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RESEARCH

Many factors a�ect genomic prediction accuracy, including 

model, marker density, TP composition, trait complex-

ity, and precision of phenotyping (Combs and Bernardo, 2013; 

Lorenz et al., 2012; Lorenz, 2013; He�ner et al., 2011). One of 

the most important factors under control of the breeder appears 

to be TP, or calibration set, composition (Lorenz et al., 2012; 

Riedelsheimer et al., 2013; Rincent et al., 2012; Wientjes et 

al., 2013). Intelligent sampling of a TP from a larger popula-

tion of individuals could enhance the e�ectiveness and e�ciency 

of genomic selection for plant breeding ( Jannink et al., 2010). 

If a plant breeder desires information on trait performance for a 

population too large to fully phenotype with available resources, 

genomic predictions could be used in place of phenotypes if the 

expense of genotyping is substantially lower than that of pheno-

typing, a scenario that is increasingly becoming reality for many 
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ABSTRACT

One of the most important factors affecting 

genomic prediction accuracy appears to be 

training population (TP) composition. The 

objective of this study was to evaluate the 

effect of genomic relationship on genomic 

prediction accuracy and determine if adding 

increasingly unrelated individuals to a TP can 

reduce prediction accuracy. To accomplish this, 

a population of barley (Hordeum vulgare L.) lines 

from the University of Minnesota (lines denoted 

as MN) and North Dakota State University 

(lines denoted as ND) breeding programs 

were used for model training. Predictions 

were validated using two independent sets 

of progenies derived from MN  MN crosses 

and ND  ND crosses. Predictive ability 

sharply decreased with decreasing relationship 

between the TP and validation population (VP). 

More importantly, it was observed that adding 

increasingly unrelated individuals to the TP can 

actually reduce predictive ability compared 

with smaller TPs consisting of highly related 

individuals only. Reported results are possibly 

conditional on the relatively low marker density 

(342 single nucleotide polymorphisms [SNPs]) 

used. Nevertheless, these �ndings suggest plant 

breeding programs desiring to use genomic 

selection could bene�t from focusing on good 

phenotyping of smaller TPs closely related to 

the selection candidates rather than developing 

large and diverse TPs.
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traits. The goal then is to identify the most informative 

subset of individuals for model training. Rincent et al. 

(2012) showed that an exchange algorithm combined 

with an objective function, consisting of the generalized 

coe�cient of determination, chose TPs that were more 

informative than randomly sampled TPs. This method 

was applied to a diversity panel of maize (Zea mays L.) 

lines rather than a population with genetic structure more 

typical of a breeding program.

Another objective of TP sampling could be to choose 

the most informative subset of records from an extant TP 

database containing genotype and phenotype informa-

tion. An active genomic selection program could continu-

ally build a database as additional generations of individu-

als are phenotyped and genotyped. As each additional set 

of progenies from a new cycle of selection is genotyped, a 

model is trained and genomic predictions are calculated. 

Should all records be used for model training or only a 

subset of those records? As selection proceeds, relation-

ships between selection candidates and the TP comprised 

of individuals from early cycles of selection decrease, 

potentially making TP individuals from distant genera-

tions less informative. Data could potentially be shared 

between public breeding programs, but is it bene�cial to 

combine germplasm from di�erent programs into a single 

TP to increase TP size, or could it actually be detrimental?

A number of studies have shown the importance of 

genetic relationships between training individuals and 

selection candidates on genomic prediction accuracy (Clark 

et al., 2012; Lorenz et al., 2012; Wientjes et al., 2013; Pszc-

zola et al., 2012; Habier et al., 2010). Prediction accuracies 

have been found to be low when TPs and VPs are composed 

of germplasm from di�erent breeding programs (Lorenz et 

al., 2012) or even between di�erent full-sib families (Rie-

delsheimer et al., 2013). It has also been shown that mea-

sures of the genetic relationship between TPs and selection 

candidates are the best predictors of genomic prediction 

accuracy (Clark et al., 2012; Wientjes et al., 2013). There are 

at least three possible reasons for these observations. First, 

more closely related individuals share a common ances-

tor fewer generations back in time, and, therefore, fewer 

opportunities existed for recombination between markers 

and quantitative trait loci (QTL), preserving QTL–marker 

linkage phases. This is especially true for genomic predic-

tion models that rely on relationships and long-range link-

age disequilibrium (LD) between markers and QTL, such 

as genomic best linear unbiased prediction (G-BLUP) and 

ridge regression BLUP (RR-BLUP; Habier et al., 2013). 

