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Abstract: Ant colony optimization is a metaheuristic that is mainly used for solving hard combi-
natorial optimization problems. The distinctive feature of ant colony optimization is a learning
mechanism that is based on learning from positive examples. This is also the case in other learning-
based metaheuristics such as evolutionary algorithms and particle swarm optimization. Examples
from nature, however, indicate that negative learning—in addition to positive learning—can ben-
eficially be used for certain purposes. Several research papers have explored this topic over the
last decades in the context of ant colony optimization, mostly with limited success. In this work
we present and study an alternative mechanism making use of mathematical programming for the
incorporation of negative learning in ant colony optimization. Moreover, we compare our proposal
to some well-known existing negative learning approaches from the related literature. Our study
considers two classical combinatorial optimization problems: the minimum dominating set problem
and the multi dimensional knapsack problem. In both cases we are able to show that our approach
significantly improves over standard ant colony optimization and over the competing negative
learning mechanisms from the literature.

Keywords: ant colony optimization; mathematical programming; negative learning; minimum
dominating set; multi-dimensional knapsack problem

1. Introduction

Metaheuristics [1,2] are approximate techniques for optimization. Each metaheuristic
was originally introduced for a certain type of optimization problem, for example, function
optimization or combinatorial optimization (CO). However, nowadays one can find a meta-
heuristic variant for different types of optimization problems. Ant colony optimization
(ACO) [3,4] is a metaheuristic algorithm originally introduced for solving CO problems.
The inspiration of ACO was the foraging behavior of natural ant colonies and, in particular,
the way in which ant colonies find short paths between their ant hive and food sources.
Any ACO algorithm works roughly as follows. At each iteration, a pre-defined number
of artificial ants derive solutions to the considered optimization problem. This is done in
a probabilistic way, making use of two types of information: (1) greedy information and
(2) pheromone values. Then, some of these solutions—typically the best ones—are used
to update the pheromone values. This is done with the aim of changing the probability
distribution used for generating solutions such that high-quality solutions can be found.
In other words, ACO is an optimization technique based on learning from positive exam-
ples, henceforth called positive learning. Most of the work on ACO algorithms from the
literature focuses on solving CO problems, such as scheduling problems [5], routing and
path-planning problems [6,7], problems related to transportation [8], and feature selec-
tion [9]. Several well-known ACO variants were introduced in the literature over the years,
including theMAX -MIN Ant System (MMAS) [10], Ant Colony System (ACS) [11], and
the Rank-Based Ant System [12], just to name a few of the most important ones.
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As already mentioned above, ACO is strongly based on positive learning, which also
holds for most other metaheuristics based on learning. By means of positive learning the
algorithm tries to identify those solution components that are necessary for assembling
high-quality solutions. Nevertheless, there is evidence in nature that learning from negative
examples, henceforth called negative learning, can play a significant role in biological self-
organizing systems:

• Pharaoh ants (Monomorium pharaonis), for example, use negative trail pheromone a
‘no entry’ signals in order to mark unrewarding foraging paths [13,14].

• A different type of negative feedback caused by crowding at the food source was
detected in colonies of Lasius niger [15]. This negative feedback enables the colony
to maintain a flexible foraging system despite the strong positive feedback by the
pheromone trails.

• Another example concerns the use of anti-pheromone hydrocarbons used by male
tsetse flies. They play an important role in tsetse communications [16].

• Honeybees (Apis mellifera ligustica) were shown to mark flowers with scent and to
strongly reject all recently visited flowers [17].

Based on these examples, Schoonderwoerd et al. [18] stated already in 1997 that it
might be possible to improve ACOs’ performance with an additional mechanism that tries
to identify undesirable components with the help of a negative feedback mechanisms.

1.1. Existing Approaches

In fact, the ACO research community has made several attempts to design such a
negative learning mechanism. Maniezzo [19] and Cordón et al. [20] were presumably the
first ones to make use of an active decrease of pheromone values associated to solution
components appearing in low-quality solutions. Montgomery and Randall [21] proposed
three anti-pheromone strategies that were partially inspired by previous works that made
use of several types of pheromones; see, for example, [22]. In their first approach, the
pheromone values of those solution components that belong to the worst solution at each
iteration are decreased. Their second approach—in addition to the standard pheromone—
makes explicit use of negative pheromones. Each ant has a specific bias—different to
the one of the other ants—towards each of the two types of pheromone. Finally, their
third approach uses a certain number of ants at each iteration in order to explore the use
of solution components with lower pheromone values, without introducing dedicated
anti-pheromones. Unfortunately, the presented experimental evaluation did not allow
clear conclusions about a potential advantage of any of the three strategies over standard
ACO. Different extensions of the approaches from [21] were explored by Simons and
Smith [23]. The authors admitted, however, that nearly all their approaches proved to be
counter-intuitive. Their only idea that showed to be useful to some extent was to make use
of a rather high amount of anti-pheromone at the early stages of the search process.

