stochasticity and operational complexity. As
expected, a positive correlation is found between
operational complexity and process stochasticity
defined by process cycle-time variations. Here, we
use a linear fit to describe the relationship trend.
However, non-linear models could be used to more
accurately define the correct relationship trend.

4.2.5. Effects of the product mix ratio

Increased product variety is one of the main factors
affecting operational complexity of manufacturing
systems (S. N. Samy & ElMaraghy, 2010). Handling
increased product variety necessitates the manufac-
turing system to quickly react and adapt to manu-
facturing disturbances. Poor variety management

can result in stochastic line balancing problems
(Alkan, Vera, Ahmad, Ahmad, et al., 2018). In this
section, the relationship between product variety
and operational complexity is studied using a series
of computer experiments. To simplify the experi-
ment, only product variants 1 and 2 are considered.
In these experiments, the effects of product variety
are analysed based on five levels of product mix
ratios, i.e. 50–50%, 60–40%, 70–30%, 80–20%,
90–10%. The correlation between operational com-
plexity and product mix ratios is developed using
trend analysis. Similar to study carried out in
(Efthymiou et al., 2014), an information-theoretic
approach is used to characterise the effect of prod-
uct variety. The entropy is computed based on the
percentage of each variant in the product mix.
Accordingly, information entropy H induced by the
product varieties is calculated as follows:

H ¼
X

2

i¼1

%pilog2pi (8)

where pi represents the percentage of the product in
the product mix.
Table 3 shows KLO, KL, KLM and H values for

each product mix case. Interestingly, KL measure
was unable to differentiate operational complexity of
the manufacturing system processing two product
variants with mix ratios of 60–40%, 70–30%,
80–20% and 90–10%. The authors believe that this
may be associated with the length of the selected
KPI time-series, as a larger number of observations
may be required to distinguish time series with
similar trends. On the other hand, KLO and KLM
measures delivered results with better resolution for
the selected time-series length, thereby providing an
alternative indicator where KL measure is incapable
to compare complexity of time-series. Moreover, as
opposed to Efthymiou et al. (2014) where the rela-
tionship between Kolmogorov complexity and prod-
uct mix entropy is explained with a linear fit, an
exponential fit was found to be better suited for the
relationships between KLO and KLM measures and
product mix entropy (Figure 9). Accordingly, the R-
squared values are found as 0.994 0.999 for the rela-
tionships between KLO-H and KLM-H, respectively.

5. Discussion

This research presents an operational complexity
quantification method based on the application of
three complementary Kolmogorov complexity meas-
ures on univariate production KPI time-series
recorded sequentially over equal time increments.
The article, for the first time, implements
Kolmogorov complexity spectrum and Overall
Kolmogorov complexity measures within the
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Figure 6. Three measures of operational complexity for each
of five job scheduling schemes.

Table 2. Operational complexity results of systems under
different job schedules.

KLO KL KLM

Schedule 1 0.0275 0.0265 0.0630
Schedule 2 0.0280 0.0398 0.0763
Schedule 3 0.0290 0.0364 0.0596
Schedule 4 0.0261 0.0265 0.0597
Schedule 5 0.0396 0.0595 0.0926
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domain of manufacturing systems engineering. The
proposed approach can be used in quantitatively
assessing operational manufacturing systems

complexity during both design and operational life-
cycle phases. The approach objectively links oper-
ational complexity to production system KPIs,
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Figure 7. Kolmogorov complexity spectrum c1 of average queue length time series x1 obtained through the SimEvent model.
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thereby allowing designers/managers to better
understand the cause-effect relations between the
factors generating complexity and their implications
on operational disruptions. This way, the approach
supports operational shop-floor decision-mak-
ing activities.
In the manufacturing domain, the proposed

approach has clear advantages over the previously pre-
sented complexity measures. First, the approach
involves the combined used of three Kolmogorov com-
plexity measures, resulting in a better complexity
assessment resolution, which can be especially useful
in comparing alternate manufacturing system designs
that generate KPI time series with different amplitude
variations and similar random components.
Kolmogorov complexity measures do not require set-
ting in time-series onto a high dimensional representa-
tion, which is often needed in measures derived from
chaos and non-linear dynamics theories such as bifur-
cation diagrams and Maximal Lyapunov Exponent
Testing (Efthymiou et al., 2016). Furthermore,
Kolmogorov complexity measures are easy to use and
apply as they can be readily calculated for any type of
time-series and are constrained by assumptions
regarding the probability law of the process generating
the time series (Mihailovi!c, Mimi!c, Nikoli!c-Djori!c
et al., 2015). The approach presented here is also a
data-driven method and can be easily embraced by