Second, training and selection candidate populations with 

a closer genetic relationship are more likely to share poly-

morphic loci generating genetic variation. In other words, 

it is possible that genetic variation within distantly related 

populations is controlled by di�erent sets of polymorphic 

loci caused by drift and mutation operating separately 

through time. Finally, QTL  genetic-background inter-

actions could exist (Lorenz and Cohen, 2012; Mohammadi 

et al., 2015). More closely related individuals share a larger 

fraction of their genetic background than distantly related 

individuals and are, therefore, more likely to share these 

interaction deviations if they exist.

The objective of this study was to evaluate the e�ect 

of genomic relationship on genomic prediction accuracy 

and determine if adding increasingly unrelated individu-

als to a TP can reduce prediction accuracy. To address 

these objectives, we used phenotypic and genotypic data 

from the University of Minnesota genomic selection pro-

gram for resistance to Fusarium head blight (FHB). This 

dataset holds many advantages for studying genomic-

selection-related questions than many other datasets used 

in similar publications. Most importantly, the set of selec-

tion candidates, or VP, is a generation of selection and 

sexual recombination removed from the TP. Because the 

biggest advantage of genomic selection lies in its poten-

tial to expedite cycles of selection through circumventing 

phenotyping, progenies being predicted will be at least 

one cycle of selection removed from the TP. Second, the 

VP consists of many groups of biparental families derived 

from a series of crosses between selected lines in the breed-

ing program, typical of most plant breeding programs.

MATERIALS AND METHODS
Germplasm
Detailed information on the germplasm composing the TP can 

be found in Massman et al. (2011) and Lorenz et al. (2012). Brie�y, 

the whole TP consisted of 768 six-row barley F
4
 lines, of which 

384 lines were taken from the University of Minnesota breeding 

program and 384 lines were taken from the North Dakota State 

University breeding program. These lines were submitted to the 

Barley Coordinated Agricultural Project (CAP) Years 1 through 

4 (i.e., 2006–2009; http:\\barleycap.org). Ninety-six lines were 

submitted per year for genotyping and phenotyping.

The VP consisted of 300 F
3:5

 progenies derived from a set 

of crosses between advanced breeding lines selected from the 

TP. Fourteen parents were crossed in di�erent combinations 

to create three cross types: MN  MN, MN  ND, and ND 

 ND. Ten crosses were made per cross type, and 24 prog-

enies were derived per cross, resulting in 240 progenies per 

cross type. After derivation of the F
3:5

 lines, 100 progenies were 

randomly selected per cross type from the original 240.

Phenotyping and Genotyping
For the TP, plant height (HT) was evaluated at four locations in 

a randomized complete-block design (RCBD) with two repli-

cations in each CAP year. Ninety-six lines from each breeding 

program were evaluated in separate years so that the 96 lines 

evaluated in 2006 were completely di�erent than the 96 evalu-

ated in 2007 and so forth. The FHB ratings and deoxynivalenol 

(DON) concentrations were collected in single-row disease 

nurseries conducted at four locations between Minnesota and 

North Dakota each year. A RCBD with two replications was 
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comprising the VP were calculated as =ˆ ˆ
Vg Z u , where ĝ  is 

a vector of genomic predictions, Z
V
 is the marker incidence 

matrix of the VP, and  is the vector of predicted marker 

e�ects output from the RR-BLUP model.

Matrices containing realized relationships between all 

individuals were calculated four di�erent ways: Method 1 of 

Van Raden (2008) (G), method 2 of Van Raden (2008) (G
2
), 

identity-by-state (IBS) similarities (S
IBS

), and genomic correla-

tions (S
GC

). The latter two were calculated as in Riedelsheimer 

et al. (2013). The formulas can be found in the provided refer-

ences. Brie�y, G is the centered and scaled genomic relationship 

matrix. The G
2
 method is similar to G except that markers are 

weighted by the reciprocal of their variances (i.e., markers with 

low minor-allele frequency are weighted more). The matrix 

S
IBS

 contains the proportion of marker alleles shared between 

individuals, and S
GC

 contains the Pearson correlation coe�-

cient of allelic states between individuals.