In [24], Rojas-Morales et al. presented an ACO variant for the multi dimensional
knapsack problem based on opposite learning. The first algorithm phase serves for build-
ing anti-pheromone values with the intention to enable the algorithm during the second
phase to avoid solution components that lead to low-quality solutions despite being locally
attractive, due to a rather high heuristic value. Unfortunately, no consistent improvement
over standard ACO could be observed in the results. In addition, earlier algorithm variants
based on opposition-based learning were tested on four rather small TSP instances [25].
Another application to the TSP was proposed in Ramos et al. [26], where they proposed
a method that uses a second-order coevolved compromise between positive and nega-
tive feedback. According to the authors, their method achieves better results than single
positive feedback systems in the context of the TSP. Finally, the most successful strand
of work on using negative learning in ACO deals with the application to constraint sat-
isfaction problems (CSPs). Independently of each other, Ye et al. [27] and Masukane and
Mizuno [28,29] proposed negative feedback strategies for ACO algorithms in the context of
CSPs. Both approaches make use of negative pheromone values in addition to the standard
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pheromone values. Moreover, in both works the negative pheromone values are updated
at each iteration with the worst solution(s) generated at that iteration. The difference is
basically to be found in the way in which the negative pheromone values are used for
generating new solutions. Finally, we would also like to mention a very recent negative
learning approach from the field of multi-objective optimization [30].

1.2. Contribution and General Idea

When devising a negative feedback mechanism there are fundamentally two ques-
tions to be answered: (1) how to identify those solution components that should receive a
negative feedback, and (2) how exactly to make use of the negative feedback. Concerning
the first question, it can be observed that all the existing approaches mentioned in the pre-
vious section try to identify low-quality solution components on the basis of the solutions
generated by the ACO algorithm itself. In contrast, the main idea of this article is to make
use of an additional optimization technique for identifying these components. In particular,
we test two possibilities in this work. The first one is the application of mathematical pro-
gramming solvers—we used CPLEX—for solving opportunely defined sub-instances of the
tackled problem instance. Second, we tested the use of an additional ACO algorithm that
works independently of the main algorithm for solving the before-mentioned sub-instances.

We have tested this mechanism in a preliminary work [31] by applying it to the so-
called capacitated minimum dominating set problem (CapMDS), with excellent results.
In this extended work we first describe the mechanism in general terms in the context
of subset selection problems, which is a large class of CO problems. Subsequently, we
demonstrate its application to two classical NP-hard combinatorial optimization problems:
the minimum dominating set (MDS) problem [32] and the multi dimensional knapsack
problem (MDKP) [33]. Our results show that, even though positive learning remains to be
the most important form of learning, the incorporation of negative learning improves the
obtained results significantly for subsets of problem instances with certain characteristics.
Moreover, for comparison purposes we implement several negative learning approaches
introduced for ACO in the related literature. The obtained results show that our mechanism
outperforms all of them with statistical significance.

2. Preliminaries and Problem Definitions

Even though the negative learning mechanism presented in this work is general and
can be incorporated into ACO algorithms for any CO problem, for the sake of simplicity
this study is conducted in the context of subset selection problems. This important class of
CO problems can formally be defined as follows:

1. Set C is a finite set of n items.
2. Function F : 2C 7→ {TRUE, FALSE} decides if a subset S ⊆ C is a feasible solution.

Henceforth, let X ⊆ 2C be the set of all feasible solutions.
3. The objective function f : X 7→ R assigns a value to each feasible solution.

The optimization goal might be minimization or maximization. Numerous well-
known CO problems can be stated in terms of a subset selection problem. A prominent
example is the symmetric traveling salesman problem (TSP). Hereby, the edges E of the
complete TSP graph G = (V, E) correspond to item set C. Moreover, a subset S ⊆ E is
evaluated by function F as a feasible solution if and only if the edges from S define a
Hamiltonian cycle in G. Finally, given a feasible solution S, the objective function value
f (S) of S is calculated as the sum of the distances of all edges from S. The optimization
goal in the case of the TSP is minimization. In the following we explain both the MDS
problem and the MDKP in terms of subset selection problems.

