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Abstract 

Two approaches to equational unification can be distinguished . The syn­

tactic approach relies heavily on the syntactic structure of the identities 

that define the equational theory. The semantic approach exploits the 

structure of the algebras that satisfy the theory. If little is known of the 

algebras involved, the first approach is useful, whereas the second is ap­

plicable to theories that describe algebraic structures which have already 

been investigated in mathematics. 

With this paper we pursue the semantic approach to unification. We 

consider the class oftheories for which solving unification problems is equiv­

alent to solving systems of linear equations over a semiring. This class has 

been introduced by the aut hors independently of each other as commu­

tative theories (Baader) and monoidal theories (Nutt). The class encom­

passes important examples like the theories of abelian monoids , idempotent 

abelian monoids , and abelian groups . 

We identify a large subclass of commutative/monoidal theories that 

are of unification type zero by studying equations over the corresponding 

semiring. As a second result, we show with methods from linear algebra 

that unitary and finitary commutative/monoidal theories do not change 

their unification type when they are augmented by a finite monoid of ho­

momorphisms, and how algorithms for the extended theory can be obtained 

from algorithms for the basic theory. The two results illustrate how us­

ing algebraic machinery can lead to general results and elegant proofs in 

unification theory. 

... ... ~, 
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1 Introduction 

Equational unification is concerned with solving term equations modulo an equa­

tional theory. The theory is called unitary (finitary) if the solutions of an equation 

can always be represented by one (finitely many) "most general" solutions. Oth­

erwise the theory is of type infinitary or zero. Equational theories which are of 

unification type unitary or finitary play an important role in automated theorem 

provers with built in theories [PL 72, Ne74, S174, St85], in generalizations of the 

Knuth-Bendix algorithm [Hu80, PS81, JK86, Bm87]' and in logic programming 

with equality [JL84, GR86]. 

For that reason, determining unification types of equational theories is not 

only interesting for unification theory but has also consequences for automated 

reasoning. Of course, for practical applications it is not enough to know that a 

given theory [ is of type finitary. 

One also needs a finite [-unification algorithm which computes the finitely 

many most general solutions. Unfortunately, but not at all surprisingly, there 

cannot be a general method which determines the unification type of an equa­

tional theory [Nu89]; and even if a theory is finitary it is still not clear whether 

a unification algorithm exists. 

Consequently, general methods which try to derive such an algorithm from 

a given set of axioms for the theory are doomed to fail. One solution proposed 

for this problem is to restrict the attention to certain classes of theories which 

are defined by syntactic properties of the set of axioms (see e.g., [KK90]). These 

efforts mostly depend on transformations of terms; they usually do not take the 

properties of the algebras defined by the theory into account. On the other hand, 

special purpose algorithms designed for theories of practical importance-such 

as the theory of abelian monoids (AM), idempotent abelian monoids (AIM), and 

abelian groups (AG)- often depend on algebraic properties of these theories. 

The theories AM , AIM, and AG belong to the class of commutative theories­

roughly speaking, theories where the finitely generated free algebras are direct 

products of the free algebras in one generator [Ba89a, Ba89b, Ba90]. It turns 

out (see Section 3 below) that the class of commutative theories is- modulo a 

translation of the signature-the same as the class of monoidal theories [Nu88, 

Nu90]. 

Unification in these theories can always be reduced to solving linear equations 

in certain semirings [Nu88]. On the one hand, this fact can be used to derive 

general results on unification in commutative/monoidal theories. For example, 

it can be shown that constant free unification problems are either unitary or 

of type zero, and the unification type of a theory can be characterized by al­

gebraic properties of the corresponding semiring. These characterizations were 

used in [Nu88, Ba89b , Nu90] to determine the unification types of several com­

mutative/monoidal theories. On the other hand, unification algorithms for cer-
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tain commutative/monoidal theories-for example, the theory of abelian groups 

with n commuting homomorphisms-can be derived with the help of well-known 

algebraic methods for the corresponding semi ring- for instance, Buchberger's al­

gorithm for the ring Z[XI, ... , Xnj of integer polynomials in n indeterminates 

[Ba90j. 

Let us now reconsider two of the examples in [Ba89b, Ba90j. Using algebraic 

properties of the semiring of polynomials with nonnegative integer coefficients, 

N[X], it was shown in [Ba90j that the corresponding theory, i.e., the theory of 

abelian monoids with a homomorphism, is of unification type zero. In contrast, 

the theory of abelian monoids with an involution! is unitary (finitary w.r.t. uni­

fication with constants). In both cases, the corresponding semi ring has a specific 

structure: it is a monoid semiring S(H), i.e., a semiring S with an adjoint monoid 

H. In the first example, the monoid H is the free monoid in one generator, which 

is an infinite monoid, while in the second example, we have the cyclic group of 

order two, which is finite. In both examples, the semi ring S is the semiring N 

of all nonnegative integers. This semiring corresponds to the theory AM of all 

commutative monoids, which is a finitary commutative/monoidal theory. 

In the present paper we shall consider commutative/monoidal theories where 

the corresponding semiring is a monoid semi ring S(H) more closely. The result 

for the theory of abelian monoids with a homomorphism can now be generalized 

to a whole class of theories as follows . If S is a strict semiring- i.e., a semiring 

which is not a ring- and H is a free monoid then the corresponding commuta­

tive/monoidal theory is of unification type zero. On the other hand, assume that 

S is a semi ring such that unification in the corresponding commutative/monoidal 

theory is unitary (finitary w.r.t. unification with constants), and let H be a finite 

monoid. In that case, the theory corresponding to the semiring S (H) is also of 

unification type unitary (finitary w.r.t. unification with constants). This gener­

alizes the result for the theory of abelian monoids with an involution. Moreover, 

a finite unification algorithm for the theory corresponding to S can be used to 

derive a finite unification algorithm for the theory corresponding to S(H). These 

two general results demonstrate the usefulness of the algebraic approach to uni­

fication. With this approach one can determine the unification types of whole 

classes of theories. It is not at all clear how this could be achieved with a purely 

syntactical approach. 

The paper is organized as follows. After recalling some basic definitions con­

cerning equational theories, unification theory, and semi rings in Section 2, we 

shall introduce commutative theories and monoidal theories in Section 3. This 

section will also contain a proof of the equivalence between commutative and 

monoidal theories. In Section 4 we shall recall the algebraic characterizations of 

the unification types for these theories, and give some examples for the results 

which can be ·obtained using these characterizations. The next two sections con-

IAn involution is a homomorphism h satisfying h2(x) = x. 
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tain the exact formulations and the proofs of the two general results mentioned 

above. In the conclusion we shall state some interesting open problems in this 

area. 