existing manufacturing control and advanced manu-
facturing decision-support systems within the broader
framework of Industry 4.0. The approach can be
embedded within the existing IoT-enabled data ana-
lytics and visualisation platforms to provide more flexi-
bility in decision-making processes. In such a way,
operational complexity can be used as a new decision-
making criterion alongside the existing ones such as:
cost, time, manufacturing flexibility, etc.
Along with its advantages, the presented

approach has a set of drawbacks that need to be
addressed before employing it as an industry-wide
practice. Firstly, Kolmogorov complexity measures
are highly sensitive to the length of time-series and
the noise which occurs during the observation pro-
cess. To overcome this, KPI time-series obtained
through on-site measurements should be subjected
to a pre-screening phase where the quality of the
data is checked and verified. The calculation of
Kolmogorov complexity and interpretation of com-
plexity results may require expertise, and hence per-
sonnel training should be considered in order to
make such approaches effective and reliable.
Although the approach provides an objective com-
plexity calculation solely based on the irregularities
hidden in KPI time-series, the selection of the KPI
time-series to be investigated is subjective and
requires expertise. Moreover, the approach assesses
operational complexity of a manufacturing system
based on a univariate KPI time-series consisting of
the observations of a single variable. However, man-
ufacturing systems are highly complex socio-tech-
nical systems depicting behaviours across multiple
dimensions. Therefore, the proposed approach
should be extended to have the capability to analyse
multivariate KPI time-series consisting of multiple
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Figure 8. The relationship between Kolmogorov complexity and process stochasticity.

Table 3. Operational complexity results of the system
performing under varying product mix ratios.

Variant 1 Variant 2 H KLO KL KLM

50% 50% 1.00000 0.0166 0.0263 0.0823
60% 40% 0.97095 0.0151 0.0198 0.0758
70% 30% 0.88129 0.0137 0.0198 0.0626
80% 20% 0.72193 0.0129 0.0198 0.0494
90% 10% 0.46900 0.0123 0.0198 0.0428
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KPIs. Kolmogorov complexity evaluation based on
multivariate time-series is expected to provide a
more detailed picture of the uncertainty associated
with the manufacturing system operations
being considered.
Table 4 summarises the advantages and disadvan-

tages of the proposed approach and previous oper-
ational complexity quantification approaches within
the domain of manufacturing systems engineering.

6. Conclusion and future works

In this article, three complementary algorithmic
complexity measures, i.e. Kolmogorov complexity,

Kolmogorov complexity spectrum highest value and
overall Kolmogorov complexity, are presented to
assess the operational complexity of manufacturing
systems which is believed to be hidden in systems’
KPI time-series. The presented measures enable an
objective way to compare system/process designs,
and can be used in selecting optimal system param-
eters with regard to maximising the predictability of
manufacturing operations. The presented measures
are demonstrated using an industrial case study
derived from a mixed model assembly line; oper-
ational complexity is investigated with respect to
varying job schedules, process deviations and prod-
uct-mix ratios. The results showed that the
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Figure 9. The exponential impact of product mix on the operational complexity (R2KLO¼0.994, R2KLM¼0.999).
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presented measures can be used within a real-time
process optimisation context, where manufacturing
disturbance handling can be achieved through pri-
oritising the predictability of manufacturing proc-
esses. This will ultimately lead to better productivity
by reducing uncertainty involved in manufacturing
shop-floor decision-making activities.
It is envisioned that the following two develop-

ments of the approach could be made. First, the
approach presented here will be extended to include
the synchronized analyses of multivariate KPI time-
series to provide a better picture of operational
manufacturing systems complexity. A series of simu-
lation experiments will be carried out to verify the
sensitivity of the approach across time-series with
various length and noise amplitudes. Moreover, the
presented approach will be embedded within an
Industry 4.0 based data-analytics and visualisation
platform where multiple KPI-time series can be
streamlined and analysed to assess operational pre-
dictability of manufacturing systems and the cause-
effect relationships between complexity and
performance.

Disclosure statement

No potential conflict of interest was reported by
the authors.

