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We present a physical interpretation of machine learning functions, opening up the possibility to control

properties of statistical systems via the inclusion of these functions in Hamiltonians. In particular, we include

the predictive function of a neural network, designed for phase classification, as a conjugate variable coupled to

an external field within the Hamiltonian of a system. Results in the two-dimensional Ising model evidence that

the field can induce an order-disorder phase transition by breaking or restoring the symmetry, in contrast with

the field of the conventional order parameter which causes explicit symmetry breaking. The critical behavior is

then studied by proposing a Hamiltonian-agnostic reweighting approach and forming a renormalization group

mapping on quantities derived from the neural network. Accurate estimates of the critical point and of the critical

exponents related to the operators that govern the divergence of the correlation length are provided. We conclude

by discussing how the method provides an essential step toward bridging machine learning and physics.
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I. INTRODUCTION

At the heart of our understanding of phase transitions lies

a mathematical apparatus called the renormalization group

[1–6]. Central concepts behind its application are those of

scale invariance and universality: The former relates to the

observation that at criticality the considered phenomena can

be described by a scale-invariant theory and the latter to the

notion that systems seemingly unrelated in their microscopic

descriptions have a large-scale behavior that is governed by an

identical set of relevant operators. Computational frameworks

of the renormalization group [7,8] have seen resounding suc-

cess in condensed matter systems [9–12] and lattice field

theories [13–15].

Recently, deep learning [16], which pertains to a class

of machine learning methods that progressively extract hi-

erarchical structures in data, has impacted certain aspects

of computational science. Artificial neural networks, con-

sisting of multiple layers, have been efficiently applied in

various research fields, including particle physics and cos-

mology as well as statistical mechanics. For a recent review

see Refs. [17,18]. Notable examples include the use of neu-

ral networks to study phase transitions [19–25] and quantum
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many-body systems [26], while investigations at the intersec-

tion of machine learning and the renormalization group have

recently emerged [27–31]. In consequence, an in-depth un-

derstanding of the underlying mechanics of machine learning

algorithms, as well as a simultaneous advancement of efficient

ways to implement them in physical problems, is a crucial step

to be undertaken by physicists [32].

In this paper, a physical interpretation of machine learning

is presented. In particular, we consider the predictive function

of a neural network, designed for phase classification, as a

conjugate variable coupled to an external field, and introduce

it as a term in the Hamiltonian of a system. Given this formu-

lation, we propose reweighting that is agnostic to the original

Hamiltonian to explore if the external field generates a richer

structure than the one associated with the conventional order

parameter, and if it can induce a phase transition by breaking

or restoring the system’s symmetry. The critical behavior can

then be investigated using histogram-reweighted extrapola-

tions from configurations obtained in one phase and without

knowledge of the Hamiltonian.

To study the phase transition, we propose a real-space

renormalization group transformation that is formulated on

machine learning quantities. In particular, a mapping is es-

tablished between an original and a rescaled system using the

neural network function and its field, overcoming the need to

rely on observables related to the original Hamiltonian. We

then explore, based on minimally sized lattices, its capability

to locate the critical fixed point and to extract the operators

of the renormalization group transformation. The entirety of

critical exponents can then be obtained using scaling relations,

and a complete study of the phase transition can be conducted.

We validate our proposal in the two-dimensional Ising

model using quantities derived from the machine learning
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FIG. 1. The architecture of the fully connected neural network. A renormalization group mapping is established between an original and a

rescaled system based on the predictive function of the neural network.

algorithm. By giving a physical interpretation to the function

of a neural network as a Hamiltonian term, we explore the

effect of the coupled field on the considered system, demon-

strate that it can break or restore the reflection symmetry by

inducing a phase transition, and extract with high accuracy the

location of the critical inverse temperature and the operators

of the renormalization group transformation that govern the

divergence of the correlation length.

II. NEURAL NETWORKS AS HAMILTONIAN TERMS

We consider a statistical system, such as the Ising model

(see Appendix A), which is described by a Hamiltonian E .

The equilibrium occupation probabilities of the system are of

Boltzmann form and are given by

pσ =
exp[−βEσ ]

∑

σ exp[−βEσ ]
, (1)

where β is the inverse temperature, σ a state of the system, and

Z =
∑

σ exp[−βEσ ] the partition function. When the system

is in equilibrium, the expectation value of an arbitrary observ-

able O is

〈O〉 =
∑

σ Oσ exp[−βEσ ]
∑

σ exp[−βEσ ]
. (2)

After a neural network is trained on a system for phase

classification (see Appendix B and Fig. 1), the learned neural

network function f (·) can be applied to a configuration σ ,

converting fσ into a statistical mechanical observable with an

associated Boltzmann weight [33]. In addition, we consider

fσ as equivalent to the conditional probability fσ ≡ Pb
σ that a

configuration belongs in the broken-symmetry phase. Conse-

quently, fσ is an intensive quantity bound between [0,1] and

since it has no dependence on the size of the system, we can

multiply it with the volume V and recast V fσ as an extensive

property.