2 Basic Definitions 

In the following we assume that the reader is familiar with the basic notions of 

universal algebra [Co65, Gr68]. For more information on unification theory see 

[Si89]. The notions from category theory used below are for instance defined 

in [Ba89a], or in any introductory textbook on categories. The composition of 

mappings is written from left to right, that is, </> 0 'I/; or simply </>'1/; means first 

</> and then '1/;. Consequently, we use suffix notation for mappings (but not for 

function symbols in terms). 

2.1 Equational Theories 

We assume that two disjoint infinite sets of symbols are given, a set of function 

symbols and a set of variables. A signature 1; is a finite set of function symbols 

each of which is associated with its arity. Every signature E determines a class 

of E-algebras and E-homomorphisms. We define E-terms and E-substitutions 

as usual. By [xI/t l , . . . , xn/tn] we denote the substitution which replaces the 

variables X i by the t erms t;. 

An equational theory £ = (E , E) is a pair consisting of a signature 1; and a 

set of identities E. The equality of E-terms induced by £ will be denoted by 

=£ . Every equational theory £ determines a variety V(£), the class of all E­

algebras satisfying each identity of E. For any set of generators X, the variety 

V( £) contains a free algebra over V( £) with generators X, which will be denoted 

by.1'£(X). Thus any mapping of X into a E-algebra A can be uniquely extended 

to a E-homomorphism of .1'c(X) into A. 

The following category C( £) is associated with each equational theory £ = 

(E, E): the objects of C(£) are the free algebras .1'c(X) for finite sets of variables 

X,' the morphisms of C(£) are the E-homomorphisms between free algebras, and 

the composition of morphisms is the usual composition of mappings. The set of 

all objects of C (£) will be denoted by .1'(£), and the set of all morphisms from 

an object .1'£(X) to an object .1'£(Y) by hom(.1'£(X), .1'£(Y)). The coproduct 

of .1'c(X) and .1'£(Y) in C(£) is given by the free algebra .1'£(X l±J Y), where l±J 

denotes disjoint union. If IXI = IYI, then .1'£(X) and .1'c(Y) are isomorphic . . 

Thus .1'c(X) is the coproduct of the isomorphic objects F£(x) for x E X, where 

x is used as abbreviation for the singleton {x}. 
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2.2 Unification 

Let [ = (E, E) be an equational theory. An [-unification problem is a finite 

sequence of equations r = (Si == tj 11 ~ i ~ n), where Sj and tj are E-terms. A 

substitution () is called an [-unifier of r if Si() =e ti() for each i. The set of 

all [-unifiers of r is denoted by Ue(f). In general one does not need the set of 

all [-unifiers. A complete set of [-unifiers, i.e., a set of [-unifiers from which all 

unifiers may be generated by [-instantiation, is usually sufficient. More precisely, 

for every set of variables V we extend =e to a relation =e,v between substitutions, 

and introduce the [-instantiation quasi-ordering ~e , v as follows: 

• (J =e,v e iff X(J =e xe for all x E V 

• (J ~e,v () iff there exists a substitution A such that () =e,v (J 0 A. 

A set C ~ Ue(f) is a complete set of [-unifiers of r if for every unifier () of r 
there exists (J E C such that (J ~e,v (), where V is the set of variables occurring 

in r. For reasons of efficiency, this set should be as small as possible. Thus one is 

interested in minimal complete sets of [-unifiers. In minimal complete sets two 

different elements are not comparable w.r.t. [-instantiation. 

The unification type of a theory [ is defined with reference to the existence 

and cardinality of minimal complete sets. The theory [ is unitary (finitary, 

infinitary, respectively) if minimal complete sets of [-unifiers always exist , and 

their cardinality is at most one (always finite , at least once infinite, respectively) . 

The theory [ is of unification type zero if there exists an [-unification problem 

without a minimal complete set of [-unifiers. 

If the terms in the unification problems may contain free constants , we talk 

about unification with constants, otherwise we talk about unification without 

constants. If nothing else is specified, "unification" will mean "unification without 

constants. " 

An [-unification problem r = (Sl == t1 , . .. ,Sn == tn ) can be reformulated as a 

problem for morphisms in the category C([). Let Y be the finite set of variables 

occurring in some S j or ti. Evidently, we can consider Si and t i as elements of 

Fe(Y). Since we do not distinguish between =e-equivalentunifiers, any [-unifier 

can be regarded as a E-homomorphism from Fe(Y) into Fe(Z) for some finite 

set of variables Z. Let X = {XI,"" xn} be a set of cardinality n. We define 

E-homomorphisms a, T: Fe(X) ---t Fe(Y) by x;a := Si and XiT := ti. Now, 

8:Fe(Y) ---t Fe(Z) is an [-unifier of r if and only if x;a8 = Si8 = ti8 = XiT8 

for all i, that is, if and only if a8 = T8 . This observation justifies to conceive 

[-unification as a problem involving only morphisms of the category C([): gIven 

(J, T: Fe(X) ---t Fe(Y), find a 8: Fe(Y) ---t Fe(Z) such that a8 = 78. 
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2.3 Semirings 

A semiring S is a tuple (S, + , 0, ·,1) such that (S, +,0) is an abelian monoid, 

(S,·, 1) is a monoid, and all q, r, s E S satisfy the equalities 

1. (q+r)·s=q·s+r.s 3. o· s = s . 0 = O. 

2. q·(r+s)=q·r+q·s 

The elements 0 and 1 are called zero and unit. Semirings are different from 
rings in that they need not be groups w.r.t. addition. Obviously, any ring is a 

semiring. A prominent example for a semiring which is not a ring is the semi ring 

N of nonnegative integers. 

Similar to the construction of polynomial rings over a given ring, one can use 

a semiring S and a monoid H to construct a new semiring, namely the monoid 

semiring S (H) . As for polynomials, the elements of the monoid semiring may 

be represented as sums of the form L.hEH Sh· h where only finitely many of the 

coefficients Sh E S are nonzero. The zero element of S (H) is the sum where all 

the coefficients are zero, and the unit element is the sum where only the unit of 

H has a coefficient different from zero and this coefficient is the unit element of 

S. Addition and multiplication in S(H) are defined as follows: 

L: sh·h + L: th·h L: (Sh + th)·h 

hEH hEH hEH 

L: sri· L: tg ·g L:( L: srtg)·h 
JEH gEH hEH h=Jg 

Polynomial semi rings are special cases of monoid semirings. For example, the ring 

Z[X1 , ... ,Xnl of integer polynomials in n indeterminates is the monoid semi ring 

Z(FAMn ) where FAMn denotes the free abelian monoid in n generators. 