2.1. Minimum Dominating Set

The classical MDS problem—which is NP-hard—can be stated as follows. Given is an
undirected graph G = (C, E), with C being the set of vertices and E the set of edges. Given
a vertex ci ∈ C, N(ci) ⊂ C denotes the neighborhood of ci in G. A subset S ⊆ C is called



Mathematics 2021, 9, 361 4 of 23

a dominating set if and only if for each vertex ci ∈ C the following holds: (1) ci ∈ S or (2)
there is at least one cj ∈ N(ci) with cj ∈ S. The MDS requires finding a feasible solution of
minimum cardinality. This problem is obviously a subset selection problem in which C is
the set of items, F(S) for S ⊆ C evaluates to TRUE if and only if S is a dominating set of G,
and f (S) := |S|. A standard integer linear programming (ILP) model for the MDS problem
can be stated as follows.

minimize ∑
ci∈C

xi (1)

subject to:

∑
cj∈N(ci)

xj ≥ 1− xi ∀ci ∈ C (2)

xi ∈ {0, 1} ∀ci ∈ C (3)

The model consists of a binary variable xi for each vertex ci ∈ C. The objective function
counts the selected vertices, and the constraints (2) ensure that each vertex either belongs
to the solution or has, at least, one neighbor that forms part of the solution. In the literature,
there are many variants of the MDS problem. Examples include the minimum connected
dominating set problem [34], the minimum total dominating set problem [35] and the
minimum vertex weight dominating set problem [36]. The currently best metaheuristic
approach for solving the MDS problem is a two-goal local search with inference rules
from [37].

2.2. Multi Dimensional Knapsack Problem

The MDKP is also a classical NP-hard CO problem that is often used as a test case
for new algorithmic proposals (see, for example, [38–40]). The problem can be stated as
follows. Given is (1) a set C={c1, . . . , cn} of n items and (2) a number of m resources. The
availability of each resource k is limited by capk > 0, which is also called the capacity
of resource k. Moreover, each item ci ∈ C consumes a fixed amount ri,k ≥ 0 from each
resource k = 1, . . . , m (resource consumption). Additionally, each item ci ∈ C comes with a
profit pi > 0.

A candidate solution S ⊆ C is a valid solution if and only if, concerning all resources,
the total amount consumed by the items in S does not exceed the resource capacities. In
other words, it is required that ∑ci∈S ri,k ≤ capk for all k = 1, . . . , m. Moreover, a valid
solution S is labeled non-extensible, if no ci ∈ C \ S can be added to S without losing the
property of being a valid solution. The problem requires to find a valid solution S of
maximum total profit (∑ci∈S pi). The standard ILP for the MDKP is stated in the following.

maximize ∑
ci∈C

pi · xi (4)

subject to:

∑
ci∈C

ri,k · xi ≤ capk ∀k = 1, . . . , m (5)

xi ∈ {0, 1} ∀ci ∈ C (6)

This model is built on a binary variable xi for each item ci ∈ C. Constraints (5) are
called the knapsack constraints. In general, the literature offers very successful exact
solution techniques; see, for example, [41–43]. However, devising heuristic solvers still
remains to be a challenge. Among numerous metaheuristic proposals for the MDKP
problem, the currently best performing ones are the DQPSO algorithm from [44] and the
TPTEA algorithm from [45].
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3. MMAS: The Baseline Algorithm

Many of the negative learning approaches for ACO cited in Section 1.1 were introduced
for different ACO variants. In order to ensure a fair comparison, we add both our own
proposal as well as the approaches from the literature to the same standard ACO algorithm:
MAX -MIN Ant System (MMAS) in the hypercube framework [46], which is one of
the most-used ACO versions from the last decade. In the following we first describe the
standard MMAS algorithm in the hypercube framework for subset selection problems. This
will be our baseline algorithm. Subsequently we describe the way in which the negative
learning proposal from this paper and the chosen negative learning proposals from the
literature are added to this baseline algorithm.

3.1. MMAS in the Hypercube Framework

The pheromone model T in the context of subset selection problems consists of a
pheromone value τi ≥ 0 for each item ci ∈ C, where C is the complete set of items.
Remember that, in the context of the MDS, C is the set of vertices of the input graph,
while C is the set of items in the case of the MDKP. The MMAS algorithm maintains three
solutions throughout a run:

1. Sib ⊆ C: the best solution generated at the current iteration, also called the iteration-
best solution.

2. Srb ⊆ C: the best solution generated since the last restart of the algorithm, also called
the restart-best solution.

3. Sbs f ⊆ C: the best-so-far solution, that is, the best solution found since the start of
the algorithm.

Moreover, the algorithm makes use of a Boolean control variable
bs_update ∈ {TRUE, FALSE} and the convergence factor cf ∈ [0, 1] for deciding on the
pheromone update mechanism and on the question whether or not to restart the algorithm.
At the start of the algorithm, solutions Sbs f and Srb are initialized to NULL, the convergence
factor is set to zero, bs_update is set to FALSE and the pheromone values are all initilized to
0.5 in function InitializePheromoneValues(T ); see lines 2 and 3 of Algorithm 1. Then, at each
iteration, na solutions are probabilistically generated in function Construct_Solution(T ),
based on pheromone information and on greedy information. The construction of solutions
will be outlined in detail for both problems (MDS and MDKP) below. The generated
solutions are stored in set S iter, and the best one from S iter is stored as Sib; see lines 5–10 of
Algorithm 1. Then, the restart-best and best-so-far solutions—Srb and Sbs f —are updated
with Sib, if appropriate; lines 11 and 12. Afterward, the pheromone update is conducted
in function ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f ) and the new value for
the convergence factor cf is computed in function ComputeConvergenceFactor(T ); lines 13
and 14. Finally, based on the values of cf and bs_update, the algorithm might be restarted.
Such a restart consists in re-initializing all pheromone values, in setting the restart-best so-
lution Srb to NULL, and bs_update to TRUE. In the following, the function for the pheromone
update and for the calculation of the convergence factor are outlined in detail.

ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f ): the pheromone update that is
described here is the same as in any other MMAS algorithm in the hypercube framework.
First, the three solutions Sib, Srb, and Sbs f receive weights κib, κrb and κbs f , respectively. A
standard setting of these weights, depending on cf and bs_update, is provided in Table 1. It
always holds that κib + κrb + κbs f = 1. After having determined the solution weights, each
pheromone value τi is updated as follows:

τi := τi + ρ · (ξi − τi) , (7)

where
ξi := κib · ∆(Sib, ci) + κrb · ∆(Srb, ci) + κbs f · ∆(Sbs f , ci) (8)

Hereby, ρ ∈ [0, 1] is the so-called learning rate, and function ∆(S, ci) evaluates to 1 if
and only if item ci forms part of solution S. Otherwise, the function evaluates to 0. Finally,
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after conducting this update, those pheromone values that exceed τmax = 0.999 are set to
τmax, and those values that have dropped below τmin = 0.001 are set to τmin. Note that, in
this way, a complete convergence of the algorithm is avoided. Finally, note that the learning
mechanism represented by this pheromone update can clearly be labeled positive learning,
because it makes use of the best solutions found for updating the pheromone values.

Table 1. Values for weights κib, κrb, and κbs f . These values depend on the convergence factor cf and
the Boolean control variable bs_update.

bs_update = FALSE bs_update = TRUE
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs f 0 0 0 0 1

Algorithm 1 MMAS in the hypercube framework (baseline algorithm)

1: input: a problem instance with the complete item set C
2: Sbs f := NULL, Srb := NULL, cf := 0, bs_update := FALSE
3: InitializePheromoneValues(T )
4: while termination conditions not met do
5: S iter := ∅
6: for k = 1, . . . , na do
7: Sk := Construct_Solution(T )
8: S iter := S iter ∪ {Sk}
9: end for

10: Sib := best solution from S iter

11: if Sib better than Srb then Srb := Sib

12: if Sib better than Sbs f then Sbs f := Sib

13: ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbs f )
14: cf := ComputeConvergenceFactor(T )
15: if cf > 0.999 then
16: if bs_update = TRUE then
17: Srb := NULL, and bs_update := FALSE
18: InitializePheromoneValues(T )
19: else
20: bs_update := TRUE
21: end if
22: end if
23: end while
24: output: Sbs f , the best solution found by the algorithm

ComputeConvergenceFactor(T ): Just like the pheromone update, the computation of
the convergence factor is a standard procedure that works in the same way for all MMAS
algorithms in the hypercube framework:

cf := 2


 ∑

τi∈T
max{τmax − τi, τi − τmin}

|T | · (τmax − τmin)

− 0.5


Accordingly, the value of cf is zero in the case when all pheromone values are set to

0.5. The other extreme case is represented by all pheromone values having either value
τmin or τmax. In this case, cf evaluates to one. Otherwise, cf has a value between 0 and 1.
Herewith the description of all components of the baseline algorithm is completed.
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3.1.1. Solution Construction for the MDS Problem

In the following we say that, if a vertex ci is added to a solution S under construction,
then ci covers itself and all its neighbors, that is, all cj ∈ N(ci). Moreover, given a set
S ⊂ C—that is, a solution under construction—we denote by N(ci | S) ⊆ N(ci) the set
of uncovered neighbors of ci ∈ C. The solution construction mechanism is shown in
Algorithm 2. It starts with an empty solution S = ∅. Then, at each step, exactly one of the
vertices of those that do not yet form part of S or that—with respect to S—have uncovered
neighbors (C) is chosen in function ChooseFrom(C) and added to S. The choice of a vertex
in ChooseFrom(C) is done as follows. First, a probability p(ci) is calculated for each ci ∈ C:

p(ci) :=
ηi · τi

∑ck∈C ηk · τk
(9)

Hereby, ηi := |C|+ 1 is the greedy information that we used. Then, a random number
r ∈ [0, 1] is drawn. If r ≤ drate, cj (to be added to S) is selected such that p(cj) ≥ p(ci)

for all ci ∈ C. Otherwise, cj is chosen by roulette-wheel-selection based on the calculated
probabilities. Note that drate is an important parameter of the algorithm.