We are now able to investigate the extensive neural net-

work function V f by introducing it in the Hamiltonian of

the system. Fields that interact with a system have conjugate

variables which represent the response of the system to the

perturbation of the corresponding field. We therefore consider

V f as a conjugate variable that couples to an external field Y

and define a modified Hamiltonian:

EY = E − V f Y. (3)

The expectation value of the neural network function can

then be expressed as a derivative of the modified partition

function ZY in terms of the field:

〈 f 〉 =
1

βV

∂ ln ZY

∂Y
=

∑

σ fσ exp[−βEσ + βV fσY ]
∑

σ exp[−βEσ + βV fσY ]
. (4)

Setting the neural network field Y to zero results in the

standard definition of Eq. (2). Nevertheless, a derivation of

Eq. (4) in terms of the field gives

χ f =
∂〈 f 〉
∂Y

= βV (〈 f 2〉 − 〈 f 〉2). (5)

The quantity χ f is recognized as a susceptibility. It is

a measure of the response of the predictive function f to

changes in the neural network field Y . Consequently, the

opportunity to study the effect of a nonzero field Y �= 0 in

the statistical system is now available. One way to achieve

this is to conduct Monte Carlo sampling using the modified

Hamiltonian of Eq. (3) to obtain configurations of this mod-

ified system. However, an alternative option that overcomes

the need for sampling is the use of histogram reweighting

[34,35], where machine learning derived observables can also

be reweighted in parameter space [33].

III. SYMMETRY BREAKING AND RESTORATION

Consider a set of N obtained configurations σi from a sys-

tem whose explicit form of the Hamiltonian E is not known.

These configurations have been drawn from an equilibrium

distribution, described by Eq. (1), and can be utilized with

reweighting to predict the behavior of the modified system

when the neural network field Y is set to nonzero-values.

To achieve this, we define the expectation value for an ar-

bitrary observable O, estimated during a Markov chain Monte

Carlo simulation, in the modified system that we aim to sam-

ple,

〈O〉 =
∑N

i=1 Oσi
p̃−1

σi
exp[−βEσi

+ βV fσi
Y ]

∑N
i=1 p̃−1

σi
exp[−βEσi

+ βV fσi
Y ]

, (6)

where p̃ are the sampling probabilities of the equilibrium dis-

tribution. The probabilities p of the original system, defined

in Eq. (1), can be substituted for p̃σi
to obtain

〈O〉 =
∑N

i=1 Oσi
exp[βV fσi

Y ]
∑N

i=1 exp[βV fσi
Y ]

, (7)

Using Eq. (7), one can calculate the expectation value of

an observable for a modified system with a nonzero neural

network field Y �= 0 by using configurations of the original
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FIG. 2. Mean neural network function 〈 f 〉 versus external field Y

at inverse temperature β = 0.43, 0, 440687, 0.45 (right to left). The

statistical uncertainty is comparable with the width of the lines.

system sampled at inverse temperature β and with zero field

Y = 0. Before investigating the effect of Y �= 0 to machine

learning devised observables, we recall that the function f has

emerged by training the neural network on obtained configu-

rations, where no knowledge about the explicit form of the

Hamiltonian is introduced. As a result, both Eq. (7) and the

function f have no immediate dependence on the Hamiltonian

and the opportunity to conduct reweighting that is Hamilto-

nian agnostic is present.

For the case of the neural network function f , results that

have been obtained using Eq. (7) can be seen in Fig. 2. A

two-dimensional Ising model of size L = 64 at each dimen-

sion is simulated at inverse temperatures β = 0.43 in the

symmetric phase, β = 0.440687 in the known inverse critical

temperature and β = 0.45 in the broken-symmetry phase. We

observe that regardless of the phase that the system is in,

positive and negative values of the external field Y drive the

system toward the broken-symmetry or the symmetric phase,

respectively. To gain further insights, we recall that the neural

network function is correlated with the probability Ps that a

configuration is associated with the symmetric phase through

f ≡ Pb = 1 − Ps. Consequently, the associated field which is

coupled to f is anticipated to have the observed behavior.