As mentioned in the introduction, unification in commutative/monoidal the­

ories can be reduced to solving systems of linear equations in certain semirings. 

Similar to unification in abelian monoids [LS75], problems without constants will 

correspond to systems of homogeneous equations. For problems with constants 

one has to solve in addition systems of inhomogeneous equations. 

Modules over semirings are a generalization of vector spaces over fields . Since 

(S,·, 1) need not be commutative, we have to distinguish between left and right 

S-modules. Solutions of homogeneous systems form right S-modules. The uni­

fication type of a theory will depend on whether these modules are finitely gen­

erated or not. A subset M of the n-fold cartesian product sn is a finitely gen­

erated right S-module if there exist finitely many Xl, ... , Xk E sn such that 

M = {XlSl + ... +XkSk I St, ... ,Sk E S}. 
Solutions of inhomogeneous systems do not form right modules, but unions 

cosets of right modules. For the unification type it will be crucial how many 

cosets are needed to represent all solutions. If M ~ sn is a right S-module, and 
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N is a subset of sn, then N is a coset of M if there exists some y E sn such that 

N = {y + x I x E M}. Consequently, the set N is a finite union of cosets of M 

if there exist finitely many Yl, ... , Yk E sn such that N = U7=1 {Yi + x I x E M}. 

3 Commutative and Monoidal Theories 

In this section we shall give the definitions of commutative and monoidal theories, 

and show in what sense these two notions are equivalent. 

3.1 Definitions and Examples 

Motivated by the categorical reformulation of E-unification (see Subsection 2.2), 

the class of commutative theories is defined by properties of the category C(E) of 

finitely generated E-free algebras as follows: an equational theory E is commuta­

tive if the corresponding category C(E) is semiadditive (see [HS73, Ba89a] for the 

definition and for properties of semiadditive categories). In order to give a more 

algebraic definition we need some additional notation from universal algebra. 

Let E = (~, E) be an equational theory. A constant symbol e of the signature 

~ is called idempotent in E if for all symbols f E ~ we have f( e, ... , e) =£ e. 

Note that for nullary f this means f =£ e. 

Let K, be a class of ~-algebras. An n-ary implicit operation in K, is a fam­

ily 0 = {OA I A E K,} of mappings 0A: An ---+ A which is compatible with all 

homomorphisms, i.e., for all homomorphisms w: A ---+ B with A, B E K, and all 

aI,···,an E A, we have (oA(aI, ... ,an))w = oB(alw, ... ,anw) . In the sequel we 

shall omit the index and just write 0 in place of 0A. ~-terms induce implicit 

operations on any class of ~>algebras in the following way: let t be a ~-term and 

let Xl, ... , Xn be a sequence of variables such that all the variables occurring in 

t are contained in this sequence. The n-ary implicit operation (tj Xl, . .. , Xn) is 

defined by 

(al, ... ,an) 1----+ t[xI/al, ... ,xn/an]. 

For example, assume that the signature consists of a binary symbol "." and a 

unary symbol "-1", and let K, be the class of all groups. Then the binary implicit 

operation (x . y-l; x, y) expresses division in a group. If we apply this operation 

to a pair of group elements a, b, we obtain the quotient a . b-1
. For the classes 

V(E) and F(E) all implicit operations can be defined by ~-terms [La63]. 

We are now ready to give an algebraic definition of commutative theories. An 

equational theory E = (~, E) is called commutative if the following holds: 

1. the signature ~ contains a constant symbol e which is idempotent in E 

2. there is a binary implicit operation "*" in F( E) such that 
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(a) the constant e is a neutral element for "*" in any algebra .1"£(X) E 

.1"(£) 

(b) for any n-ary function symbol lEE, any algebra .1"£(X) E .1"(£), 

and any S1, . . . ,Sn, tI, . .. , tn E .1"(£) we have I(S1 * tI, . .. ,Sn * tn) = 

I(S1, ... , Sn) * 1(tI,·· · , tn). 

Though it is not explicitly required by the definition, the implicit operation "*" 

turns out to be associative and commutative (see [Ba89a], Corollary 5.4). This 

justifies the name "commutative theory." 

Well-known examples of commutative theories are the theory AM of abelian 

monoids, the theory AIM of idempotent abelian monoids (sometimes called AC1 

in the literature), and the theory AG of abelian groups (see [Ba89a]). In these 

theories, the implici t operation "*" is given by the explicit binary operation in 

the signature. An example for a commutative theory where "*" is really implicit 

can also be found in [Ba89a] (Example 5.1). We shall now consider examples 

of commutative theories where the signature contains some additional function 

symbols (see [Ba90, Nu90] for more examples). 

Examples 3.1 We consider the following signatures: E := {+, 0, h}, where "+" 
is binary, 0 is nullary, and h is unary; .6 := {+, 0, I}, where "+" is binary, 0 is 

nullary, and I is binary; and 0 := {+, 0, -, i}, where "+" is binary, 0 is nullary, 

and - and i are unary. 

AMH = (E, EAMH) , the theory of abelian monoids with a homomorphism. EAMH 

consists of the identities which state that "+" is associative, commutative 

with neutral element "0" , and the identities which state that h is a homo­

morphism, i.e. , the identities h(x + y) == h(x) + h(y), h(O) == O. 

AMIn = (E, E AMIn ) , the theory of abelian monoids with an involution. EAMIn 

consists of the ident it ies of E AMH , and the additional identity h(h(x)) == x, 

which states that h is an involution. 

C9M = (.6, ECOM). ECOM consists of the identities which state that "+" is 

associative, commutative with neutral element 0, and the identities I(x + 
x',y + y') == I (x , y) + I(x',y') and 1(0,0) == 0 which ensure that COM is 

really commutative. 

GAUSS = (0, EGAUSS). EGAUSS consists of the identities which state that "+" is 

the binary operation of an abelian group with neutral element 0 and inverse 

-, and the additional identity x + i(i(x)) == o. 