A sliding-window approach was used to study the e�ect 

of genetic relationship between TP and selection candidates on 

prediction accuracy. First, three VPs were de�ned: MN  MN 

progenies (n = 100), MN  ND progenies (n = 100), and ND  

ND progenies (n = 100). For a given VP, the TP was sorted, in 

descending order, according to the mean G
ij
 between an indi-

vidual in the TP and the whole VP. A window of size N = 200 

individuals was used and slid down the gradient of relationship 

in increments of 10 individuals (i.e., the �rst TP was individuals 

1–200, the second 11–210, etc.). For each sampled TP, a model 

was trained and predictions were correlated to observed values 

to calculate predictive ability. The sliding window was incre-

mented by 10 individuals down the gradient of relationship until 

individual 760. Predictive ability, de�ned as the correlation 

between observed value and predicted value, was plotted against 

mean G
ij
 between the TP and VP. Quadratic functions were �t 

to the points with only signi�cant terms (P < 0.05) retained.

To study the e�ect of adding increasingly unrelated 

individuals to a TP, a similar approach was taken where TP 

individuals were sorted according their average relationship to 

the VP. A TP was started by selecting the 10 lines with highest 

mean G
ij
 with the VP. The TP was increased in size by incre-

ments of 10 by adding the next 10 lines with the highest mean 

G
ij
 with the VP. The TP was increased to N = 760 following 

this procedure. For each TP, a model was trained and predic-

tions were correlated against observations.

Related to adding individuals to the TP based on their 

mean G
ij
 with the VP, two additional methods were attempted. 

First, a TP was developed for every single individual in the VP. 

That is, individuals in the TP were sorted based on their relat-

edness to the single validation individual being predicted. The 

TP of size N was selected and used to predict the genetic value 

of that single validation individual. This was repeated for all 

VP individuals at all TP sizes ranging from 10 to 700. A similar 

algorithm was used on a family basis, where TPs were selected 

for each family rather than each individual.

A standard error for each correlation coe�cient was esti-

mated using the bootstrap procedure with 1000 bootstrap 

replicates (Efron and Gong, 1983).

used. Because of the large number of trials and high degree of 

unbalance between years, common checks were used to adjust 

for trial e�ects and calculate best linear unbiased estimates 

(BLUEs) of each line with a linear model including �xed e�ects 

for year, complete block nested within year, and line. Residuals 

were assumed to be random e�ects independent and identically 

distributed. Three to nine checks were in common between 

trials across years. More information on TP phenotyping can 

be found in Massman et al. (2011) and Lorenz et al. (2012).

Phenotypic data on the VP was collected in separate trials 

for agronomic and disease traits. Protocols and methods for trait 

measurement were the same as those used for the TP. For agro-

nomic traits, lines were planted in an augmented design with 

six incomplete blocks and three check varieties per incomplete 

block. Each check was replicated two times in each incomplete 

block. Data on agronomic traits was collected at three locations 

in 2011 (St. Paul, MN; Crookston, MN; and Nesson Valley, 

ND) and four locations in 2012 (St. Paul, MN; Crookston, 

MN; Nesson Valley, ND; and Fargo, ND). All lines were eval-

uated in all seven location–year combinations. Disease traits 

were evaluated in single-row plots planted in disease nurser-

ies across the four locations in both 2011 and 2012. All lines 

were evaluated in all eight location–year combinations. The 

same design as that used for agronomic trait evaluation was used 

in the disease nurseries, with the exception that each trial was 

replicated two times at each location. Best linear unbiased esti-

mates adjusted for block e�ects were calculated for each line by 

�tting a linear model including �xed e�ects for environment 

(year–location combination), complete block nested within 

environment, incomplete block nested within complete block, 

and line. Residuals were assumed to be random e�ects inde-

pendent and identically distributed.

Three thousand and seventy-two SNPs were scored on the 

TP using two Illumina GoldenGate oligonucleotide pool assays 

(Close et al., 2009). More detail on genotyping the TP can be 

found in Massman et al. (2011) and Lorenz et al. (2012). From 

this set of 3072 SNPs, a subset of 384 SNPs was scored on the 

VP. The SNPs were selected on the basis of polymorphism level 

across the 14 selected parents and uniform distribution across 

the genetic map. After �ltering out 19 failed SNPs and 23 SNPs 

with low minor-allele frequency and excessive heterozygosity, 

342 SNPs remained.

Genomic Prediction Model Training
An RR-BLUP genomic prediction model was trained:

y = 1 + Zu + e

Where y is a vector of BLUEs of the reference lines; 1µ is an 

intercept vector; Z is an n  p incidence matrix containing 

the allelic states of the p marker loci (z = {−1, 0, 1}), where 

−1 represents the minor allele; u is the p  1 vector of marker 

e�ects; and e is a n  1 vector of residuals. Under RR-BLUP, 

(  2MVN 0, uu I , where 2

u  is the variance of the common 

distribution of marker e�ects and is estimated using restricted 

maximum likelihood. The RR-BLUP model was implemented 

in the R package rrBLUP version 4.2 (R Development Core 

Team, 2012; Endelman, 2011). Predictions of the individuals 
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RESULTS
Variation in the realized genomic relationships between 

lines within breeding programs and between breeding 

programs is displayed in Fig. 1. As expected, the aver-

age relationship is higher between TP lines and proge-

nies derived from the same breeding program. There are, 

however, a number of instances where relationships were 

higher between programs than within programs (Fig. 2) 

resulting from the fact that the MN and ND breeding 

programs have exchanged germplasm and are much less 

diverged than germplasm of other barley breeding pro-

grams (Hamblin et al., 2010). The average relationship 

between the MN and ND TPs and the MN  ND prog-

enies was centered at zero and the variance in relationships 

was at least as great as the between and within-program 

comparisons (Fig. 1, 2).

Using the sliding-window approach, a clear posi-

tive relationship between predictive ability and mean G
ij
 

between TP and VP was observed for two of the three 

traits and both the MN  MN and ND  ND VPs (Fig. 

3). The relationship was less linear for FHB, especially in 

the ND  ND VP. When the 200 least-related individuals 

were used to train a model, predictive abilities were nega-

tive. Predictive abilities approached 0.50 when the most 

closely related individuals composed the TP. These predic-

tive abilities are expected to be lower than the prediction 

accuracy (i.e., the correlation between the prediction and 

the true breeding value) because of the random environ-

mental deviations included in the validation phenotype, 

which was not adjusted for. Overall, predictive ability of 

the MN  ND progenies was poor and no relationship 

Figure 1. Heat map representing realized genomic relationship (G; Van Raden Method 1) among training population barley lines and 

validation lines derived from MN  MN, MN  ND, and ND  ND crosses.
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TPs selected by mean G
ij
 are always more predictive than 

the whole TP, sometimes by more than 45% (ND  ND 

DON; Fig. 5). Interestingly, predictive ability of DON in 

the ND  ND VP rapidly peaks at N = 310, quickly drops, 

then gradually starts to increase again around N = 525. 

This trend seems to suggest that adding MN training indi-

viduals quickly a�ects predictive ability, but then the e�ect 

of relatedness is overcome by increased N. It appears that 

predictive ability of DON is the most a�ected by adding 

unrelated individuals in the MN  MN VP also (Fig. 4).

Other forms of a relationship matrix may be used 

in addition to the realized genomic relationship matrix 

calculated using Method 1 of Van Raden (2008), such as 

IBS similarities and genomic correlations as calculate by 

Riedelsheimer et al. (2013) and Method 2 of Van Raden 

(2008). These relationship matrices (S
IBS

, S
GC

, and G
2
) 

are all highly correlated with G, with r2 values ranging 

from 0.71 to 0.97. The same analysis displayed in Fig. 4 

was repeated, but this time the S
IBS

, S
GC

, and G
2
 rela-

tionship matrices were used in place of G. Table 1 dis-

plays the maximum predictive ability and the population 

size used to achieve that predictive ability when TPs were 

built on the basis of these forms of the relationship matrix. 

While di�erences are nonsigni�cant and quite small in 

most instances, it appears that G tends to achieve higher 

predictive abilities with smaller TPs presumably because 

it better identi�es the most closely related, and therefore 

informative, individuals. This is most apparent for FHB 

in both VPs in which considerably smaller TPs selected by 

between predictive ability and G
ij
 was observed, except for 

a very weak linear relationship for DON (Fig. 3C).