Algorithm 2 MDS solution construction

1: input: a graph G = (C, E)
2: S := ∅
3: C := {ci ∈ C | ci /∈ S or N(ci | S) 6= ∅}
4: while C 6= ∅ do
5: cj := ChooseFrom(C)
6: S := S ∪ {cj}
7: C := {ci ∈ C | ci /∈ S or N(ci | S) 6= ∅}
8: end while
9: output: a valid solution S

3.1.2. Solution Construction for the MDKP

As in the MDS-case, the solution construction starts with an empty solution S := ∅,
and at each construction step exactly one item cj is selected from a set C ⊆ C. The definition
of C in the case of the MDKP is as follows. An item ck ∈ C forms part of C if and only
if (1) ck /∈ S, and (2) S ∪ {ck} is a valid solution. The probability p(ci) for an item ci ∈ C
to be chosen at the current construction step is the same as in Equation (9), just that the
definition of the greedy information changes. In particular, ηi is defined as follows:

ηi :=
pi

∑m
k=1 ri,k/capk

∀ ci ∈ C. (10)

These greedy values are often called utility ratios in the related literature. Given the
probabilities, the choice of an item cj ∈ C is done exactly in the same way as outlined above
in the case of the MDS problem.

4. Adding Negative Learning to MMAS

In the following we first describe our own proposal for adding negative learning to
ACO. Subsequently, our implementations of some existing approaches from the literature
are outlined.

4.1. Our Proposal

As mentioned in the introduction, for each negative learning mechanism there are
two fundamental questions to be answered: (1) how is the negative information generated,
maintained and updated, and (2) how is this information being used.
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4.1.1. Information Maintenance

We maintain the information derived from negative learning by means of a second
pheromone model T neg, which consists of a pheromone value τ

neg
i for each item ci ∈ C. We

henceforth refer to these values as the negative pheromone values. Whenever the pheromone
values are (re-)initialized, the negative pheromone values are set to τmin, which is in
contrast to the standard pheromone values, which are set to 0.5 (see above).

4.1.2. Information Generation and Update

The generation of the information for negative learning is done by two new instruc-
tions, which are introduced between lines 9 and 10 of the baseline MMAS algorithm
(Algorithm 1):

Ssub := SolveSubinstance(S iter, cf ) (11)

S iter := S iter ∪ {Ssub} (12)

Function SolveSubinstance(S iter, cf ) merges all solutions from S iter, resulting in a sub-
set C′ ⊆ C. Then an optimization algorithm is applied to find the best-possible solution
that only consists of items from C′. In this work we have experimented with two options:

1. Option 1: Application of the ILP solver CPLEX 12.10. In the case of the MDS problem,
the ILP model from Section 2.1 is used after adding an additional constraint xi = 0
for all ci ∈ C \ C′. In the case of the MDKP, we use the ILP model from Section 2.2
after replacing all occurrences of C with C′.

2. Option 2: Application of the baseline MMAS algorithm (Algorithm 1). In the case
of both the MDS and the MDKP problem, this application of the baseline MMAS
only considers items from C′ for the construction of solutions. Moreover, this MMAS
application uses its own pheromone values, parameter settings, etc. Finally, the
best-so-far solution of this (inner) ACO is initialized with Sib.

In both options, solution Ssub—which is returned by SolveSubinstance(S iter, cf )—is
the best solution between Sib and the best solution found by the optimization algorithm
(CPLEX, respectively baseline MMAS) in the allotted computation time. This computa-
tion time is calculated on the basis of a maximum computation time (tsub CPU seconds)
and the current value of the convergence factor, which is passed to function SolveSubin-
stance(S iter, cf ) as a parameter. In particular, the allowed computation time (in seconds) is
(1− cf )tsub + 0.1cf . This means that the available computation time for solving the sub-
instance C′ decreases with an increasing convergence factor value. The rationale behind
this setting is that, when the convergence factor is low, the variance between solutions in
S iter is rather high and C′ is therefore rather large, which means that more time is necessary
to explore sub-instance C′.

The last action in function SolveSubinstance(S iter, cf ) is the update of the negative
pheromone values based on solution Ssub. This update only concerns the negative pheromone
values of those components that form part of C′. The update formula is as follows:

τ
neg
i := τ

neg
i + ρneg · (ξneg

i − τ
neg
i ) , (13)

where ρneg is the negative learning rate and ξ
neg
i = 1 if ci /∈ Ssub, resp. ξ

neg
i = 0 otherwise. In

other words, the negative pheromone value of those components that do not form part of
Ssub is increased.