With the exception of the third example, the additional function symbols­

i.e., the function symbols apart from the binary symbol yielding the implicit 

operation, and the idempotent constant symbol-are all unary symbols. This 
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motivates the definition of monoidal theories. An equational theory £ = (E, E) 

is monoidal if 

1. E contains a constant symbol 0, a binary function symbol "+", and all the 

other symbols in E are unary 

2. "+" is associative and commutative 

3. 0 is the neutral element for "+", that is, 0 + x =£ x + 0 =£ x 

4. every unary symbol h is a homomorphism for "+" and 0, that is, h(x+y) =£ 

h(x) + h(y) and h(O) =£ o. 

It is easy to see that monoidal theories are always commutative theories. Obvi­

ously, the theories AM, AIM, AG, AMH, AMIn, and GAUSS are monoidal. The 

theory COM is not monoidal, since its signature contains an additional binary 

function symbol. However, we shall see in the next subsection that COM may 

also be regarded as monoidal theory if the signature is translated appropriately. 

3.2 Adding Monoids of Homomorphisms 

There is an interesting difference between the theory GAUSS on the one hand, 

and the theories AMH and AMIn on the other hand. The additional identity 

x + i(i(x)) == 0 in the theory GAUSS establishes a closer connection between the 

unary symbol i and the binary symbol "+" than just the fact that i is a homo­

morphism for "+". This is not the case for the additional identity h(h(x)) == h(x) 

in AMIn which says something about h alone. This observation will now be put 

into a more general setting. 

Let £ = (E, E) be a monoidal theory, and let H be a monoid generated by 

the finitely many elements hI, . .. ,hn . We define the augmented theory £(H) = 

(E', E') as follows: the signature E' extends E by the unary function sym­

bols hI' ... ' hn ; the set of identities E' extends E with the identities which 

state that hI, ... , hn .are homomorphisms, and the identities {h il ( ... hik (x) ... ) == 
hj! ( ... hj,(x) ... ) I hil ... hik = hjl ... hj, holds in H}. In Sections 5 and 6 we 

shall study unification in theories of the form £(H). 
The theory AMH is AM(h*) where h* stands for the free monoid in one gen­

erator, and AMIn is AM(Z2) where Z2 stands for the cyclic group of order 2, 

i.e., Z2 consists of two elements e and h, and the multiplication in Z2 is defined 

as e · e = e, h· e = e · h = h, and h· h = e. On the other hand, one can prove 

that GAUSS cannot be represented in the form AG(H) because of the interaction 

between i and "+" stated by x + i(i(x)) == O. 
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3.3 Commutative and M onoidal Theories are Equivalent 

Next we show that by means of a signature transformation every commutative 

theory can be turned into a monoidal theory that, from the viewpoint of unifica­

tion, is equivalent. 

Let E and E' be signatures. A signature transformation from E' to E is a 

mapping () that associates to every E' -term a E- term such that 

1. x(} = x for every variable x 

2. f(t l , ... , tn)(} = (J(X I ,"" xn)(})[xI/t l (}, ... , xn/tn()] if f is an n-ary symbol 

and Xl, ... ,Xn are n distinct variables. 

It follows from the definition that () is completely defined by the images of the 

flat terms f(XI,'" ,xn ) where f ranges over E'. Intuitively, () interprets every E'­

symbol by a E-term, and then extends this interpretation consistently to arbitrary 

E'-terms. 

To every commutative theory £ = (E, E) we associate a theory £ = (E, E) and 

a signature transformation () from E to E as follows. The signature E consists 

of a constant 0, a binary symbol "+", and unary symbols iI, ... , fn for every 

n-ary symbol fEE, where n ~ 1. To define the set of identities E we need 

the transformation (). Let e be the idempotent constant in £ and let (t.; X, y) 

be the pair corresponding to the implicit operation "*" in £. We define () by 

O(} := e, (x + y)(} := t., and fi(X)(} := f(e, ... , x, ... , e), where f(e, ... , x, ... , e) 

has the variable x in the i-th argument position and the constant e in the other 

positions. Now, with the help of this signature transformation we define E as 

E := {S ~ i I S(} =e i(}}. That is, E is the preimage of =e under (). 

Proposition 3.2 Let £ = (E, E) be a commutative theory with associated theory 

£ = (E, E) and signature transformation (). Then: 

1. £ is a monoidal theory 

2. S =? i implies s(} =e i(} for all E-terms S, i. 

Proof. 1. Since the implicit operation "*" is associative and commutative, the 

same is true for "+". From part (2.b) of the definition of commutative theories 

we conclude that every fi is a homomorphism for "+". Finally, since e is neutral 

for "*", we have that 0 is a zero for "+", and since e is idempotent, we conclude 

that 0 is a zero for the homomorphisms Ii. 
2. The claim follows from the definition of E and the fact that E is a stable 

congruence. 0 

Let £ = (E, E) and £' = (E', E') be equational theories. We say that £ and 

£' are equivalent if there exist signature transformations ()' from E to E' and () 

from E' to E such that 
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1. s =£ t implies sf)' =£' tfJ' for all ~::-terms sand t and s' =£' t' implies 

s' f) = £ t' f) for all ~' -terms s' and t' 

2. sO'f) =£ s for all ~-terms s, and s'Of)' =£' s' for all ~'-terms s'. 

The first condition means that f) and 0' can be seen as mappings on equivalence 

classes of terms. The second says that f) and f)' are inverses of each other modulo 

the equational theories. 

One of the most prominent examples of equivalent theories are boolean rings 

and boolean algebras. If two theories are equivalent they describe essentially the 

same structures. More precisely, if £ and £' are equivalent, then the categories 

C(£) and C(£') are isomorphic, and so are the varieties of £ and £' [Ta79). Since 

unification properties of a theory £ depend on the category C(£), it follows that 

equivalent theories share the same unification properties. 

Theorem 3.3 Let £ = (~, E) be a commutative theory with associated theory 

t = (f. , E). Then £ and f are equivalent. 

Proof. Let f) be the signature transformation from f. to~ . To show the 

equivalence of £ and t we exhibit a signature transformation 0 from ~ to f. and 

show that f) and 0 have the required properties. We define 0 by eO = 0, and 

I( Xl,' .. ,xn)O = 11 (xd + ... + In(xn) for every n-ary symbol I in ~. 
By Proposition 3.2 we already know that s =£ i implies sf) =£ if) for all 

f.-terms s, i. A 

Next we prove that sf)f) =£ s for every ~-term s. For this purpose it suffices 

to show the claim for flat terms of the form I(Xl,"" xn). For such terms we 

have 

(fl(Xl) + ... + In(xn))f) 

I(Xl' e, ... ) * ... * 1( .. . , e, xn) 

=£ I(XI * e * ... * e, . . . , e * ... * e * xn) 

=£ I(Xl,"" xn), 

where the first two equalities follow from the definition of 0 and f), and the last 

two equalities follow from parts (2.b) and (2.a) of the definition of commutative 

theories. 