To address the question of whether adding increas-

ingly unrelated lines to the TP can actually reduce pre-

dictive ability, the TP was built up by adding individuals 

according to their mean genomic relationship to the VP 

(see Materials and Methods section). This analysis was not 

performed for the MN  ND VP because the relationship 

between predictive ability and mean G
ij
 was very weak 

or nonexistent (Fig. 3). For both the MN  MN and ND 

 ND VPs, prediction accuracy increased with increasing 

TP size to a point and then, in most instances, began to 

decline as increasingly unrelated individuals were added 

to the TP (Fig. 4). For DON in the MN  MN VP, pre-

diction accuracy was maximized at 0.49 when the most 

closely related 250 lines composed the TP. As less-related 

lines were added to the TP, with some of those lines being 

from the ND program, predictive ability began to gradu-

ally decline. Predictive ability dropped to 0.42 when 760 

lines were used for model training. For FHB in the ND  

ND VP, predictive ability reached 0.45 at a TP size of 410 

then gradually declined to 0.37 when N = 760. Most traits 

didn’t exhibit a prediction accuracy decline until mean G
ij
 

of the added set was <0 and a large fraction of the newly 

added lines was from the other breeding program. The 

trend was less pronounced for HT in both VPs, but the 

predictive ability still trended downward with mean G
ij
 

of the added set. This pattern can also be seen by directly 

comparing the optimal predictive ability for mean G
ij
 

and that when the whole TP is used (Fig. 5). The smaller 

Figure 2. Box plots of realized genomic relationships (G
ij
) among all possible pairs of individuals (All) and between pairs of individuals be-

tween the group species by the top lines of the x-axis and bottom line of the x-axis. For example, the second box from the left represents 

all G
ij
 values between the MN training population and MN  MN validation population.
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G provided higher prediction accuracies than larger TPs 

selected using the other relationship matrices.

An issue with using G to quantify relationships is that 

they are relative to the current population. Sets of indi-

viduals with similar ancestry may have di�erent values of 

G
ij
 within di�erent populations depending on the overall 

relatedness among individuals in the same population. It 

is not possible, therefore, to extrapolate a G
ij
 threshold to 

apply generally for inclusion or exclusion of individuals in 

a TP. Identity-by-state similarities could be more gener-

ally applied because they are simply the shared fraction of 

polymorphisms. To evaluate an IBS cuto�, the average S
ij
 

between newly added TP lines and the VP at which predic-

tive ability begins to decline was tabulated. Critical S
ij
 values 

ranged from 0.74 for DON in the MN  MN VP to 0.62 

for FHB in the ND  ND VP, indicating TPs can be con-

�dently built up when adding individuals with S
ij
 values to 

the VP that are greater than 0.70. As S
ij
 values approach 0.60, 

Figure 3. Plots of predictive ability vs. mean genomic relationship between the training population (TP) and validation population (VP) for 

deoxynivalenol (DON) concentration (black points), Fusarium head blight ratings (blue points), and plant height (orange points). Individuals 

in the TP were ordered based on their realized genomic relationship to the VP. A sliding window of 200 individuals, incremented by 10, 

was used to create the gradient in average relationship (Mean G
ij
).
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Figure 4. Plots of predictive ability vs. training population (TP) size when sets of 10 lines are added according their genomic relationship 

(G
ij
) to the validation population (VP). The mean G

ij
 of the newly added set is displayed along the top axis. (A) MN  MN VP; (B) ND  ND 

VP. The point shades of color represent the proportion of the whole TP that is either MN (A) or ND (B). 
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caution should be taken to prevent avoidable decreases in 

prediction accuracy. These values could depend on the pop-

ulation diversity, marker number, and marker set selection.

Given the observation that the average relation-

ship between the TP and VP is an important factor in 

predictive ability, this analysis was extended to include TP 

formation based on individual and family relatedness. An 

individual speci�c TP is one in which TP individuals are 

selected based on relationship to a VP individual. A model 

is trained and a prediction is made for that VP individual 

Table 1. Maximum predictive abilities realized when training populations are built according to their relationship with the vali-

dation population measured using either Van Raden Method 1 genomic relationship matrix (G), Van Raden Method 2 genomic 

relationship matrix (G
2
), identity-by-state similarity (S

IBS
), or genomic correlation (S

GC
). Size of the training population (N) at 

which maximum predictive ability is displayed.

Trait† Method

Validation population

MN  MN ND  ND

Predictive ability N SE Predictive ability N SE

DON G 0.492 250 0.071 0.433 310 0.067

G
2

0.510 290 0.073 0.422 310 0.066

S
IBS

0.480 300 0.074 0.396 320 0.067

S
GC

0.450 420 0.073 0.398 330 0.072

FHB G 0.532 460 0.075 0.454 410 0.077

G
2

0.537 560 0.077 0.454 410 0.108

S
IBS

0.527 510 0.076 0.452 470 0.077

S
GC

0.470 380 0.085 0.440 470 0.089

HT G 0.484 350 0.065 0.359 420 0.065

G
2

0.480 360 0.065 0.353 410 0.067

S
IBS

0.484 390 0.061 0.358 430 0.063

S
GC

0.471 550 0.065 0.350 420 0.067

† DON, deoxynivalenol; FHB, Fusarium head blight; HT, plant height.