To measure the response of the predictive function f to

changes in the field, we calculate the susceptibility χ f , which

is depicted in Fig. 3. We note that χ f has maximum values,

evidencing the crossing of a phase transition. The results

indicate that the field can induce an order-disorder phase

transition in the Ising model by breaking or restoring the

FIG. 3. Mean susceptibility of the neural network func-

tion 〈χ f 〉 versus external field Y at inverse temperature β =
0.43, 0, 440687, 0.45 (right to left). The statistical uncertainty is

comparable with the width of the lines.

FIG. 4. Mean neural network function 〈 f 〉 versus inverse temper-

ature β for an original and a rescaled system of size L = L′ = 32.

symmetry of the system. This is in contrast with the external

field associated with the conventional order parameter (the

magnetization) that, irrespective of its sign, induces an explicit

breaking of the symmetry. Based on universality, the emerging

phase transition is assumed to be governed by the same rele-

vant operators and the critical behavior of the neural network

field can now be studied with the renormalization group.

IV. RENORMALIZATION GROUP:

LOCATING THE CRITICAL FIXED POINT

We consider a configuration of an Ising model that has

been obtained at a specific inverse temperature β and has an

emerged correlation length ξ . By applying the blocking proce-

dure with the majority rule and a rescaling factor of b = 2 (see

Appendix C), the reduction in the lattice size L′ = L/b will

also induce an analogous reduction in the given correlation

length:

ξ ′ =
ξ

b
. (8)

The correlation length ξ is a quantity that emerges dy-

namically when the system is approaching the critical point

β ≈ βc and is therefore dependent on the value of the inverse

temperature ξ (β ). The rescaled system has a reduced correla-

tion length ξ ′ and is, consequently, representative of an Ising

model at a different inverse temperature, with ξ ′(β ′). At the

critical fixed point β ′ = β = βc the correlation length in the

thermodynamic limit ξ (βc, L = ∞) diverges, and intensive

quantities of the original and the rescaled system become

equal.

This opens up the opportunity to use an observable derived

from a machine learning algorithm to locate the critical fixed

point. In particular, we consider at β = βc, the neural network

function f which has been expressed as a statistical me-

chanical observable and is therefore dependent on the inverse

temperature:

f (βc) = f ′(βc). (9)

In Fig. 4, the predictive function f has been drawn for

an original and a rescaled system. We recall that, under the

assumption that configurations of the rescaled system appear

with the Boltzmann probabilities of the original Ising Hamil-

tonian, observables of the rescaled system can be reweighted

as observables of the original [36]. We note that the two

lines cross at β
f

c ≈ 0.44055, yielding a first estimate of the
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FIG. 5. Rescaled inverse temperature β ′ versus inverse tempera-

ture β. The intersection with g(x) = x gives the critical fixed point

β = β ′ = βc. The dashed lines adjacent to the solid line indicate the

statistical uncertainty.

location of the critical inverse temperature. The results are ob-

tained using reweighting on a Monte Carlo data set which has

been simulated near the known inverse critical temperature

βc ≈ 0.440687. When the inverse critical temperature isn’t

known, it can be estimated by iterating the same procedure

until convergence [7,36]. Given this knowledge, the operators

and the critical fixed point of the renormalization group trans-

formation can then be calculated in a quantitative manner.

V. EXTRACTING OPERATORS OF THE

RENORMALIZATION GROUP

The original and the rescaled systems are located at inverse

temperatures β and β ′, and their neural network functions are,

therefore, related through

f (β ′) = f ′(β ). (10)

For the case of the inverse critical temperature, Eq. (10) re-

duces to Eq. (9). We are now able to form, based on Eq. (10), a

renormalization group mapping that associates the two inverse

temperatures (see Fig. 1):

β ′ = f −1( f ′(β )). (11)

The correlation length then diverges in the thermodynamic

limit according to relations ξ ∼ |t |−ν and ξ ′ ∼ |t ′|−ν for an

original and a rescaled system, respectively, where t = (βc −
β )/βc is the reduced inverse temperature. Dividing the two

equations, cf. Eq. (8), we obtain

(

t

t ′

)−ν

= b. (12)

The renormalization group mapping is then linearized

through a Taylor expansion to leading order in the proximity

of the fixed point [37] to obtain

βc − β ′ = (βc − β )
dβ ′

dβ

∣

∣

∣

∣

βc

. (13)

By substituting into Eq. (12), we are able to calculate the

correlation length exponent:

ν =
ln b

ln
dβ ′

dβ

∣

∣

βc

. (14)

FIG. 6. Rescaled field Y ′ versus original field Y at β =
0.440687. The dashed lines indicate the statistical uncertainty.