To show that sf)O =£ s for every f.-term s, it suffices by the definition of E to 

show that sf)Of) =£ sf), which is a consequence of the fact that sOf) =£ s for every 

~-term s. 

Finally, we show that for all ~ - terms s, t we have that s =£ t implies sO =£ to. 

But this follows again from the definition of E, since sOf) =£ s =£ t =£ tOf) then 

yields sO =£to. 0 

From this result it follows that from the viewpoint of unification there is no 

difference between commutative and monoidal theories. 
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4 Unification in Commutative/Monoidal The-
. 

orles 

First we shall show the connection between unification modulo commutative/mo­

noidal theories and solving linear equations in semirings. In [B,a89a] the following 

properties for a commutative theory £ are shown within the categorical frame­

work, using well-known results for semiadditive theories. 

1. The implicit operation "*" required in the definition of commutative the­

ories induces a binary operation "+" on any morphism set hom(.1'c(X),.1'e(Y)) 

as follows: for a,T:.1'c(X) ---t .1'e(Y) we define a+T by t(a+T):= (ta)*(tT) for 

all t E .1'c(X) . This operation is associative and commutative, and it distributes 

with the composition of morphisms. The morphism 0: .1'c(X) ---t .1'c(Y) defined by 

x 1--+ e for all x EX, where e is the idempotent constant required in the definition 

of commutative theories, is a neutral element for "+" on hom(.1'c(X),.1'c(Y)). 

2. The cartesian product of .1'e(X) and .1'c(Y) is also a product in the cate­

gorical sense. Furthermore, the product is isomorphic to the coproduct, that is 

.1'c(X l±J Y) ~ .1'c(X) X .1'c(Y) . 

3. Consider a: .1'c(X) ---t .1'e(Y). Let U x for x E X be the injections of the 

coproduct .1'c(X) = EBXEX .1'c(x) and py for Y E Y be the projections of the 

product .1'c(Y) = ®yEy.1'e(y ). Then a is uniquely determined by the matrix 

M(7 := (uXapY)xEX,YEY' For a, T: .1'c(X) ---t .1'c(Y) and 8: .1'c(Y) ---t .1'e(Z), we 

have Mu+r = Mu + Mr, and Mus = MuMs. 

As an example, consider the morphism a = [xI! h(Yl), XdYl + hZ(yz)] from 

.1'AMH(Xl, xz) to .1'AMH(Yl, yz). Then a is determined by the matrix 

Let 1 be an arbitrary set of cardinality one. Property 1 from above yields that 

the set hom(.1'c(I), .1'c(I)) with addition "+" and composition as multiplication 

is a semiring, which will be denoted by Sc. Any .1'c(x) is isomorphic to .1'e(I), and 

thus, for IXI = n, .1'c(X) is the n-th power and copower of .1'e(I). Consequently, 

for a: .1'c(X) ---t .1'c(Y), the entries uxapy of the IXI x WI-matrix M(7 may all 

be considered as elements of Sc . That means that all morphisms in C(£) can be 

written as matrices over the semi ring Sc . Addition and multiplication of matrices 

correspond to addition and composition of morphisms, as stated in Property 3 

above. 

As an example, consider an arbitrary morphism ,:.1'AMH(Y) ---t .1'AMH(Y)' 

Then there exist ao, . . . , ak E N such that y, =AMH aoY + alh(y) + ... + akhk(y). 

We associate with the morphism, the polynomial ao + a1X + ... + akXk, which 

is an element of the semiring N[X] of polynomials in one indeterminate X with 

nonnegative integer coefficients. 
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The morphism 0' = [xd h(Yl), XdYl + h2(Y2)) from above and the morphism 

{) = [Yl/h(z),Y2/2z) can be expressed by the matrices 

and 

over N[X). An easy calculation shows that the morphism 0'8 
x2/h(z) + 2h2(z)) corresponds to the matrix MqMs. 

Examples 4.1 The theories of Example 3.1 yield the following semirings (see 

[Nu9a, Ba9a]). 

SAMH, the semi ring corresponding to the theory AMH of abelian monoids with 

a homomorphism, is isomorphic to N[X], the semi ring of polynomials in 

one indeterminate X with nonnegative integer coefficients. 

SAMIn, which corresponds to the theory of abelian monoids with an involution, 

is the monoid semiring N(Z2), where Z2 denotes the cyclic group of order 

2. 

SCOM, the semiring corresponding to the theory COM, is isomorphic to N (X, Y), 
the semiring of polynomials in two noncommuting indeterminates X, Y with 

nonnegative integer coefficients. Note that N (X, Y) is the monoid semir­

ing N({X, Y}*), where {X, Y}* denotes the free monoid in two generators 

X,Y. 

SGAUSS is isomorphic to the ring of Gaussian numbers Z EB iZ, consisting of the 

complex numbers m + in, where m, n E Z. 

The first two examples suggest that there is a close connection between aug­

menting a commuta:tive/monoidal theory by a monoid (as defined at the end of 

Subsection 3.1) and adjoining a monoid to the corresponding semiring (as de­

fined in Subsection 2.3). For AMIn = AM(Z2), for instance, one verifies that the 

semi rings SAM(Z2) and SAM(Z2) are isomorphic. It is easy to see that this kind of 

connection holds in general. 

Theorem 4.2 Let £ be a commutative/monoidal theory} and let H be a finitely 

generated monoid. Then S£(H) } the semiring corresponding to £ augmented by 

H} and the monoid semiring Sc(H) are isomorphic. 

Proof. Let £ = (~, E) be a commutative/monoidal theory and H be a monoid 

generated by the finitely many elements hI' ... ' hn . Then £(H) has the signature 

I:' = ~ U {hI, · ... , hn }. 
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We shall construct a semiring isomorphism that maps every element I E S£(H) 

to an element '7 E Sc(H) . Recall that the elements of S£(H) are the ~/ - homomor­

phisms from F£(H)(l) to F£(H)(l) where 1 = {x} is a singleton. Let I be such a 

~/-homomorphism. Then I is uniquely determined by the element X,. Without 

loss of generality we can assume that x, =£(H) L~l hil(. .. (hini(td) ... ) where 

the ti's are ~-terms. For every i = 1, ... ,m let Ii be the ~-homomorphism from 

F£(l) to F£(l) defined by X,i := ti. Then we have Ii E Sf. We define '7 as 

'7 := L~l Ii· hil ... hini E S£(H). 