Figure 5. Predictive ability for four training population (TP) selection schemes: G_fam, TPs selected for specific families based on their 

average genomic relationship (G
ij
) to that family; G_ind, TPs selected for specific individuals based on their genomic relationship to 

that individual; G_mean, TPs selected based on their average relationship to the entire validation population; Rand, training population 

randomly selected. The numbers above each bar indicate the size of the best performing training population. (A) MN  MN validation 

population; (B) ND  ND validation population. DON, deoxynivalenol; FHB, Fusarium head blight; HT, plant height.
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and this is repeated for every individual in the VP. For 

family-speci�c TPs, a very similar algorithm is used, but 

TPs are selected for each family rather than for each indi-

vidual. It was observed that individual- and family-spe-

ci�c TPs performed better than randomly selected TPs, 

but no substantial improvement over TP selected on mean 

G
ij
 was observed except in the case of HT in the ND  

ND VP (Fig. 5). In this case selecting a TP unique to each 

individual family was the most predictive, with a predic-

tive ability greater than two standard errors over the mean 

G
ij
 predictive ability. It is not known why family-based 

TP selection worked particularly well for this one case.

DISCUSSION
Similar to �ndings by other researchers (Riedelsheimer et 

al., 2013; Lorenz et al., 2012; Wientjes et al., 2013; Clark 

et al., 2012; Lehermeier et al., 2014), we found that pre-

diction accuracy is maximized when the TP and VP are 

closely related, and prediction accuracy is abysmal when 

TP and VP are relatively distantly related. Speci�cally, 

using a sliding-window approach, we observed that the 

most closely related set of 200 TP individuals provided 

much better predictions than the least-related set, which 

provided zero predictive ability. Potential underlying 

causes of this common observation are listed in the intro-

ductory section. It was not our objective to determine the 

causes underlying this trend, and, moreover, the relatively 

low marker density used in this study precluded a detailed 

analysis on marker linkage phases such as those performed 

by Technow et al. (2013) and Riedelsheimer et al. (2013). 

Our results on this topic clearly show that even within a 

structured breeding program consisting of related germ-

plasm of low diversity, which characterizes the MN and 

ND barley germplasm used in this study (Hamblin et al., 

2010), close attention should be given to relationships 

between TP and selection candidates.

A more novel aspect of this study is the investigation 

into the e�ect on predictive ability when increasingly 

genetically distant individuals are added to a standing 

TP. By sorting individuals based on relatedness to the VP 

and building a TP based on G, it was shown that adding 

unrelated individuals to the TP does indeed hold potential 

for reducing predictive ability in the case of these barley 

populations. While absolute di�erences between whole 

TPs and TPs selected based on relatedness were mostly 

not signi�cant because standard errors on correlations are 

typically large, we did �nd that using the whole TP was 

consistently less predictive than using a subset of the TP 

selected based on genomic relatedness. Clearly the addi-

tion of these individuals is adding error to marker-e�ect 

estimates through di�ering marker–QTL linkage phases, 

QTL  genetic-background interactions, or di�ering sets 

of loci controlling variation for the traits between genetic 

groups. Little evidence has been found for this in prior 

studies looking at real data. Technow et al. (2013) found 

that while prediction accuracy for Northern corn leaf 

blight in maize using an unrelated TP was much poorer 

than that achieved using a related TP, these authors 

observed no detrimental e�ects to combining related and 

unrelated TPs. In fact, prediction accuracy was slightly 

increased relative to the related TP alone. Using a series 

of biparental crosses, Riedelsheimer et al. (2013) found 

that adding an unrelated population to a TP with a half-

sib relationship to the VP only slightly (and nonsigni�-

cantly) reduced prediction accuracy. Conversely, using 

simulations, Habier et al. (2013) showed that the addi-

tion of unrelated individuals to a TP can reduce the accu-

racy provided by additive genetic relationships. Increased 

accuracy contributed from unrelated individuals comes 

through the historical LD source of accuracy, which can 

be exploited if TPs are large and marker densities are high 

(Habier et al., 2013; Hickey et al., 2014).

