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Abstract 

Additive manufacturing technologies have been utilised in healthcare to create 

patient-specific implants. This study demonstrates the potential to add new implant 

functionality by further exploiting the design flexibility of these technologies. Selective 

laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants 

containing a reservoir. Pore channels, connecting the implant surface to the 

reservoir, were incorporated to facilitate antibiotic delivery.  

An injectable brushite, calcium phosphate cement, was formulated as a carrier 

vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved 

the compressive strength (5.8 ± 0.7MPa) of the cement compared to non-antibiotic 

samples. The controlled release of gentamicin sulphate from the calcium phosphate 

cement injected into the implant reservoir was demonstrated in short term elution 

studies using ultraviolet-visible spectroscopy. Orientation of the implant pore 

channels were shown, using micro-computed tomography, to impact design 

reproducibility and the back-pressure generated during cement injection which 

ultimately altered porosity. The amount of antibiotic released from all implant designs 

over a 6 hour period (<28% of the total amount) were found to exceed the minimum 

inhibitory concentrations of staphylococcus aureus (16 μg/mL) and staphylococcus 

epidermidis (1 μg/mL); two bacterial species commonly associated with 

periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial 

cultures using an agar diffusion assay. Interestingly, pore channel orientation was 

shown to influence the directionality of inhibition zones. Promisingly, this work 

demonstrates the potential to additively manufacture a titanium-based antibiotic 

eluting implant, which is an attractive alternative to current treatment strategies of 

periprosthetic infections.   

 

Key Words: Additive manufacturing; Implant; Drug delivery; Calcium phosphate 

cement; Titanium; Antibiotic; Selective laser melting 
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1. Introduction 

Generally, total joint arthroplasty is a successful procedure that restores function and 

improves patient quality of life. Despite the introduction of standardised strategies, 

such as laminar flow clean air operating rooms and pre-operative antibiotics, 

periprosthetic infection still occurs in approximately 1-2% of patients following a total 

joint arthroplasty procedure [1, 2]. When periprosthetic infections do occurs they can 

lead to a need for rescue or revision surgery, and ultimately device failure. As such, 

implant infection represents one of the most costly complications in orthopaedic 

surgery.  

Clinical procedures for the treatment of periprosthetic infection, include irrigation and 

debridement with component retention [3], as well as one- and two-stage exchange 

arthroplasty [4, 5]. Two-stage exchange arthroplasty involves the implantation of an 

interim antibiotic-loaded component after removal of the original components. 

Commonly, antibiotic-loaded polymethylmethacrylate (PMMA) is used in the form of 

beads or cast into a mould and implanted [6-8]. PMMA cements set via an 

exothermic reaction, reaching temperatures between 70 and 120°C [9]. This thermal 

behaviour limits the antibiotics PMMA may be combined with and it has been shown 

to result in tissue necrosis [10, 11]. Other disadvantages include chemical necrosis 

due to leakage of unreacted monomer, shrinkage during polymerisation, and its 

inability to be resorbed [12]. The interim period in a two-stage exchange arthroplasty 

may range from 6 to 12 weeks depending on individual surgeon decision, and 

evidence of infection clearance and healing [13]. During this time, patients may be 

encouraged to walk with partial weight-bearing [14]. Complications associated with 

the interim period include sacral pressure sores and fractures on re-implantation 

[14]. Furthermore, increased morbidity from two-stage compared to one-stage 

exchange has been reported [15]. Some of these complications may be associated 

with the inactivity of the patient between procedures in a two-stage exchange 

arthroplasty. 

Current orthopaedic implants are manufactured from stainless steels, cobalt 

chromium molybdenum alloys, and titanium alloys using traditional manufacturing 

methods (e.g. machining, forging, and investment casting) [16]. These processes 

have been optimised over a number of decades resulting in implants that can 

withstand long-term cyclic loading. In recent years, the use of additive manufacturing 

(AM) techniques in medicine has gained much attention [17-21]. Generally, AM 

techniques use a layer-by-layer approach to build parts from computer aided design 

(CAD) models. In comparison to conventional methods, this approach enables 

material wastage to be reduced and greater geometrical design freedom.  

Selective laser melting (SLM) is an AM technology that may be used to manufacture 

metal components [22-25]. During this process, a focused laser beam is used to 

selectively heat a bed of metallic powder above the materials melting point causing 

the particles to melt and fuse together. After completion of each two-dimensional 

layer, the build platform is lowered by a pre-set thickness and the coating blade 
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spreads a fresh layer of powder on top. This process is repeated until the full 3D 

geometry has been built.  All processing is conducted in a chamber flooded with inert 

gas, usually Nitrogen or Argon to minimise oxygen-content.  

To date, bone prostheses manufactured via AM technologies have primarily been 

employed clinically in relatively low load-bearing areas, such as the Food and Drug 

Administration approved OsteoFab® (Oxford Performance Materials); a patient 

specific polymer based cranial device. The introduction of metallic AM implants in 

high fatigue applications, such as permanent components of hip or knee implants, 

has been hindered by their rough surface features acting as fatigue crack initiation 

sites. Shorter fatigue life has been previously demonstrated through a comparative 

fatigue study of additively manufactured and equivalent rolled Ti-6Al-4V dental 

implants [26]. 