One can verify that the definition of '7 does not depend on the particular 

presentation of I and that the mapping":" is bijective. Exploiting the fact that 

hl, ... ,hn are homomorphisms in £(H) one shows that ":" is compatible with 

the semiring operations and hence is a semiring isomorphism. 0 

The isomorphism of S£(H) and S£(H) will be used in the next two sections to 

study the unification problem for £(H) in an algebraic setting. 

In Subsection 2.2 we have seen that £-unification can be reformulated as 

unification in the category C(£). A unification problem in C(£) is given by a 

pair of morphisms a, T, and unifier is morphism 8 such that a8 = T8. If we 

translate the morphisms into matrices over Sf, this means that an £-unifier cor­

responds to a matrix Mover S£ such that MuM = MrM. This correspondence 

is used in [Nu88, Nu90, Ba90j to characterize the unification types of commuta­

tive/monoidal theories by algebraic properties of the corresponding semirings. 

Theorem 4.3 A commutative/monoidal theory £ is unitary w.r.t. unification 

without constants if and only if S£ satisfies the following condition: for any pair 

Mu, Mr of m xn-matrices over S£ the set 

is a finitely generated right Sf-module. 

If U(Mu,Mr) is generated by Xl, ... ,Xk E Sen, then the matrix which has 

Xl , ... , Xk as columns corresponds to a most general £-unifier of a and T . 

. Since constant-free unification problems in commutative/monoidal theories 

are either unitary or of type zero [Nu88, Ba89a, Nu90], the theorem yields that the 

theory £ is of type zero iff there exist matrices Mu, Mr over S£ such that the right 

Sf-module U(Mu, Mr) is not finitely generated. Using this characterization, it can 

be shown that the theories AMH and COM are of type zero (see [Ba89a, Ba90]). 

The theories AMIn and GAUSS are unitary w.r.t. unification without constants 

(see [Ba89aj for the first, and [Nu90j for the second result). 

For unification with constants, we have to solve-in addition to homogeneous 

systems Mux = Mrx of linear equations over Sf- inhomogeneous systems of the 

form Mux + a = Mrx + b, where a, bE s£m. The solutions of the inhomogeneous 

equations together with the generators of U(Mu, Mr) can then be translated into 

15 



unifiers in a way that is similar to the unification method for AM described in 

[LS75]. 

Theorem 4.4 Let £ be a commutative/monoidal theory which is unitary w.r.t. 

unification without constants. Then £ is unitary (finitary) w. r. t. unification with 

constants if and only if Sf satisfies the following condition: for any pair Mq, M-r 

ofmxn-matrices over Sf, and any pair a, bE Sf
m 

the set 

is a coset (finite union of cosets) of the right Sf-module U(Mq, M-r). 

This characterization can be used to show that AMln is finitary w.r.t. unifi­

cation with constants. The theory GAUSS is even unitary w.r.t. unification with 

constants. This is due to the fact that SGAUSS ~ Z E9 iZ is a ring, and not only 

a semiring. In fact , let Sf be a ring, and let Xo be an arbitrary solution of the 

equation Mqx + a = M-rx + b. Then any solution y of this inhomogeneous equa­

tion is of the form y = Xo + z , where Z := y - Xo is a solution of the homogeneous 

equation .(I1qX = M-rx. This shows that any solution y of the inhomogeneous 

equation is an element of the coset {xo + Z I z E U(Mq, M-r)}. Conversely, any 

element of this coset is a solution of the inhomogeneous equation. 

5 A Sufficient Condition for Unification Type 

Zero 

In this section we shall generalize the "type zero" result for the theory AMH to 

a whole class of commutative/monoidal theories. This class will be defined by 

properties of the corresponding semi ring. Before we can do that, we need one 

more notation . 

Let S be a semi ring which is not a ring. That means that the abelian monoid 

(S, +, 0) is not a group, i.e., there exists an element pES such that, for all q E S, 

we have p+q =I O. We shall call such an element p of S non-invertible. An element 

s E S which has an inverse w.r.t. "+" is called invertible. For the semi ring N, 

all elements different from 0 are non-invertible. For the direct product N x Z, an 

element (n, z ) is invertible iff n = O. Here are some trivial facts about invertible 

and non-invertible elements. 

1. The elements 8}, ... ,8k of S are invertible if and only iftheir sum 81 + ... +8k 

is invertible. 

2. The element LhEH 8h' h of the monoid semiring S(H} is non-invertible if 

and only if there exists h E H such that 8h is non-invertible in S. Thus, if 

S is not a ring, then S(H} is not a ring for any monoid H. 
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Recall that the theory AMH corresponds to the semiring N[X] of polynomials 

in one indeterminate X with nonnegative integer coefficients. That means that 

we have a monoid semi ring S(H) where all the nonzero elements of S are non­

invertible, and where the monoid H is the free monoid X* in one generator. The 

"type zero" result for AMH can now be generalized to the case where S contains 

at least one non-invert ible element. 

Theorem 5.1 Let £ be a commutative/monoidal theory such that the correspond­

ing semiring Sf is isomorphic to a monoid semiring S(X*). If S is not a ring, 

i. e., if S contains at least one non-invertible element, then £ is of unification type 

zero. 

As mentioned before the monoid semiring S (X*) is just the polynomial semir­

ing S[X]. The theorem is proved if we can find matrices Ma , MT over S[X] such 

that the right S[X]-module U(Ma , MT ) is not finitely generated. 

In the following we shall show that the 1x3-matrices Ma := (X,X,O) and 

MT := (0,1, X2) have the required property. Thus we consider the homogeneous 

linear equation 

(1) 

which has to be solved by a vector L E S[xt If L is such a vector, we denote 
its components by L(1), L(2), L(3) . 

Let P be a non-invertible element in S. Obviously, for any n 2 1, the vector Ln 

which consists of the components L~I) := p, L~2) := pX + ... + pxn+l, L~3) := pxn 

is a solution of (1). 