It is recognized that the number of markers used in this 

study was relatively small and that the e�ect of relatedness 

on accuracy could be diminished if higher marker densi-

ties were used. This would apply if opposite linkage phases 

between unrelated individuals were the primary cause of 

reduced prediction accuracy and not QTL  genetic-back-

ground interactions. The RR-BLUP model works best in 

situations of extensive relatedness resulting in long stretches 

of identical-by-descent DNA in populations and thus good 

preservation of LD phases, a common situation in plant 

breeding programs. Since marker e�ects are assumed to 

be sampled from a common distribution in RR-BLUP, 

the estimated marker e�ects are spread across many mark-

ers, that is, a large-e�ect QTL will have its e�ect spread 

across many markers rather than be captured by only the 

most proximal marker. The degree to which this shrink-

age occurs depends on number of markers scored relative 

to the population size or, in other words, the severity of 

large p–small n problem. Therefore lack of shared linkage 

phase between more distant marker loci could still be an 

issue because e�ects are distributed across greater distances 

in RR-BLUP regardless of the marker density. The RR-

BLUP model, and its equivalent G-BLUP, is the most com-

monly used model in genomic prediction for plant breeding 

because of its simplicity and good performance relative to 

more complex, computationally intensive models (Heslot 

et al., 2012). If greater genotyping densities were applied, 

like those found to be e�ective by Hickey et al. (2014), 

it could be advantageous to explicitly model the additive 

genetic relationships as well as short-range-marker–QTL 

LD to capture information coming from unrelated indi-

viduals as suggested by Habier et al. (2013).

Given variation in breeding program structure, levels 

of genetic diversity, and trait genetic architectures within 

and between crop species, it would be highly speculative 

to extrapolate these speci�c results to genomic prediction 
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for plant breeding in general. Nevertheless, it is useful to 

know that there is potential for this e�ect and if any gen-

eral guidelines exist to help decide which individuals to 

include in a training set and which individuals to exclude. 

For selecting individuals to include in a TP, we used 

the realized genomic relationship (G) calculated using 

Method 1 of Van Raden (2008). While di�erences were 

small, it was found that this method tended to select the 

combination of smallest and best TP. This formulation of 

G, however, expresses the relationships among individu-

als relative to the current population. The mean relation-

ship is zero, with negative coe�cients indicating pairs of 

individuals are less related than the expected relationship 

of two randomly sampled individuals and positive coef-

�cients indicating higher genetic relatedness. To develop 

some general guidelines for inclusion of individuals in a 

TP based on genetic distance requires that genetic rela-

tionship coe�cients be fairly constant across populations 

rather than relative to the current population. Identity-

by-state similarities were chosen for this. It was found that 

when individuals with <0.62 to 0.74 S
ij
 were added to the 

TP, predictive ability began to trend downward with some 

variation across traits. If the results reported herein hold 

up, they suggest that genomic selection programs in plant 

breeding should focus on developing training sets consist-

ing of a few hundred (e.g., 200–500) individuals closely 

related to the selection candidates rather than large and 

diverse training sets. This approach would not only cir-

cumvent genetical reasons underlying reduced prediction 

accuracy, but would also minimize confounding e�ects of 

phenology on model training resulting from the inclusion 

of lines with wide variation in morphology and �ower-

ing time. In maize breeding, where breeding families are 

typically large (e.g., 50–200), families are routinely devel-

oped using doubled-haploid technology and seed quantity 

is enough to allow yield trials during early generations of 

selection, the focus has been on biparental family-speci�c 

TPs. In small grains like barley, however, often only a 

few individuals per family survive the �rst few genera-

tions of inbreeding and selection based on �owering time, 

disease resistance, and overall plant health and morphol-

ogy. Therefore, the number of individuals per family 

making it to yield trials is generally very small, preventing 

the use of family-speci�c TPs. Our results suggest that 

these multifamily TPs should be closely related to the set 

of selection candidates. In this study, selecting based on 

relatedness to the whole VP was at least as good as family-

speci�c and individual-speci�c TPs, but this result may 

be in�uenced by the fact that each VP used in this study 

was fairly narrow, only resulting from 10 related, within-

breeding program crosses. If a great amount of variation 

exists among families within the selection candidate set, 

then it’s likely a family-speci�c TP could be bene�cial.
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