ORCID

Bugra Alkan http://orcid.org/0000-0002-5994-4351

References

Ahmad, M., Alkan, B., Ahmad, B., Vera, D., Harrison, R.,
Meredith, J., & Bindel, A. (2016). The use of a com-
plexity model to facilitate in the selection of a fuel cell

assembly sequence. Procedia Cirp, 44, 169–174. https://
doi.org/10.1016/j.procir.2016.02.054

Alkan, B. (2018). A complexity modelling approach to sup-
port early life-cycle phases of assembly automation sys-
tems [Unpublished doctoral dissertation]. University of
Warwick.

Alkan, B. (2019). An experimental investigation on the
relationship between perceived assembly complexity
and product design complexity. International Journal
on Interactive Design and Manufacturing (IJIDEM),
13(3), 1145–1157. https://doi.org/10.1007/s12008-019-
00556-9

Alkan, B., & Harrison, R. (2019). A virtual engineering
based approach to verify structural complexity of com-
ponent-based automation systems in early design
phase. Journal of Manufacturing Systems, 53, 18–31.
https://doi.org/10.1016/j.jmsy.2019.09.001

Alkan, B., Vera, D., Ahmad, B., & Harrison, R. (2018). A
method to assess assembly complexity of industrial
products in early design phase. IEEE Access, 6,
989–999. https://doi.org/10.1109/ACCESS.2017.2777406 Q1

Alkan, B., Vera, D., Ahmad, M., Ahmad, B., & Harrison,
R. (2016a). Design evaluation of automated manufac-
turing processes based on complexity of control logic.
Procedia Cirp, 50, 141–146. https://doi.org/10.1016/j.
procir.2016.05.031

Alkan, B., Vera, D., Ahmad, M., Ahmad, B., & Harrison,
R. (2016b). A model for complexity assessment in
manual assembly operations through predetermined
motion time systems. Procedia Cirp, 44, 429–434.
https://doi.org/10.1016/j.procir.2016.02.111

Alkan, B., Vera, D., Chinnathai, M. K., & Harrison, R.
(2017). Assessing complexity of component-based con-
trol architectures used in modular automation systems.
International Journal of Computer and Electrical
Engineering, 9(1), 393–402. https://doi.org/10.17706/
IJCEE.2017.9.1.393-402

Alkan, B., Vera, D. A., Ahmad, M., Ahmad, B., &
Harrison, R. (2018). Complexity in manufacturing sys-
tems and its measures: A literature review. European J.
of Industrial Engineering, 12(1), 116–150. https://doi.
org/10.1504/EJIE.2018.089883

Amrina, E., & Vilsi, A. L. (2015). Key performance indi-
cators for sustainable manufacturing evaluation in

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Table 4. A comparison between the proposed approach and other operational complexity measures.

Approach Strengths Weaknesses

Information entropy Objective Inter-dependency assumption
based methods Subjective state definitions

Probability estimation accuracy
Expertise requirements

Chaos theory and Objective Large data requirements
non-linear dynamics Links complexity to KPIs Sensitivity to noise

Captures the impact of change Sensitivity to sample size
Expertise requirements
Limited in design phases

Surveys based Early deployment is possible Time consuming
methods Captures human perceptions Subjective

Not applicable in design phases
Heuristics based Industry friendly Ad-hoc methods
methods Quick Subjective

Accuracy problems
Kolmogorov complexity Objective Data requirements
measures Links complexity to KPIs Sensitivity to noise

Captures the impact of change Sensitivity to sample size
Subjectivity in selecting KPIs
Expertise requirements

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 13



cement industry. Procedia Cirp, 26(1), 19–23. https://
doi.org/10.1016/j.procir.2014.07.173

Assad, F., Alkan, B., Chinnathai, M., Ahmad, M.,
Rushforth, E., & Harrison, R. (2019). A framework to
predict energy related key performance indicators of
manufacturing systems at early design phase. Procedia
Cirp, 81, 145–150. https://doi.org/10.1016/j.procir.2019.
03.026

Brockwell, P. J., & Davis, R. A. (2016). Introduction to
time series and forecasting. Springer.

Calinescu, A., Efstathiou, J., Schirn, J., & Bermejo, J.
(1998). Applying and assessing two methods for meas-
uring complexity in manufacturing. The Journal of the
Operational Research Society, 49(7), 723–733. https://
doi.org/10.2307/3010243

Chryssolouris, G. (2013). Manufacturing systems: Theory
and practice. Springer Science & Business Media.