In the context of the challenges discussed above, the use of a device that would 

enable patients to fully weight-bear whilst eluting antibiotics during the interim period 

of a two-stage exchange arthroplasty is an attractive concept. This could be 

achieved by manufacturing an implant that is mechanically robust enough to 

withstand the patient’s weight but also contains a reservoir that could be filled with 

an injectable antibiotic eluting biomaterial. To maintain and tailor structural properties 

a honeycomb type lattice could be introduced within the reservoir region. The 

geometrical freedom possible from AM technologies would facilitate the manufacture 

of such an intricate internal architecture, which would not be possible via traditional 

methods. Furthermore, if the device was used only in the interim period this would 

circumvent any long-term fatigue issues. Design of a metallic device that satisfies 

mechanical criteria would remove this demand from the antibiotic eluting material 

allowing for selection to be solely focused on desired therapeutic properties. This 

strategy in comparison to the use of antibiotic-loaded PMMA, which must fulfil both 

mechanical and therapeutic demands, may present advantages.  

This paper presents a preliminary study to assess the feasibility of utilising SLM to 

manufacture an antibiotic eluting implant. Simplified cylindrical implants were 

designed to incorporate a reservoir connected to the surface extremities via a series 

of channels. A calcium phosphate cement, brushite, was selected as an antibiotic 

carrier and injected into the AM metallic implant. This material was chosen since, in 

comparison to PMMA, it sets at lower temperatures and is highly resorbable at 

physiological conditions [27]. The influence of pore orientation (horizontal, vertical, 

45° incline) on the release profile of gentamicin sulphate from the implant was 

assessed. Antibacterial efficacy was demonstrated against two bacterial species 

commonly associated with periprosthetic infections. Overall, this work highlights the 

potential to add further value and functionality to orthopaedic implants by exploiting 

the advantages that AM technologies bring to manufacturing.  
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2. Materials and Methods 

2.1 Brushite cement formulation 

Dicalcium phosphate dihydrate (CaHPO4·2H2O) (DCPD), otherwise known as 

brushite, is a calcium phosphate phase that is several orders of magnitude more 

soluble than hydroxyapatite in physiological conditions [27]. Clinically, cements with 

a high injectability and a setting time between 5 – 15 minutes are desirable as this 

allows time for prosthesis implantation and adjustment but does not prolong the 

operation excessively.  

A brushite cement formulation with an injectability of >80% through a 15G (1.829 

mm) needle and a setting time of approximately 12 minutes was preselected for this 

study (data not shown). The cement was formulated using β-tricalcium phosphate (β-

Ca3(PO4)2) (β-TCP) synthesised using a previously reported method [28]. β-TCP and 

monocalcium phosphate monohydrate (Ca(H2PO4)2H2O, Innophos, USA) (MCPM) 

powders were dry mixed in stoichiometric ratios (Equation 1) for 30 seconds using a 

spatula. The powder components were then mixed with water at a 2:1 powder-to-

liquid ratio (PLR) for 30 seconds to form a workable paste.  

β-Ca3(PO4)2 + Ca(H2PO4)2H2O + 7H2O  4CaHPO42H2O         (Equation 1) 

Antibiotic loaded brushite cements were prepared by dissolving gentamicin sulphate 

(Sigma Aldrich, UK) at a concentration of 100 mg/mL into deionised water prior to 

mixing with the powder components giving a final concentration of 50 mg per 1g of 

cement.  

2.2 Manufacture of cement cylinders 

Prepared cement pastes (Section 2.1) were formed into cylinders (diameter = 6 mm; 

height = 12 mm) by either casting or injecting into a PTFE split mould. Cast cylinders 

were made by pouring cement paste into the mould positioned on a Denstar-500 

powered vibrating platform (Denstar, Korea). Injected cylinders were formed by 

loading cement pastes into a 5 mL syringe with 15G (1.829 mm internal diameter) 

needle after mixing and injecting into the split mould. Both cast and injected cement 

cylinders were left to set in the mould for 1 hour in an incubator at 37°C, demoulded, 

and stored in an incubator at 37°C until use. Injected cement cylinders were 

manufactured so as to simulate the intended clinical delivery method and this was 

compared with cast versions (n=10) as this is the typical process used in the 

literature [29, 30]. 

2.3 Additive manufacture of implant models 

Implant models (Figure 1a) were fabricated from Ti-6Al-4V gas atomised powder 

(TLS Technik, Germany) sized 20-50 μm using a M2 Cusing® SLM system (Concept 

Laser, Germany), which employs an Nd:YAG laser with a wavelength of 1075 nm, 

spot size of 60 μm and a maximum laser output power of 400 W. The process 

parameters were optimised to reduce residual porosity and achieve the designed 

hole geometry for elution of gentamicin. The parameters used were 150 W laser 
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power, 1750 mm/s scanning speed, 20 μm slice thickness, and hatch spacing of 75 
μm. Support structures were built between the substrate base and each individual 

implant to provide stability during the build. Manufacture was conducted in a 

chamber flooded with Argon gas to minimise oxygen pick-up to < 0.1 %.  