4.1.3. Information Use

The negative pheromone values are used in the context of the construction of solutions.
In particular, Equation (9) is replaced by the following one:

p(ci) :=
ηi · τi · (1− τ

neg
i )

∑ck∈C ηk · τk · (1− τ
neg
k )

(14)



Mathematics 2021, 9, 361 9 of 23

In this way, those items that have accumulated a rather high negative pheromone
value (because they have not appeared in the solutions derived by CPLEX, respectively
the (inner) MMAS algorithm, to the sub-instances of previous iterations) have a decreased
probability to be chosen for solutions in the current iteration. Note that a very similiar
formula was used already in [27].

4.2. Proposals from the Literature

As mentioned before, the proposals from the literature were introduced in the context
of several different ACO versions. In order to ensure a fair comparison, we reimplemented
those proposals that we chose for comparison in the context of the baseline MMAS al-
gorithm. In particular, we implemented four different approaches, which all share the
following common feature. In addition to the iteration-best solution (Sib), the restart-best
solution (Srb) and the best-so-far solution (Sbs f ), these extensions of the baseline MMAS
algorithm maintain the iteration-worst solution (Siw), the restart-worst solution (Srw) and the
worst-so-far solution (Sws f ). As in the case of Srb and Sbs f , solutions Srw and Sws f are initial-
ized to NULL at the start of the algorithm. Then, the following three lines are introduced
after line 12 of Algorithm 1:

Siw := worst solution from S iter

if Siw worse than Srw then Srw := Siw

if Siw worse than Sws f then Sws f := Siw

The way in which these three additional solutions are used differs among the four
implemented approaches.

4.2.1. Subtractive Anti-Pheromone

This idea is adopted from [21], but has already been used in similar form in [19,20].
Our implementation of this idea is as follows. After the standard pheromone update of the
baseline MMAS algorithm (see line 13 of Algorithm 1), the following is done. First, a set B is
generated by joining the items in solutions Siw, Srw and Sws f , that is, B := Siw ∪ Srw ∪ Sws f .
Then, all those items in which the pheromone value receives an update from at least one of
the solutions Sib, Srb, or Sbs f in the current iteration are removed from B. That is:

if κib > 0 then B := B \ Sib

if κrb > 0 then B := B \ Srb

if κbs f > 0 then B := B \ Sbs f

Afterward, the following additional update is applied:

τi := γ · τi ∀ ci ∈ B (15)

In other words, the pheromone values of all those components that appear in “bad”
solutions, but who do not form part of “good” solutions, are subject to a pheromone value
decrease depending on the reduction rate γ. Finally, note that the solution construction
procedure in this variant—which is henceforth labeled ACO-SAP—is exactly the same as in
the baseline MMAS algorithm.

4.2.2. Explorer Ants

The explorer ants approach from [21]—henceforth labeled ACO-EA—is very similar
to the previously presented ACO-SAP approach. The only difference is in the construction
of solutions. This approach has an additional paramete: pexpa ∈ [0, 1], the proportion of
explorer ants. Given the number of ants (na) and pexpa , the number of explorer ants nexp

a is
calculated as follows:

nexp
a := max{1, bpexpa · nac} (16)
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At each iteration, na − nexp
a solution constructions are performed in the same way as

in the baseline MMAS algorithm. The remaining nexp
a solution constructions make use of

the following formula (instead of Equation (9) for calculating the probabilities:

p(ci) :=
ηi · (1− τi)

∑ck∈C ηk · (1− τk)
(17)

In other words, explorer ants make use of the opposite of the pheromone values for
constructing solutions.

4.2.3. Preferential Anti-Pheromone

Like our own negative learning proposal, the preferential anti-pheromone approach
from [21] makes use of an additional set T neg of pheromone values. Remember that T neg

contains a pheromone value τ
neg
i for each item ci ∈ C. These negative pheromone values

are initilized at the start of the algorithm as well as when the algorithm is restarted, to
a value of 0.5. Moreover, after the update of the standard pheromone values in line 13
of the baseline MMAS algorithm, exactly the same update is conducted for the negative
pheromone values:

τ
neg
i := τ

neg
i + ρneg · (ξneg

i − τ
neg
i ) , (18)

where
ξ

neg
i := κib · ∆(Siw, ci) + κrb · ∆(Srw, ci) + κbs f · ∆(Sws f , ci) (19)

Hereby, ρneg ∈ [0, 1] is the negative learning rate, and function ∆(S, ci) evaluates to 1 if
and only if item ci forms part of solution S. Moreover, values κib, κrb and κbs f are the same
as the ones used for the udpate of the standard pheromone values. This means that the
learning of the negative pheromone values is dependent on the dynamics of the learning
of the standard pheromone values.