Chryssolouris, G., Efthymiou, K., Papakostas, N.,
Mourtzis, D., & Pagoropoulos, A. (2013). Flexibility
and complexity: Is it a trade-off? International Journal
of Production Research, 51(23-24), 6788–6802. https://
doi.org/10.1080/00207543.2012.761362

Chryssolouris, G., Giannelos, N., Papakostas, N., &
Mourtzis, D. (2004). Chaos theory in production sched-
uling. CIRP Annals, 53(1), 381–383. https://doi.org/10.
1016/S0007-8506(07)60721-5

Cover, T. M., & Thomas, J. A. (2012). Elements of infor-
mation theory. John Wiley & Sons.

Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W.
(2017). A review on time series forecasting techniques
for building energy consumption. Renewable and
Sustainable Energy Reviews, 74, 902–924. https://doi.
org/10.1016/j.rser.2017.02.085

Deshmukh, A. V., Talavage, J. J., & Barash, M. M. (1998).
Complexity in manufacturing systems, part 1: Analysis
of static complexity. IIE Transactions, 30(7), 645–655.
https://doi.org/10.1080/07408179808966508

Donner, R., Scholz-Reiter, B., & Hinrichs, U. (2008).
Nonlinear characterization of the performance of pro-
duction and logistics networks. Journal of
Manufacturing Systems, 27(2), 84–99. https://doi.org/10.
1016/j.jmsy.2008.10.001

Efstathiou, J., Calinescu, A., & Blackburn, G. (2002). A
web-based expert system to assess the complexity of
manufacturing organizations. Robotics and Computer-
Integrated Manufacturing, 18(3-4), 305–311. https://doi.
org/10.1016/S0736-5845(02)00022-4

Efthymiou, K. (2013). On the assessment of manufacturing
systems complexity. University of Patras.

Efthymiou, K., Mourtzis, D., Pagoropoulos, A.,
Papakostas, N., & Chryssolouris, G. (2016).
Manufacturing systems complexity analysis methods
review. International Journal of Computer Integrated
Manufacturing, 29(9), 1025–1044. https://doi.org/10.
1080/0951192X.2015.1130245

Efthymiou, K., Pagoropoulos, A., Papakostas, N.,
Mourtzis, D., & Chryssolouris, G. (2012).
Manufacturing systems complexity review: Challenges
and outlook. Procedia Cirp, 3, 644–649. https://doi.org/
10.1016/j.procir.2012.07.110

Efthymiou, K., Pagoropoulos, A., Papakostas, N., Mourtzis,
D., & Chryssolouris, G. (2014). Manufacturing systems
complexity: An assessment of manufacturing perform-
ance indicators unpredictability. CIRP Journal of
Manufacturing Science and Technology, 7(4), 324–334.
https://doi.org/10.1016/j.cirpj.2014.07.003

ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F.,
Sch€onsleben, P., Tseng, M., & Bernard, A. (2013).
Product variety management. Cirp Annals, 62(2),
629–652. https://doi.org/10.1016/j.cirp.2013.05.007

ElMaraghy, H. A. (2005). Flexible and reconfigurable
manufacturing systems paradigms. International
Journal of Flexible Manufacturing Systems, 17(4),
261–276. https://doi.org/10.1007/s10696-006-9028-7

ElMaraghy, W., & Urbanic, R. J. (2003). Modelling of man-
ufacturing systems complexity. CIRP Annals, 52(1),
363–366. https://doi.org/10.1016/S0007-8506(07)60602-7

Falck, A.-C., €Ortengren, R., & Rosenqvist, M. (2012).
Relationship between complexity in manual assembly
work, ergonomics and assembly quality. In Ergonomics
for sustainability and growth, nes 2012 (nordiska ergo-
nomis€allskapet) konferens, Saltsj€obaden, Stockholm,
19–22 augusti, 2012.

Frizelle, G., & Suhov, Y. M. (2001). An entropic measure-
ment of queueing behaviour in a class of manufactur-
ing operations. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and
Engineering Sciences, 457(2011), 1579–1601. https://doi.
org/10.1098/rspa.2000.0731

Frizelle, G., & Woodcock, E. (1995). Measuring complex-
ity as an aid to developing operational strategy.
International Journal of Operations & Production
Management, 15(5), 26–39. https://doi.org/10.1108/
01443579510083640

Garbie, I. H., & Shikdar, A. (2010). Design for manufac-
turing systems complexity: A perspective approach
[Paper presentation]. ASME 2010 10th Biennial
Conference on Engineering Systems Design and
Analysis (pp. 751–762). https://doi.org/10.1115/
ESDA2010-25033

Gell-Mann, M. (1995). The quark and the jaguar:
Adventures in the simple and the complex. Macmillan.