 

 

Figure 1: Implant models a) CAD schematics and photomicrographs of Ti-6Al-4V implants 

manufactured via selective laser melting with 1mm horizontal, inclined, and vertical pore 

orientations, and b) re-engineered demonstration hip prostheses of varying transparency 

designed using Solidworks  

 

2.4 Loading implants with cement paste 

Prepared cement pastes were loaded into 5 mL syringes attached to a 15G needle 

and injected into the single 2 mm diameter hole at the top of all cylindrical designs 

(Figure 1).  

2.5 Characterisation of materials 

2.5.1 Cement composition 

X-ray diffraction (XRD) analysis of set cements was performed on a Bruker D8 

Advance Diffractometer (ASX Gmbh. Bruker, Germany). Cement cylinders were 

prepared (Section 2.1) and ground into a fine powder using a pestle and mortar. 

Approximately 500 mg of the powder was distributed over a 10 mm diameter circular 

area of Scotch tape (3M, UK) and attached to the sample holder. Data were 

collected over a 2θ range of 5 – 60° with a step size of 0.02° and a count time of 0.5 
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s per step. Diffraction patterns were matched with the International Centre for 

Diffraction Data (ICDD) standards using EVA software (version 3.1, Bruker). 

2.5.2 Cement morphology 

Cement segments were attached to aluminium stubs using conducting silver paint 

and sputter coated with gold in an argon purged chamber for 2 minutes. Micrographs 

of cement surfaces were obtained using an EVO MA 10 scanning electron 

microscope (Carl Zeiss Ltd, UK).   

2.5.3 Cement compressive strength 

Geometrical measurements of nominally identical cement cylinders were taken using 

digital callipers and the mass of each specimen was measured. Each cylinder was 

mounted on the lower anvil of a Z030 universal testing machine (Zwick, UK) with its 

long axis perpendicular to the surface of the anvil. A minimum of 10 samples were 

compressed to failure at a constant rate of 1 mm/min. The ultimate compressive 

strength ( ) was calculated from the maximum load recorded throughout each test 

(Equation 1). Young’s modulus ( ) was determined from the linear region of the 

stress strain graph using linear regression (Equation 2). 

                           Equation 1                                           Equation 2 

where   is force,   original area,    original length of specimen,   compressed length 

of specimen, and   specimen strain. 

2.5.4 Cement density 

The apparent density of cement samples was calculated from geometrical and mass 

measurements made prior to the mechanical testing. After compression testing, 

cement fragments were collected and used to determine the true density using a 

helium pycnometer (Accupyc 1330, Micromeritics, UK). The sample chamber was 

purged with helium five times before five consecutive measurements of volume were 

performed. For each sample set, the true density of three different cement cylinders 

was determined so that reported values were a mean of 15 measurements. Relative 

porosity was calculated from the values of true and apparent density.  

2.5.5 Micro-computer tomography 

Cement cylinders were scanned using a Skyscan1172 micro-computed tomography 

(micro-CT) system (Bruker, Belgium) with 80 kV maximum X-ray energy, 8 W beam 

power, 570 ms exposure per projection, 0.5 mm aluminium filter, and 4.87 μm pixel 
size. Empty and filled SLM implant models were also scanned with 80 kV maximum 

X-ray energy, 8 W beam power, 2000 ms exposure per projection, aluminium and 

copper filter, and 5.95 μm pixel size. Reconstructed data were visualised in 2D and 

3D using DataViewer (version 1.5.1.2, Bruker) and CTVox (version 3.0, Bruker) 

software, respectively.  



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

A porosity analysis of cast, injected, and injected gentamicin-loaded cement 

cylinders was conducted using CTAn (version 1.15.4.0, Bruker) software. Briefly, a 

circle was fitted to the external edges of the cement cylinder to create a region of 

interest (ROI). This ROI was interpolated across 100 slices positioned in the middle 

of the longitudinal axis (y-axis) of the sample volume to create a volume of interest 

(VOI). A global thresholding was applied to create a binary image, which was then 

filtered to remove noise, and a ROI shrink wrap function used to define the sample 

extremities. 3D analysis was run over this VOI to determine total, open, and closed 

porosity as well as the size distribution of open and closed pores. Micro-CT values of 

porosity were compared with those obtained from true density measurements. β-

TCP content of the cement VOI was calculated by conducting 3D analysis of 

greyscale values defined as unreacted phase and compared with the total solid 

volume calculated for the same VOI.  

To validate CAD implant model geometries, measurements of the pores were 

obtained from binary micro-CT slice data and compared with designed dimensions 

(1000 μm). Four measurements of each pore were taken so that mean values for 

each design were calculated from a total of 16 measurements.   

2.5.6 Release of gentamicin 

Gentamicin release studies were conducted by immersing cement cylinders and 

implant models containing injected cement in 10 mL of phosphate buffered saline 

(PBS) stirred at 100 rpm and incubated at 37°C. Every 30 minutes up to 3 hours and 

every hour from 3 – 6 hours, 10 mL was withdrawn from each sample (n=3) and 

assayed for gentamicin by measuring the absorbance at 246 nm using a CE 7500 

UV-Vis spectrophotometer (Cecil Instruments, UK). Samples of cement without 

gentamicin were also assayed and the blank subtracted. Antibiotic concentration in 

the elution media was determined using a calibration curve of absorbance values for 

known concentrations of gentamicin dissolved in PBS.   