The standard pheromone values and the negative pheromone values are used as fol-
lows for the construction of solutions. The probabilities for the a-th solution construction—
where a = 1, . . . , na—are determined as follows:

p(ci) :=
ηi · (λτi + (1− λ)τ

neg
i ))

∑ck∈C ηk · (λτk + (1− λ)τ
neg
k ))

, (20)

where λ := a−1
na−1 . This means that λ = 0 for the first solution construction, which means

that only the negative pheromones values are used. In the other extreme, it holds that
λ = 1 for the na-th solution construction, that is, only the standard pheromone values are
used. All other solution constructions combine both pheromone types at different rates.
Note that this preferential anti-pheromone approach is henceforth labeled ACO-PAP.

4.2.4. Second-Order Swarm Intelligence

Our implementation of the second-order swarm intelligence approach from [26]
works exactly like the ACO-PAP approach from the previous section for what concerns
the definition and the update of the negative pheromone values. However, the way in
which they are used is different. The item probabilities for the construction of solutions is
calculated by the following formula:

p(ci) :=
ηi · (τi)

α · (τneg
i )(α−1)

∑ck∈C ηk · (τk)α · (τneg
k )(α−1)

, (21)

where α ∈ [0, 1] is a parameter of the algorithm. Note that this approach is henceforth
labeled ACO2o.
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4.3. Summary of the Tested Algorithms

In addition to the baseline MMAS algorithm (henceforth simply labeled ACO), and
the four approaches from the literature (ACO-SAP, ACO-EA, ACO-PAP and ACO2o) we test
the following six versions of the negative learning mechanism proposed in this paper:

1. ACO-CPL+neg: The mechanism described in Section 4.1 using option 1 (CPLEX) for
solving sub-instances.

2. ACO-CPLneg: This algorithm is the same as ACO-CPL+neg, with the exception that
Equation (12) is not performed. This means that the algorithm does make use of
solution Ssub for additional positive learning. Studying this variant will show if, by
solely adding negative learning, the algorithm improves over the baseline ACO.

3. ACO-CPL+: This algorithm is the same as ACO-CPL+neg, apart from the fact that the
update of the negative pheromone values is not performed. In this way, the algorithm
only makes use of the additional positive learning mechanism obtained by adding
solution Ssub to S iter.

The remaining three algorithm variants are ACO-ACO+
neg, ACO-ACOneg and ACO-ACO+.

These algorithm variants are the same ones as ACO-CPL+neg, ACO-CPLneg and ACO-CPL+,
except that they make use of option 2 (baseline ACO algorithm) for solving the correspond-
ing sub-instances at each iteration.

A summary of the parameters that arise in these 11 algorithms is provided in Table 2,
together with a description of their function and the parameter value domains that were
used for parameter tuning (which will be described in Section 5.2). Moreover, an overview
on the parameters that are involved in each of the 11 algorithms is provided in Table 3.

Table 2. Summary of the parameters that arise in the considered algorithms, together with their
description and the domains considered for parameter tuning.

Parameter Description Considered Domain

na Number of solution constructions per iteration {3, 5, 10, 20}
ρ Learning rate {0.1, 0.2, . . . , 0.4, 0.5}
drate Determinism rate for solution construction {0.0, 0.1, . . . , 0.8, 0.9}
ρneg Negative learning rate {0.1, 0.2, . . . , 0.4, 0.5}
γ Reduction rate for negative pheromone values {0.1, 0.2, . . . , 0.8, 0.9}
pexpa Proportion of explorer ants {0.1, 0.2, . . . , 0.4, 0.5}
α Exponent for the pheromone values {0.01, . . . , 0.99}
tsub Maximum computation time (seconds) for sub-

instance solving
{1, 2, . . . , 9, 10}

nsub
a Number of solution constructions in the inner appli-

cation of the baseline ACO algorithm (option 2 for
solving sub-instances)

{3, 5, 10, 20}

ρsub Learning rate in the inner application of the baseline
ACO algorithm (option 2 for solving sub-instances)

{0.1, 0.2, . . . , 0.4, 0.5}

dsub
rate Determinism rate for solution construction in the in-

ner application of the baseline ACO algorithm (option
2 for solving sub-instances)

{0.0, 0.1, . . . , 0.8, 0.9}
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Table 3. Summary of the parameters that arise in each algorithm.

Parameter Algorithms
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na X X X X X X X X X X X
ρ X X X X X X X X X X X
drate X X X X X X X X X X X
ρneg X X X X X X
γ X X
pexpa

X
α X
tsub X X X X X X
nsub

a X X X
ρsub X X X
dsub

rate X X X

5. Experimental Evaluation

The experiments concerning the MDS problem were performed on a cluster of ma-
chines with two Intel® Xeon® Silver 4210 CPUs with 10 cores of 2.20 GHz and 92 Gbytes
of RAM. The MDKP experiments were conducted on a cluster of machines with Intel®

Xeon® CPU 5670 CPUs with 12 cores (2.933 GHz) and at least 32 GB RAM. For solving
the sub-instances in ACO-CPL+neg, ACO-CPLneg and ACO-CPL+ we used CPLEX 12.10 in
one-threaded mode.