Giannelos, N., Papakostas, N., Mourtzis, D., &
Chryssolouris, G. (2007). Dispatching policy for manu-
facturing jobs and time-delay plots. International
Journal of Computer Integrated Manufacturing, 20(4),
329–337. https://doi.org/10.1080/09511920600786604

Ib!a~nez-Molina, A. J., Iglesias-Parro, S., Soriano, M. F., &
Aznarte, J. I. (2015). Multiscale Lempel–Ziv complexity
for EEG measures. Clinical Neurophysiology, 126(3),
541–548. https://doi.org/10.1016/j.clinph.2014.07.012

Irani, Z. (2010). Investment evaluation within project
management: An information systems perspective.
Journal of the Operational Research Society, 61(6),
917–928. https://doi.org/10.1057/jors.2010.10

Katzorke, I., & Pikovsky, A. (2000). Chaos and complexity
in a simple model of production dynamics. Discrete
Dynamics in Nature and Society, 5(3), 179–187. https://
doi.org/10.1155/S1026022600000510

Kim, Y.-S. (1999). A system complexity approach for the
integration of product development and production sys-
tem design [Unpublished doctoral dissertation].
Massachusetts Institute of Technology.

Kohr, D., Ahmad, M., Alkan, B., Chinnathai, M. K.,
Budde, L., Vera, D. A., Friedli, T., & Harrison, R.
(2018). Proposing a holistic framework for the assess-
ment and management of manufacturing complexity
through data-centric and human-centric approaches. In
Complexis (pp. 86–93).

Lempel, A., & Ziv, J. (1976). On the complexity of finite
sequences. IEEE Transactions on Information Theory,
22(1), 75–81. https://doi.org/10.1109/TIT.1976.1055501

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

14 B. ALKAN AND S. BULLOCK



Massotte, P. (1996). Behavioural analysis of a complex
system. The International Journal of Advanced
Manufacturing Technology, 12(1), 66–76. https://doi.
org/10.1007/BF01178963

Mattsson, S., Gullander, P., & Davidsson, A. (2011).
Method for measuring production complexity [Paper
presentation]. 28th International Manufacturing
Conference.

Mattsson, S., Tarrar, M., & Fast-Berglund, Å. (2016).
Perceived production complexity–understanding more
than parts of a system. International Journal of
Production Research, 54(20), 6008–6016. https://doi.org/
10.1080/00207543.2016.1154210

Mihailovi!c, D. T., Mimi!c, G., Dre skovi!c, N., & Arseni!c, I.
(2015). Kolmogorov complexity based information
measures applied to the analysis of different river flow
regimes. Entropy, 17(5), 2973–2987. https://doi.org/10.
3390/e17052973

Mihailovi!c, D. T., Mimi!c, G., Nikoli!c-Djori!c, E., &
Arseni!c, I. (2015). Novel measures based on the kolmo-
gorov complexity for use in complex system behavior
studies and time series analysis. Open Physics, 13(1).
https://doi.org/10.1515/phys-2015-0001Q2

Montgomery, D. C., Jennings, C. L., & Kulahci, M.
(2015). Introduction to time series analysis and forecast-
ing. John Wiley & Sons.

Mourtzis, D., Doukas, M., & Psarommatis, F. (2013).
Design and operation of manufacturing networks for
mass customisation. CIRP Annals, 62(1), 467–470.
https://doi.org/10.1016/j.cirp.2013.03.126

Papakostas, N., Efthymiou, K., Mourtzis, D., &
Chryssolouris, G. (2009). Modelling the complexity of
manufacturing systems using nonlinear dynamics
approaches. CIRP Annals, 58(1), 437–440. https://doi.
org/10.1016/j.cirp.2009.03.032

Papakostas, N., & Mourtzis, D. (2007). An approach for
adaptability modeling in manufacturing–analysis using
chaotic dynamics. CIRP Annals, 56(1), 491–494.
https://doi.org/10.1016/j.cirp.2007.05.117

Rivolta, M. W., Migliorini, M., Aktaruzzaman, M., Sassi,
R., & Bianchi, A. M. (2014). Effects of the series length
on lempel-ziv complexity during sleep [Paper presenta-
tion]. Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference
of the IEEE (pp. 693–696).