2.5.7 Bacterial inhibition 

The minimum inhibitory concentration (MIC) of gentamicin sulphate against 

staphylococcus aureus (NCTC 8532) and staphylococcus epidermidis (NCTC 

11047) was determined using a standard broth MIC assay [31].  

In addition, antibacterial efficacy of injected cement cylinders (with and without 

gentamicin) and implant models filled with gentamicin loaded cement was 

determined using an agar diffusion assay. Briefly, overnight broth cultures of 

S.aureus and S.epidermidis were diluted to an optical density of 0.06 (at 600 nm) 

and these dilutions were then used to inoculate the surface of nutrient agar plates. 

Holes of the approximate diameter of the cement cylinders or the implants were 

bored into the agar. Three samples were placed in each agar plate and incubated at 

37°C overnight to allow semi confluent lawns of growth. After this time the diameter 

of any inhibition zones were measured and images taken.   
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2.6 Statistics 

Results are presented as mean values ± standard deviation. Two tail, two sample t-

tests were conducted in Microsoft Excel to determine any statistical significance 

between measured properties of different cement formulations. P values <0.05 was 

deemed significant.  A single factor analysis of variance (ANOVA) test was 

conducted on inhibition zone diameter measurements between the three groups of 

different pore channel orientations (Figure 7).  

3.0 Results 

XRD patterns of cast, injected, and injected gentamicin loaded cements were 

primarily matched to ICDD standards for brushite (PDF 00-009-0077) (Figure 2a). An 

isolated peak at 27.77° was also detected in all samples, which was associated to 

residual β-TCP (PDF 00-009-0169). This peak was notably more intense in the 

antibiotic loaded cement compared with both blank formulations. Micrographs of 

cement fracture surfaces revealed two distinct particle morphologies; larger 

heterogeneous and finer plate-like crystals were observed in blank and gentamicin 

loaded injected cements (Figure 2b). These observations are consistent with XRD 

data that identified two phases; the larger heterogeneous particles were consistent 

with micrographs of precursor β-TCP powder (data not shown) and brushite is known 

to exhibit a plate-like morphology.  

 

 
Figure 2: Characterisation of brushite cement samples a) XRD data of cast, injected, and 

gentamicin loaded cements illustrating matching to DCPD (▲ 00-009-0077) and β-TCP (♦ 

00-009-0169) reference patterns, and b) micrographs illustrating residual β-TCP particles 

(blue circles) in formulated cements fragments (i without gentamcin and ii with gentamicin) 

and typical morphology of plate-like brushite crystals (iii without gentamcin and iv with 

gentamicin) 

 
No significant variation in compressive strength (p=0.92) or true density (p=0.14)   

was observed between cast and injected cement cylinders (Table 1). The addition of 

gentamicin was shown to significantly increase the maximum compressive strength 
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compared with injected (p=0.01) samples. Addition of the antibiotic was, however, 

not found to significantly alter the true density (p=0.35) or relative porosity (p=0.72) 

compared to injected samples without gentamicin.  

 
Table 1: Comparison of mechanical testing and helium pycnometer results for brushite 

cement formulations. Results presented as mean ± standard deviation (*n=10, ^n=3, ap<0.05 

compared with injected samples, bp<0.05 compared with cast samples) 

Cement Formulation Cast Injected Injected with gentamicin 

Compressive Strength (MPa)* 4.50 ± 0.59 4.54 ± 1.00 5.77 ± 0.69a 

Young’s Modulus (GPa)* 0.26 ± 0.13 0.17 ± 0.06 0.23 ± 0.05a 

Apparent Density (g/cm3)* 1.58 ± 0.01 1.66 ± 0.02b 1.59 ± 0.10 

True Density (g/cm3)^ 2.13 ± 0.03 2.33 ± 0.16 2.17 ± 0.22 

Relative Porosity (%)^ 25.59 ± 1.24 28.77 ± 5.03 26.38 ± 9.44 

 

Micro-CT data was consistent with XRD analysis since it revealed the presence of 

two phases, distinguished by different grey scale values, within all cement cylinders 

(Figure 3). The pixels associated with higher grey scale values (i.e. whiter) may be 

associated with β-TCP particles since it is a higher density than brushite. Unreacted 

β-TCP particles were heterogeneously dispersed throughout all samples as 

demonstrated in grey scale images (Figure 3). It is important to note that a good 

agreement was observed between grey scale and binary micro-CT data; this 

demonstrates that appropriate thresholding techniques were used prior to 3D 

analysis.  