Now assume that U(Ma, MT ) is finitely generated, i.e., there exist finitely 

many solutions Gll ···, Gm of (1) which generate all the solutions of (1). Let n 2 1 

be arbitrary but fixed. Since Ln is a solution of (1) there exist 11,···, 1m E S[X] 

such that 

m 

Ln = LGili. (2) 
i=1 

If we consider (2) in the first component, we get p = I:~1 GF) Ii. For i = 1, ... ,m, 
let Pi E S be the constant coefficient of the polynomial G~1), and hi E S be the 

constant coefficient of Ii. The last equation implies that p = I:~1 Pihi. Since 

p is non-invertible, there exists some j with 1 :::; j :::; m such that pjhj is non­

invertible. 

Lemma 5.2 The polynomial G;3) is of degree at least n. 
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Proof. Assume that the degree of C;3) is less than n. Since C j is a solution of 

(1), we know that Cjhj is also a solution, that is, 

X . C(l) h . + X . C(2) h· = C(2) h . + X2 . C(3) h . (3) 
J J J J J J J J. 

The components of the solution Gjhj satisfy the following properties: 

• The constant coefficient of the polynomial C)l) hj is el := pjhj . Thus we 

know by the choice of j that el is non-invertible. 

• The polynomial C)2) hj has constant coefficient O . . This is an immediate 

consequence of the equation (3). 

• All the coefficients of C)3) hj are invertible. This can be seen by considering 

equation (2) in the third component, which yields pxn = L:~l CP) Ii. Since 

C;3) h j contains only monomials of degree less than n, all these monomials 

vanish during the summation. Consequently, all the coefficients of these 

monomials have to be invertible. 

From the fact that the coefficient of X in X . C;l) hj is el and in X . C)2) h j is 0 

we get by (3) that the coefficient of X in C)2)hj + X2. C)3)hj is also el. Hence, 

the coefficient of X in C;2) h j is el. 

Starting with the fact the coefficient el of X in C;2) hj is non-invertible, we 

shall now deduce that the coefficient of X 2 in C;2) hj is also non-invertible. Since 

the coefficient of X in C;2) hj is el, the coefficient of X 2 in X . C)2) hj is also 

el. Thus the coefficient of X 2 on the left hand side of (3) is e' := el + e for 

some e. The coefficient e' is non-invertible because otherwise el could not be 

non-invertible. By (3), the coefficient of X 2 in C;2) hj + X 2 . C)3) hj is also e'. 

Since all the coefficients of X 2 
. C;3) hj are invertible, this finally shows that the 

coefficient e2 of X 2 in C;2) hj is non-invertible. 

This argument can be iterated to show that, for all k 2': 1, the coefficient ek 

of X k in C;Z) hj is non-invertible. This is a contradiction to the fact that the 

polynomial C?) hj has only finitely many nonzero coefficients. 0 

We have just shown that, for any n 2': 1, there exists a j such that C)3) is 

of degree at least n. This is a contradiction to our assumption that there are 

finitely many generators Cj of all solutions of (1). This completes the proof of 

the theorem. 

6 Adding Finite Monoids of Homomorphisms 

In this sectiori we investigate commutative/monoidal theories that are augmented 

with finite monoids of homomorphisms. In contrast to the case of free moiloids, 
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that was treated in the previous section, we can derive the positive result that 

adding finite monoids doesn't change the unification type and that algorithms for 

the original theory can be used to solve problems in the augmented theory. 

An example for such a theory is AMIn, the theory of abelian monoids with 

an involution. Recall t hat AMIn can be written as AM(Z2), and that the corre­

sponding semiring is N (Z2)' 

General Assumption. In this section £ is a commutative/monoidal theory 

and H is a finite monoid. 

Since unification problems in £(H) are equivalent to systems of linear equa­

tions over Se(H), our basic technique will be to reduce such systems to systems 

of linear equations over Se. As a first step we shall establish a one-to-one corre­

spondence between vectors. 

Every vector x E Se(H)n has a unique representation as x = LhEH xh·h where 

ah E Sen. As an example the vector 

can be written as 

x= ( 
1.e+2.h) = (1 ).e+ (2 ).h. 
O·e+1·h 0 1 

We can formally justify this notation if we consider S£ and H as subsets of S£ (H). 

This can be done by identifying every element sESe with s ·e E Se(H), where e 

is the unit in H, and every element h E H with 1· h E Se(H). 

Suppose the elements of H are numbered as hI, . .. ,hIHI . If x E Se(H) n has 

a representation as x = Xh
1 

• hI + ... + XhIHI' h 1H1 , we define 

X= 

as. the vector obtained from x by wri ting the vectors x h one below another. Con­

tinuing our example from above we have 

We thus obtain a bijection between Se(Hr and Se nlHI . In particular, every vector 

in SenlHI has a representation as x for some x E Se(H)n. Obviously, for all x, 

y E Se nlHI and all sESe we have 

and ~ -x·s = x·s. (4) 
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In algebraic terms we can rephrase these equalities by saying that the mapping 

,,~, is a right St-module isomorphism_ 

Next we will associate to every mxn-matrix M with entries in St(H} an 

mlHI xnlHI-matrix M with entries in St, such that Mx = Mx holds for every 

x E Sc(H} n _ To derive an appropriate definition of M, observe that, similar to 

a vector, the matrix M has a unique representation M = LhEH Mh -h, where the 

Mh are matrices with entries in St- Applying M to a vector x yields 

Mx = (2: Mrf)(2: xg-g) 
fEH gEH 

L:( L: Mjxg)-h 
hEH h=fg 

2: Mfxg-f-g 
f,gEH 

L:(L:( L: Mj)xg)-h_ 
hEH gEH h=f-g 

This series of equalities says that the component of the vector Mx corresponding 

to the element h is obtained by summing over all g the products (Lh=f .g M f )Xg_ 

This shows that we have to define M as the mlHI xnlHI-matrix consisting of the 

submatrices 

where a sum over an empty set of indices is to be understood as the zero matrix. 

With this definition we obtain 

Ma =Ma_ (5) 

Returning to our example theory AMIn, consider a matrix Mover N(Z2)- If 

M = Me -e + Mh -h, then the associated matrix is 

Thus, our general approach gives us the same representation of unification prob­

lems in AMIn as the one derived in [Ba89a]_ 

Next we apply our transformation technique to unification problems without 

constants_ 

Proposition 6.1 Let Ma, MT be mxn-matrices over Sc(H}, and x E St(H}n_ 

Then: 

1. x E U(Ma,MT) if and only if x E U(Ma,MT) 

2. U(Ma, MT) is generated by Xl, ___ , Xk ifU(Ma, MT) is generated by Xl, ___ , Xk -
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Proof. 1. Let x E Se(H)n. Then we have x E U(Mq,Mr ) if and only if 

Mqx = Mrx if and only if M;x = M;x if and only if Mqx = Mrx if and only if 

x E U(Mq, M r ). 