Samy, S., & ElMaraghy, H. (2012). A model for measuring
complexity of automated and hybrid assembly systems.
The International Journal of Advanced Manufacturing
Technology, 62(5-8), 813–833. https://doi.org/10.1007/
s00170-011-3844-y

Samy, S. N., & ElMaraghy, H. (2010). A model for measuring
products assembly complexity. International Journal of
Computer Integrated Manufacturing, 23(11), 1015–1027.
https://doi.org/10.1080/0951192X.2010.511652

Sarkis, J. (1997). An empirical analysis of productivity
and complexity for flexible manufacturing systems.
International Journal of Production Economics, 48(1),
39–48. https://doi.org/10.1016/S0925-5273(96)00025-4

Schmitz, J., Van Beek, D., & Rooda, J. (2002). Chaos in
discrete production systems? Journal of Manufacturing
Systems, 21(3), 236–246. https://doi.org/10.1016/S0278-
6125(02)80164-9

Schoettl, F., Paefgen, M.-C., & Lindemann, U. (2014).
Approach for measuring change-induced complexity
based on the production architecture [Paper presenta-
tion]. 47th Cirp Conference on Manufacturing Systems
(pp. 934–939).

Scholz-Reiter, B., Freitag, M., & Schmieder, A. (2002).
Modelling and control of production systems based on
nonlinear dynamics theory. CIRP Annals, 51(1),
375–378. https://doi.org/10.1016/S0007-8506(07)61540-6

Shahid, J. (2019). Influxdb documentation. Release.
Shannon, C. E. (2001). A mathematical theory of commu-
nication. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(1), 3–55. https://doi.org/10.
1145/584091.584093

Sivadasan, S., Efstathiou, J., Calinescu, A., & Huatuco,
L. H. (2006). Advances on measuring the operational
complexity of supplier–customer systems. European
Journal of Operational Research, 171(1), 208–226.
https://doi.org/10.1016/j.ejor.2004.08.032

Sivadasan, S., Smart, J., Huaccho Huatuco, L., &
Calinescu, A. (2010). Operational complexity and sup-
plier–customer integration: Case study insights and
complexity rebound. Journal of the Operational
Research Society, 61(12), 1709–1718. https://doi.org/10.
1057/jors.2009.138

Volz, J., & Rabenstein, B. (2015). Prometheus: A next-
generation monitoring system (workshop).

Vrabi c, R., & Butala, P. (2011). Computational mechanics
approach to managing complexity in manufacturing
systems. CIRP Annals, 60(1), 503–506. https://doi.org/
10.1016/j.cirp.2011.03.050

Wiendahl, H.-P., & Scheffczyk, H. (1999). Simulation based
analysis of complex production systems with methods of
nonlinear dynamics. CIRP Annals, 48(1), 357–360.
https://doi.org/10.1016/S0007-8506(07)63201-6

Windt, K., Philipp, T., & B€ose, F. (2008). Complexity
cube for the characterization of complex production
systems. International Journal of Computer Integrated
Manufacturing, 21(2), 195–200. https://doi.org/10.1080/
09511920701607725

Wu, Y., Frizelle, G., & Efstathiou, J. (2007). A study on the
cost of operational complexity in customer–supplier sys-
tems. International Journal of Production Economics,
106(1), 217–229. https://doi.org/10.1016/j.ijpe.2006.06.004

Wu, Y. R., Huatuco, L. H., Frizelle, G., & Smart, J. (2013).
A method for analysing operational complexity in supply
chains. Journal of the Operational Research Society,
64(5), 654–667. https://doi.org/10.1057/jors.2012.63

Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P.,
McGrath, D., & Stergiou, N. (2013). The appropriate use
of approximate entropy and sample entropy with short
data sets. Annals of Biomedical Engineering, 41(2),
349–365. https://doi.org/10.1007/s10439-012-0668-3

Zhang, T., & Efstathiou, J. (2006). The complexity of
mass customization systems under different inventory
strategies. International Journal of Computer Integrated
Manufacturing, 19(5), 423–433. https://doi.org/10.1080/
09511920500399011

Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). Eeg com-
plexity as a measure of depth of anesthesia for patients.
IEEE Transactions on Bio-Medical Engineering, 48(12),
1424–1433. https://doi.org/10.1109/10.966601

Zhang, Y., Wei, S., Liu, H., Zhao, L., & Liu, C. (2016). A
novel encoding lempel–ziv complexity algorithm for
quantifying the irregularity of physiological time series.
Computer Methods and Programs in Biomedicine, 133,
7–15. https://doi.org/10.1016/j.cmpb.2016.05.010

Zhang, Z. (2012). Manufacturing complexity and its meas-
urement based on entropy models. The International
Journal of Advanced Manufacturing Technology, 62(9-
12), 867–873. https://doi.org/10.1007/s00170-011-3872-7

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 15