3D analysis was used to calculate the porosity (open and closed) and β-TCP content 

of cement formulations (Figure 3). The porosity within all samples was predominantly 

open (>90% of the total porosity), i.e. connected to the extremity of the cement 

cylinder. Closed pores within samples were generally distributed at the extremities of 

the cement cylinders (Figure 3) and >85% were <24.4 μm (Table 2). Manufacturing 

via injection was found to increase the cement porosity and β-TCP content 

compared with casting (Figure 3). Addition of gentamicin was shown to increase β-

TCP content compared with unloaded injected cylinders. Notably a higher volume of 

open and closed pores within cast cements (35, 16%) were >24.4 μm compared with 
injected without (16, 6%) and with gentamicin (8, 0.5%) samples (Table 2).  
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Figure 3: Images illustrating the 2D solid and pore structure of cement cylinders, notably the 

presence of two distinguishable phases can be observed in grey scale cement micrographs. 

*Calculated as a % of the total solid volume. 
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Table 2: Pore size range of open and closed porosity within cement formulations calculated 

from micro-CT data 

Pore Size 
Range (μm) 

Volume Within Range (%) 

Open Porosity Closed Porosity 

Cast Injected 
Injected 

with 
gentamicin 

Cast Injected 
Injected 

with 
gentamicin 

4.9 - <14.6 16.7 31.2 38.8 39.0 59.6 87.8 

14.6 - <24.4 48.3 52.9 53.5 46.9 34.7 11.7 

24.4 - <34.1 23.9 12.5 5.87 11.1 5.07 0.41 

34.1 - <43.8 8.15 2.52 0.77 2.68 0.60 0.08 

43.8 - <53.6 1.56 0.35 0.30 0.35 0 0 

53.6 - <63.3 0.29 0.08 0.21 0.04 0 0 

63.3 - < 200 1.14 0.47 0.55 0 0 0 

 

Micro-CT was used to reveal the morphology, size, and surface topography of SLM 

parts before being filled with cement (Figure 4). All orientations of hole designs were 

found to penetrate into the reservoir region (Figure 4a) and the internal hole 

geometry was found to exhibit a similar degree of surface roughness the extremities 

of the parts (Figure 4b). Average measurements of hole size (Figure 4c) revealed 

that the vertical orientation adhered most closely to the CAD design of 1000 μm. 
Interestingly, the standard deviation of 45° inclined hole measurements was notably 

greater than other orientations. Statistical analysis revealed no significant differences 

between any two pairs of horizontal holes. Vertical holes 2 and 4 were shown to be 

significantly different (p=0.02). A number of pairs of individual inclined holes 

exhibited significantly different sizes and holes 2 and 3 were shown to be highly 

significantly different (p=0.00). Overall, the size distribution of the horizontal hole 

measurements were shown to be vastly different from both the vertical and inclined 

channels (p<0.001).  
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Figure 4: Microstructure of SLM implants a) 2D binary images of hole geometries (scale bars 

1 mm), b) 3D reconstruction of hole ROI, and c) measurements of hole size presented as 

mean ± standard deviation (n=4 for individual hole measurements and n=16 for all hole 

measurements). *p<0.05, **p<0.01, ***p<0.001 

Visualisation of the internal structure of SLM parts filled with gentamicin cement was 

achieved using micro-CT (Figure 5). Coronal and axial slices through the middle of 

the implants revealed defects in the cement within all of the models, in particular for 

vertical pore geometries. Using CTVox software, greyscale values corresponding to 

the cement were segmented (Figure 6 – 3D rendered cement volumes). Overall this 

demonstrated that the implants were filled with cement in the reservoir and the pore 

channels of all orientations.  
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Figure 5: 3D visualisation of gentamicin loaded cement within demonstration implants (scale 

bars 2 mm) 
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As expected, the cumulative release of gentamicin from bare cement cylinders 

(≈37%) was shown to be substantially greater than any of the SLM implants filled 
with antibiotic loaded cement (Figure 6). Interestingly, despite each of the SLM part 

CAD models exhibiting the same surface pore area (four holes of 1 mm diameter), 

after 6 hours the total quantity of gentamicin released from implants with different 

channel orientations was notably different; vertical 28%, horizontal 10%, and inclined 

5%.   

 

Figure 6: Cumulative release of gentamicin from brushite cement cylinders and cement filled 

implants. Result represented as mean ± standard deviation (n=3) 

 

The MIC of gentamicin against S.aureus and S.epidermis was found to be 16 and 1 

μg/mL, respectively. To confirm whether the concentrations of gentamicin released 

from samples (Figure 6) were sufficient to inhibit the growth of S.aureus and 

S.epidermis an agar diffusion study was conducted (Figure 7). Near circular 

inhibition zones were observed for blank and gentamicin cement samples against 

S.aureus, and only for gentamicin loaded cement against S.epidermis (Figure 7b). 

Without gentamicin the cements did not inhibit the growth of S.epidermis.  