In Fig. 5, results based on Eq. (11) are depicted using

Hamiltonian-dependent reweighting on the inverse tempera-

ture [33]. We obtain an estimate of the critical fixed point βc =
0.44063(21) and the correlation length exponent ν = 1.01(2).

Since the neural network field Y induces a phase transition

in the system, it is bound to affect the correlation length.

Another critical exponent θY can then be defined when the

field converges to zero at the critical fixed point:

ξ ∼ |Y |−θY . (15)

Following an analogous derivation and formulating a map-

ping Y ′ = f −1( f ′(Y )) for the field, the corresponding critical

exponent is then calculated through

θY =
ln b

ln dY ′

dY

∣

∣

Y =0

. (16)

Figure 6 shows the results for the case of the neural

network field, where we obtain the value of the critical expo-

nent θY = 0.534(3), using Hamiltonian-agnostic reweighting

based on Eq. (7).

The phase transition of the Ising model is described in

completeness based on two relevant operators ν and θ . The

exponent θ governs the divergence of the correlation length in

terms of the external field h that is coupled to the conventional

order parameter. We note that the predictive function f is

reminiscent of an effective order parameter (see Fig. 2). We

find that the numerical value of the exponent θY agrees within

statistical errors with θ = 8/15. We hence conclude that Y

couples to the same relevant operator as the external magnetic

field. The results are summarized in Table I and the remaining

critical exponents can be calculated through scaling relations

(see Appendix A).

We emphasize that the operators and the critical fixed

point have been calculated using observables derived from the

neural network implementation and their reweighted extrapo-

lations where no explicit information about the symmetries of

the Hamiltonian was introduced.

TABLE I. Estimates for the critical exponents ν, θY and the

critical fixed point βc of the two-dimensional Ising model.

βc ν θY , θ

RG+NN 0.44063(21) 1.01(2) θY = 0.534(3)

Exact ln(1 +
√

2)/2 1 θ = 8/15
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VI. CONCLUSIONS

The inclusion of the predictive function in the Hamiltonian

enables the calculation of a relevant operator, namely, the

magnetic field exponent θ , that was previously inaccessible

through supervised machine learning methods which are ag-

nostic to the symmetries of the system. The application of

a renormalization group transformation diminishes finite-size

effects [36] and a highly accurate calculation of the critical

fixed point and the relevant operators of the two-dimensional

Ising model is conducted on minimally sized lattices. The

results, obtained by one iteration of a spin-blocking trans-

formation, are comparable with traditional renormalization

group techniques [7], with the added benefit that the method

is agnostic to the Hamiltonian of the system and can therefore

be implemented in cases where an order parameter is absent

or unknown [19]. When knowledge of the Hamiltonian is

included in the calculations, the possibility to investigate the

contribution of the introduced machine learning term in the

calculation of critical exponents within the framework of the

Monte Carlo renormalization group [7] additionally exists.

Furthermore, the method extends reweighting, a tech-

nique that is applicable to a wide range of ensembles [34],

by introducing a Hamiltonian-agnostic approach to extrapo-

late machine learning quantities in parameter space without

requiring any knowledge about the energy of the system.

Predictive functions have been successfully constructed in

cases of first- and second-order phase transitions for spin

models and quantum field theories [38]. As the proposed

method only requires a predictive function, and no knowl-

edge about the Hamiltonian [see Eq. (7)], there exists no

a priori argument that forbids the method in being applied

to a wide range of systems, across different ensembles. It

is therefore anticipated to be applicable in phase transitions

of systems simulated in ensembles such as the canonical,

grand-canonical, isothermal-isobaric, and quantum Monte

Carlo simulations across systems in statistical mechanics,

condensed matter physics, and lattice field theories.

Machine learning can become physically interpretable by

being introduced as a term in the Hamiltonian and numerous

research directions can be anticipated. Any machine learning

function can, in principle, be instilled within Hamiltonians to

control properties of a system, such as to induce symmetry

breaking or symmetry restoration. The possibility to include

a function learned from a simple model to study a compli-

cated one exists [38]. Most importantly, by using Monte Carlo

simulations to sample configurations of modified systems that

include neural network functions, an in-depth understanding

of the underlying mechanics of machine learning can be ob-

tained.