2. It suffices to show that every x E U (Mq, Mr) is a linear combination 

of XI, ... , Xk. If x E U(Mq, M r ), then x E U(Mq, Mr) by part (1). Hence, 

x = XrS1 + ... +Xk·Sk. Using equalities (4), we conclude that x = XrS1 + ... +Xk·Sk. 

Thus, x is a linear combination of Xl, ... , Xk. 0 

If £ is unitary W.f. t. unification without constants, then for all matrices M q , 

Mr with entries from Se(H) the right Se-module U(Mq, Mr) is finitely generated, 

and by the preceding proposition, U(Mq, Mr) is finitely generated. Together with 

Theorem 4.3 this proves our next theorem. 

Theorem 6.2 If £ is unitary w.r.t. unification without constants, then £(H) zs 

unitary w. r. t. unification without constants. 

The approach to unification problems with constants again consists in reduc­

ing a problem for £(H) to a problem for £. Speaking in terms of semi rings, we 

shall reduce inhomogeneous linear equations over Se(H) to inhomogeneous linear 

equations over Se. 

For a set S ~ Se(H) n let S := {x I XES}. 

Proposition 6.3 Let M q, Mr be mxn-matrices with entries in Se(H) and a, 

bE Se(H)m. Let N:= {x E Se(H)n I Mqx + a = Mrx + b}. Then: 

1. N = {y E SenlHI I Mqy + a = Mry + b} 

2. N is a coset (finite union of cosets) of U(Mq, M r ), if N is a coset (finite 

union of cosets) ofU(Mq, MT)' 

Proof. 1. By equalities (4 ) and (5) it follows that for all x E Se(H)n we have 

Mqx + a = MTx + b if and only if Mqx + a = Mrx + b. Since for every y E SenlHI 

there is a unique x E Se(H) n such that y = x, this yields the claim. 

2. If N is a coset of U(Mq, M r ), then there exists a vector x E Se(H)n such 

that N = {x + y lyE U(Mq , M r )}. Using equality (4) and Proposition 6.1 we 

conclude that N = {x + z I z E U(Mq, Mr)}. 

For the case that N is a finite union of cosets, the argument has to be slightly 

generalized. D 

By Theorem 4.4, the preceding result gives us a condition for £(H) to be 

unitary or finitary. 

Theorem 6.4 Suppose £ is unitary w. r. t. unification without constants. If £ is 

unitary (finitary) w. r. t. unification with constants, then £ (H) is unitary (finitary) 

w. r. t. unification with constants, if £ is unitary (finitary) w. r. t. unification with 

constants. 
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Propositions 6.1 and 6.3 tell us how we can use an algorithm for £ to solve 

problems in £(H). An £(H}-unification problem without constants is given by 

mxn-matrices Ma, M-r with entries in Se(H) ~ Se(H}. We compute the trans­

forms Ma and M-r and solve the equation MaY = M-rY over Se, which we can 

do with the algorithm for £. If the set of solutions of the matrix equation over 

Se is generated by vectors YI, ... , Yk E SenJHJ , we compute Xl, ... , Xk E Se(H} n 

such that Xi = Vi. Then the set of solutions of the original equation is generated 

by Xl, . .. ,Xk and the matrix M6 that has Xl, . .. ,Xk as colums represents a most 

general unifier of the given problem. 

Since inhomogeneous linear equations over Se(H) ~ Se(H} can be transformed 

into inhomogeneous equations over S[, an algorithm for £ can be used in a similar 

way as in the constant free case to solve unification problems with constants in 

£(H). 

7 Conclusion 

Two approaches to solving unification problems can be distinguished. The first, 

which might be called the "syntactic approach," relies heavily on the syntactic 

structure of the identities that define the equational theory (see for instance 

[GS89, NR89, KK90]). The second, which we may characterize as the "semantic 

approach ," exploits the structure of the algebras that satisfy the theory. If little 

or nothing is known of the algebras involved, the first approach is useful, whereas 

the second is applicable to theories that describe algebraic structures which have 

been investigated in mathematics. 

With this paper we pursue the semantic approach to unification. We have 

combined techniques for commutative and monoidal theories that had been de­

veloped independently. We have shown that both classes of theories are essentially 

the same in that every monoidal theory is commutative, and every commutative 

theory can be turned into a monoidal theory by a signature transformation. 

One of the major topics of research in unification in recent years was to con­

struct algorithms for the combination of equational theories . This problem has 

been solved- at least in principle-for theories with disjoint signatures [SS89]. 

Of course, the case where signatures are not disjoint is too difficult to be treated 

in full generality. We concentrated on a special case, namely the combination of a 

commutative/monoidal theory with a monoid of homomorphisms. By exploiting 

the algebraic structure of the canonical semi ring" associated to such a theory, we 

have found combinations that are of unification type zero, and others that are of 

type unitary or finitary. For the latter case we have pointed out how a unification 

algorithm can be derived. 

There still remain open questions for this kind of combination. We have 

augmented a"given theory either by free monoids or by finite monoids, but we do 
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not know what happens with infinite monoids that are not free. 

The only commutative/monoidal theories of unification type zero that we 

know are those described in this paper. They all have canonical semirings that 

are not rings. It would be interesting to know whether there exist theories of 

unification type zero for which the canonical semi ring is a ring. Since every 

semi ring can be obtained from a commutative/monoidal theory this question can 

be posed in purely algebraic terms: is there a ring such that the set of solutions 

for some system of homogeneous linear equations is not finitely generated? 

It is not known whether there exists a unitary or finitary equational theory 

that is infinitary or of type zero for unification w.r.t. constants. This question has 

been raised in the context of combining theories with disjoint signatures. A com­

bination algorithm requires that problems with free constants can be solved in 

the single theories. We can reformulate the corresponding question for commuta­

tive/monoidal theories as an algebraic problem: does there exist a semiring such 

that for every system of homogeneous equations the set of solutions is a finitely 

generated right module, but there is a system of inhomogeneous equations such 

that the corresponding set of solutions is not a finite union of cosets? Given the 

substantial body of results in linear algebra, it is conceivable to find a semiring 

satisfying this condition. Such a semi ring would then give us an example of an 

equational theory with the above property. 
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