SLM parts were all shown to elute sufficient concentrations of gentamicin to inhibit 

the growth of both bacterial cultures (Figure 7c). For all SLM designs irregularly 

shaped inhibition zones were observed. To reflect the irregular shape of the 

inhibition zones, the minimum and maximum diameters were approximated for each 
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sample and the average calculated for each plate (n=3, Figures 7d and 7e). In some 

cases, samples with horizontal and inclined channels exhibited the maximum 

diameter of inhibition adjacent to where the channels were located. This led to more 

irregularly shaped inhibition zones; however, two-way paired t-tests conducted 

between minimum and maximum diameter measures only revealed statistical 

significance for implants with horizontally orientated pore channels (p= 0.05 

S.aureus, p=0.004 S.epidermis). Single factor ANOVA tests did not show any 

significance between the mean diameters for the three implant orientations for either 

bacterial species. Notably, areas of no growth for inclined and vertical SLM parts 

cultured with S.aureus and horizontal samples with S.epidermis were found to 

overlap; this made it difficult to determine the diameter of the zone contributed by 

individual samples.   

 
Figure 7: Agar plates after overnight culture of S.aureus and S.epidermis demonstrating a) 

sample layout; zones of bacterial inhibition around b) cement cylinders and c) SLM parts; d) 

inhibition zone diameter against S.aureus; and e) inhibition zone diameter against 

S.epidermis. Results presented as mean ± standard deviation (n=3). *p<0.05 

 

4. Discussion 

Set cements consist of three phases; product phase (brushite), residual reactant 

phase (β-TCP), and porosity. While both reactant and residual components 

contribute to stress resistance, porosity provides no support to the structure and so 

limits strength [32]. It is also important to note the inverse relationship between the 

largest pore size and critical tensile strength, as noted by Griffith [33]. A number of 

other factors are known to influence cement strength, including the degree of 

residual product, which may act as an aggregate and positively impact stress 

resistance if it is of a higher density [34, 35]. Compared with cast samples, the 

average compressive strength was shown to improve as a result of injection and 

addition of gentamicin to the liquid phase, i.e. σcast ≈ σinjected < σinjected gentamicin (Table 

1). This trend correlates with an increase in aggregate phase quantity, i.e. residual β-

TCP content (Figure 3). Since the microstructure of cast and injected samples 
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without gentamicin was not obviously different it may be assumed that the positive 

influence of residual β-TCP dominates the effect of porosity changes for these 

samples. Interestingly, Bohner et al. noted an improvement in tensile strength of 

brushite cements as a result of gentamicin addition [36]. This was ascribed to the 

decrease in size and thickness of DCPD particles due to the presence of sulphate 

ions in gentamicin (35 ± 2%). A similar morphological change was observed between 

injected samples with and without gentamicin (Figure 2b). Therefore the strength 

improvement as a result of gentamicin incorporation may be attributed to a 

compounding effect of a greater amount of residual β-TCP and a finer 

microstructure. For this study, compressive strength was determined at one time 

point. The trends observed may be expected to vary as a result of different profiles of 

antibiotic elution and material dissolution. It may be interesting to explore the time 

dependent relationships of mechanical properties in future work. However, if the 

cement is housed within a metallic component its strength would contribute negligibly 

to the total and therefore would not require optimisation.    

The average values of porosity measured using helium pycnometer (Table 1) and 

micro-CT (Figure 4) for injected cement samples were within one standard deviation 

of each other. For cast samples, however, the porosity value calculated from micro-

CT analysis (17.9%) was significantly outside the average calculated from helium 

pycnometer measurements (25.6 ± 1.2%). The detection levels achievable via micro-

CT (1-2 μm) are far larger than those for helium pycnometer (2 – 50 nm). There are 

three types of porosity presence in set cements; gel (intrinsic to the structure), 

capillary (formed via evaporation of excess water), and macroporosity. Since the 

typical sizes of both gel (0.5 – 10 nm) and capillary (5 nm – 5 μm) pores fall largely 

outside the limit of micro-CT, differences in porosity values obtained using these two 

modalities are only to be expected. The use of micro-CT enabled open and closed 

porosity to be distinguished, visualised, and quantified (Figure 3 and Table 2). This 

revealed that gentamicin loaded cements exhibited a smaller volume fraction of open 

and closed pores >24.4 μm compared with other samples. The compressive strength 

of brittle materials will be related closely to the size of the defect encountered in the 

maximum stress field from which the fracture originates. A clear reduction in the 

frequency of larger defects was shown in gentamicin loaded samples (Table 2), 

which suggests why this formulation exhibited a significantly higher compressive 

strength (Table 1).  

Micro-CT was used to probe the internal structure of SLM parts and revealed minor 

defects within all of the structures (Figure 4a). In particular, the degree of porosity 

seen in binary coronal slices of inclined parts can be seen to be greater in the 

uppermost layers. During SLM the depth of laser penetration may be greater than 

the thickness of one layer. As such the layers built first may be consolidated to a 

greater extent as they are passed over by the laser more times than those layers at 

the top of the build. The observed honey-comb like microstructure (Figure 4a – 

inclined part near to 2 mm diameter hole) and the rough internal surface topography 
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of the holes (Figure 4b) are commonly observed with partial powder melting, which 

occurs if the energy input is insufficient to induce significant melting of the powder 

particles. Song et al. demonstrated that laser power and scanning speed strongly 

effect the processing mechanism (melting with cracks, continuous melting, and 

partial melting), which in turn affects surface topology, part density, and micro-

hardness [37]. The inherent micro-roughness of SLM parts may be advantageous to 

cell adhesion and differentiation [38], however, this surface topography is known to 

limit fatigue performance [26]. Optimisation of manufacturing and post-processing 

parameters (e.g. polishing) will be critical to manufacturing implants that have 

sufficient mechanical properties and exhibit surfaces that facilitate cellular adhesion 

but limit bacterial adhesion. In future studies, particularly those concerning long-term 

implants, it will be important to assess whether the addition of pore channels to the 

structure facilitates biofilm development. 