In conclusion, by including machine learning as a term in

the Hamiltonian, an essential step toward bridging machine

learning and physics is established, one that could potentially

alter our understanding of machine learning algorithms and

their effects on systems.
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APPENDIX A: THE ISING MODEL

We consider the two-dimensional Ising model on a square

lattice which is described by the Hamiltonian,

E = −J
∑

〈i j〉

sis j − h
∑

i

si, (A1)

where 〈i j〉 is a sum over nearest-neighbor interactions, J is

the coupling constant which is set to one, and h the external

magnetic field which is set to zero. The system undergoes a

second-order phase transition at the critical inverse tempera-

ture βc:

βc = 1
2

ln(1 +
√

2) ≈ 0.440687. (A2)

The order parameter of the Ising model is the mag-

netization. We often consider the absolute magnetization,

normalized by the volume V = L × L of the system:

m =
1

V

∣

∣

∣

∑

i

si

∣

∣

∣
. (A3)

The fluctuations of the magnetization are equivalent to the

magnetic susceptibility, defined as

χ = βV (〈m2〉 − 〈m〉2). (A4)

To measure the distance from the critical point, a dimen-

sionless reduced inverse temperature is defined:

t =
βc − β

βc

. (A5)

As the system approaches the critical temperature β ≈ βc,

finite-size effects dominate and fluctuations, such as the mag-

netic susceptibility χ , have maximum values which act as

phase transition indicators.

The phase transition of the Ising model is described in com-

pleteness by two relevant operators that govern the divergence

of the correlation length. One is the critical exponent ν which

is defined via

ξ ∼ |t |−ν (A6)

and the second one is the critical exponent θ which is given

through

ξ ∼ |h|−θ , (A7)

where h is the external magnetic field. Equation (A7) is valid

when β = βc and h → 0.
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Given the two relevant operators ν and θ , the critical ex-

ponents that govern the divergence of the specific heat (α),

magnetization (β (m)), and magnetic susceptibility (γ ) can then

be calculated through scaling relations:

α = 2 − νd, (A8)

β (m) = ν

[

d −
1

θ

]

, (A9)

γ = ν

[

2

θ
− d

]

, (A10)

δ =
1

dθ − 1
, (A11)

where d = 2 is the dimensionality of the system.

APPENDIX B: NEURAL NETWORK ARCHITECTURE

AND SIMULATION DETAILS

The neural network architecture is comprised of a fully

connected layer (FC1) with a rectified linear unit (ReLU) non-

linear function, defined as k(x) = max(0, x). The result is then

passed to a second fully connected layer (FC2) with 32 units

and a ReLU function, and is subsequently forwarded to a third

fully connected (FC3) with two units and a softmax function.

The training is conducted based on the Adam algorithm with

a learning rate of 10−4 and a batch size of 8. The architecture

is implemented with TensorFlow and the Keras library.

Configurations are sampled with Markov chain Monte

Carlo simulations using the Wolff algorithm [39] and are

chosen to be minimally correlated. The data set is com-

prised of 1000 configurations per each inverse temperature,

where 100 have been chosen to create a validation set.

Specifically, the training range chosen to sample configura-

tions is β = 0.27, . . . , 0.36 in the symmetric phase and β =
0.52, . . . , 0.61 in the broken-symmetry phase with a step size

of 0.01. The architecture has been optimized on the Ising

model based on the values of the training and the validation

loss.

APPENDIX C: THE BLOCKING PROCEDURE

A common choice of a transformation for the Ising model

is the blocking procedure with a rescaling factor of b = 2 and

FIG. 7. An illustration of the blocking procedure with a rescaling

factor of b = 2 and the majority rule. For the two cases at the bottom,

the choice of the rescaled degree of freedom was made arbitrarily.

the majority rule. To apply the blocking procedure, the lattice

structure is initially separated into blocks of size b × b. Within

each block of the original system, degrees of freedom that

have distinct values are counted and a majority rule defines

the rescaled degree of freedom. When the counted degrees

are equal, the choice is made arbitrarily. For an illustration

of all possible outcomes, see Fig. 7. The application of a

blocking procedure preserves the large-scale information of

a configuration and we assume that it results in a rescaled

system of size L′ = L/b that is a valid representation of an

Ising model [36].

APPENDIX D: BINNING ERROR ANALYSIS

The error analysis is conducted with the binning method

to address statistical errors associated with the finite Monte

Carlo data sets. In particular, each Monte Carlo data set,

comprised of 10 000 minimally correlated configurations, is

separated into n = 10 groups. Results are calculated using the

data in each group. The standard deviation is then given by

σx =
√

1

n − 1
(x2 − x2). (D1)
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