Computed tomographic 3D rendering of implant models filled with gentamicin-loaded 

cements revealed macroscopic porosity within all designs (Figure 5 coronal slice). 

The majority of these defects were observed at the top of the designs where the 

internal architecture of the manufactured part forms a right angle. In casting, this 

type of defect is often called back-pressure porosity and is caused by inability of the 

air in the mould to escape or by the pressure gradient that displaces air pockets 

towards the end of the mould [39]. It is therefore suggested that future designs 

should have curved internal surfaces to minimise back-pressure porosity formation. 

Furthermore, it appears that a greater volume of air remains in the structure when 

the pores are orientated parallel to the direction of injection, i.e. vertical, since this 

was the only sample where defects were visualised in the axial slice (Figure 5). This 

orientation of pores is likely to have a lower backpressure compared with pores 

located on the side of the implant as such it appears less entrapped air is forced out 

of the reservoir. Baroud et al. concluded that high cement viscosity is required to 

stabilise cement flow in vertebroplasty; however, this was shown to negatively 

impact the injectability and working time of the formulation [40]. In future work it may 

be interesting to assess any trade-off between increasing the viscosity of the cement 

system, for example by increasing the powder to liquid ratio, and the ability of the 

cement to fully fill the implant. Alternatively, vibration could be used to expel air 

bubbles from the implant, although this would only be viable if the cavity were filled 

before implantation. The surface finish of the internal reservoir may also be expected 

to influence the flow of the injected material. Inherently, SLM parts exhibit a rough 

surface topography, as demonstrated in micro-CT images (Figures 4 and 5), 

therefore it is suggested that optimisation of surface finishing methods, such as 

tumbling and polishing, may also be required. 

Diffusion occurs as a result of a concentration gradient, which is a difference in the 

concentration of diffusion species between two separated positions. For elution of 

the antibiotic to occur, the solvent (PBS), would have to infiltrate the cement porosity. 

The entirety of the cement cylinder surface area (approximately 680mm2) was 
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exposed to the surrounding media and in comparison the pore channels and 

injection hole total an estimated 25mm2. Therefore, the greater percentage of the 

gentamicin released from cement cylinders (≈37%) compared to the implant models 
(<28%) is to be expected since the larger available surface area of the cylinder 

allows for faster infiltration of the cement porosity with PBS (Figure 6). Interestingly, 

the release profile of gentamicin from the implant with vertically-orientated pore 

channels was obviously different to the horizontal and inclined samples. Since all 

four pore channels in the vertical design are located on one face of the model 

(Figure 1), i.e. they are closer together compared with the other designs, it is 

probable that local infiltration of the cement with PBS would occur more quickly and 

as a result diffusion of the antibiotic would have been initiated earlier. In comparison, 

the pore channels for the horizontal and inclined implant designs were located in 

pairs on opposite sides of the cylinder (Figure 1). The local pore surface area 

available for PBS infiltration was therefore half that of the vertical design, which may 

have influenced the rate and degree of cement infiltration and ultimately reduced the 

concentration gradient.  This local change in the number of pores on each face may 

explain why a higher concentration of gentamicin from the vertical pores (21 mg, 

28% of the total concentration incorporated in the cement) was detected within the 6 

hour period compared with horizontal (7.4 mg, 10%) and inclined (3.9 mg, 5%) 

samples. Regardless, the concentrations of gentamicin released throughout the 6 

hour period exceeded the MIC for both S.aureus (16 μg/mL) and S.epidermidis (1 

μg/mL), which was consistent with the results of the agar diffusion study (Figure 7). 

Future work, which will involve the design of clinically specific implants, will require a 

longer term release study to be conducted; the time frame of this study will be 

matched to the desired antibiotic delivery for the chosen clinical application. Typically 

when an infected implant is removed antibiotics are administered intravenously for 2 

– 8 weeks [41]. Therefore it may be necessary to extend the period in which the 

antibiotic is released from the implant reservoir. To achieve this, polymeric 

microspheres may be used to encapsulate the antibiotic, which may be incorporated 

into the cement [42, 43].  

Cement cylinders without gentamicin were shown to exhibit some ability to inhibit the 

growth of S.aureus but had limited effect against S.epidermidis (Figure 7b). This 

efficacy may be attributed to the acidity of the cement. The addition of gentamicin 

into the cement was clearly shown to increase the inhibitory zone for both 

investigated cultures. Statistical analysis demonstrated a significant difference 

between the minimum and maximum inhibition diameters for horizontal pore 

channels against both bacteria (Figures 7d and 7e). Therefore this orientation may 

not be preferable to ensure a symmetrical release zone. However, no significant 

difference was demonstrated between any measurements (i.e. minimum and 

maximum diameters) for each of the three orientations. Generally, this assay 

demonstrated the importance of considering the number and location of pores 

required to ensure that all cultures are eradicated. Optimisation of this inhibition in 3-

dimensions will be required to translate this concept to the clinic; however 
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introduction of further pore channels will need to be traded off against any impact on 

mechanical integrity.  

Overall, we have demonstrated that there is further added value to be gained by full 

utilisation of the geometrical freedom made possible by AM. Promisingly, we have 

shown the ability to use such a strategy to manufacture a structure that eludes 

clinically-relevant concentrations of antibiotic. Interestingly, the back-pressure 

porosity observed within the cement cavity (Figure 5) raises the question as to 

whether such an implant should be filled prior to implantation or in-situ. The former 

would facilitate the use of methods, such as vibration, to minimise any defects within 

the injected material. This option may be preferable so as not to increase operating 

times and to ensure greater reproducibility. Alternatively, in some instances (e.g. a 

screw) overfilling of the implant once it is implanted may provide some additional 

torsional stability. Future development of this technology will require mechanical 

optimisation of the implant design for the intended clinical application. Introduction of 

a lattice structure, such as that illustrated in Figure 1b, within the designed cavity 

region may be required to match the implant mechanical properties to the 

surrounding tissue. This would avoid stress risers that can predispose to mechanical 

failure. 

This work is a proof of concept demonstration of the potential of AM to allow novel 

geometries in orthopaedic implants. There are, however, several specific clinical 

applications that may benefit from an orthopaedic implant capable of providing both 

structural support and the potential for long-term release of a drug from a reservoir. 

The first is in two-stage revisions for infected arthroplasty. One problem with this 

process is that the mechanical properties of antibiotic-loaded PMMA spacer are not 

suitable for significant weight-bearing and thus patients’ mobility is severely 
compromised during this time. If an AM implant containing an antibiotic-eluting 

reservoir was used instead (such as illustrated in Figure 1b), then the patients would 

be better able to weight-bear in the interim period with the benefits of greater 

independence, reduced loss of cardiovascular and musculoskeletal condition, and 

reduced pain. Other significant problems with the standard methodology are that the 

choice and dose of antibiotic suitable for loading into PMMA spacers are limited. The 

ability to use a wider range or even mixture of antibiotics in the implant would allow 

more specificity in treatment. The ability to increase the dose available for elution 

could increase the duration of treatment. These advantages would be particularly 

useful in an era of ever-increasing antibiotic resistance. The second clinical 

application of such a technology could be in orthopaedic tumour surgery. Tumour 

excision is often followed by implantation of prostheses to maintain mechanical 

function. If such prostheses could contain a reservoir of a chemotherapeutic agent to 

be eluted into the site of tumour excision then it may be possible to reduce the 

incidence of local recurrence. The ease with which AM can be used to produce 

bespoke prostheses would be of particular advantage in this application given that 

bone tumours may occur in such a wide variety of anatomical locations. Finally, 
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manufacturing an intramedullary nail with the capability of delivering osteogenic 

factors or even osteoblasts to the fracture site may confer clinical benefit, either in 

primary surgery or as a treatment for fracture non-union. 

5. Conclusions 

Cylindrical Ti-6Al-4V implants incorporating a surface connected reservoir region 

were successfully manufactured via SLM and filled with gentamicin loaded brushite 

cement.  Implant surfaces were shown to exhibit micro-roughness, which will require 

further investigation to assess any trade-off between cellular attachment and 

bacterial adhesion as well as fatigue performance. Interestingly, pore channels built 

parallel to the build bed, i.e. horizontal, were shown to exhibit less size variability 

than vertically or inclined pore orientations. This observation will be taken into 

account as the concept is progressed towards clinical use.  

Micro-CT revealed the presence of microscopic defects within cement injected into 

implants of all pore orientations. However, this was observed to be more pronounced 

when the flow of cement was parallel to the orientation of pore channels (i.e. 

vertical), which was attributed to a lower back-pressure dispelling less entrapped air. 

Due to the presence of back-pressure porosity within all implant designs it is 

suggested that it may be optimal to fill such implants prior to implantation in a 

controlled environment to improve reproducibility and not prolong operation times.  

Incorporation of the antibiotic cement within the implant models was shown to control 

the release compared with a blank cement cylinder. Over 6 hours the concentration 

of gentamicin released from all orientations of pore channel exceeded the MIC of 

both S.aureus and S.epidermidis. The assertion made from the release study was 

confirmed by demonstrating zones of bacterial inhibition using an agar diffusion 

assay. Interestingly, some directionality of antibiotic release was observed for the 

horizontal and inclined pore channel implants. Overall, this study highlights that there 

is still much potential to further utilise AM in healthcare technologies to add new 

implant functionality.    
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Highlights 

 Titanium implants were additively manufactured with surface connected 

reservoirs 

 Implants’ reservoir were injected with an antibiotic loaded calcium phosphate 

cement 

 Pore orientation was shown to influence antibiotic elution from the implant  

 Bacterial inhibition zones were observed surrounding all implant designs  

 This concept may be used clinically to prevent or treat periprosthetic 

infections  