5.1. Problem Instances

Concerning the MDS problem, we generated a benchmark instance set with instances
of different sizes (number of vertices n ∈ {5000, 10,000}), different densities (percentage
of all possible edges d ∈ {0.1, 0.5, 1.0, 5.0}) and different graph types (random graphs
and random geometric graphs). For each combination of n, d and graph type, 10 random
instances were generated. This makes a total of 160 problem instances.

In the case of the MDKP we used a benchmark set of 90 problem instances with
500 items from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html, ac-
cessed on 20 January 2021). This set consists of 30 instances with 5, 10, and 30 resources.
Moreover, each of these three subsets contains 10 instances with resource tightness 0.25,
0.5, and 0.75. Roughly, the higher the value of the resource tightness, the more items can be
placed in the knapsack. These 90 problem instances are generally known to be the most
difficult ones available in the literature for heuristic solvers.

5.2. Algorithm Tuning

The scientific parameter tuning tool irace [47] was used for the purpose of parameter
tuning. In particular we produced for each of the 11 algorithms (resp., algorithm versions)
exactly one parameter value set for each problem (MDS problem vs. MDKP). For the
purpose of tuning the algorithms for the MDS problem, we additionally generated for each
combination of n, d (density), and graph type exactly one random instance. In other words,
16 problem instances were used for tuning, and the tuner was given a maximal budget
of 2000 algorithm applications. In the context of tuning the algorithms for the MDKP, we
randomly selected one of the 10 problem instances for each combination of “the number of
resources” (5, 10, 30) and the instance tightness (0.25, 0.5, 0.75). Consequently, nine problem
instances were used for tuning in the case of the MDKP. Remember that the parameter
value domains considered for tuning are provided in Table 2. The parameter values that
were determined by irace for the 11 algorithms and for the two problems are provided in
Tables 4 (MDS problem) and 5 (MDKP).

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 4. Parameter values for all algorithms for solving the minimum dominating set (MDS) problem.

Parameter Algorithms
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na 3 20 20 20 3 10 10 20 10 3 3
ρ 0.4 0.1 0.1 0.5 0.1 0.2 0.5 0.4 0.5 0.1 0.2
drate 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ρneg – – 0.4 0.4 – – 0.2 0.5 – – – – – – 0.2 0.2
γ – – – – – – – – – – – – – – 0.6 0.6 – – – –
pexpa

– – – – – – – – – – – – – – – – 0.1 – – – –
α – – – – – – – – – – – – – – – – – – – – 0.96
tsub – – 8 7 6 6 7 8 – – – – – – – –
nsub

a – – – – – – – – 3 3 3 – – – – – – – –
ρsub – – – – – – – – 0.3 0.5 0.4 – – – – – – – –
dsub

rate – – – – – – – – 0.7 0.7 0.5 – – – – – – – –

Table 5. Parameter values for all algorithms for solving the multi dimensional knapsack problem
(MDKP).

Parameter Algorithms
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na 20 10 20 20 10 10 20 20 20 3 10
ρ 0.3 0.4 0.1 0.4 0.1 0.1 0.3 0.1 0.2 0.1 0.3
drate 0.7 0.1 0.7 0.4 0.6 0.7 0.8 0.8 0.8 0.8 0.9
ρneg – – 0.2 0.5 – – 0.4 0.5 – – – – – – 0.1 0.2
γ – – – – – – – – – – – – – – 0.9 0.7 – – – –
pexpa

– – – – – – – – – – – – – – – – 0.3 – – – –
α – – – – – – – – – – – – – – – – – – – – 0.95
tsub – – 7 3 5 3 9 3 – – – – – – – –
nsub

a – – – – – – – – 5 10 10 – – – – – – – –
ρsub – – – – – – – – 0.3 0.2 0.4 – – – – – – – –
dsub

rate – – – – – – – – 0.7 0.7 0.7 – – – – – – – –

5.3. Results

Using the previously determined parameter values, each of the 11 considered algo-
rithms was applied 30 times—that is, with 30 different random seeds—to each of the
160 MDS problem instances. Hereby, 500 CPU seconds were chosen as a time limit for
the graphs with 5000 nodes, whereas 1000 CPU seconds were chosen as a time limit for
each run concerning the graphs with 10,000 nodes. Moreover, each algorithm was applied
100 times to each of the 90 MDKP instances. This was done with a time limit of 500 s per run.
Note that, in this way, the same computational resources were given to all 11 algorithms
in the context of both tackled problems. The choice of 100 runs per instance in the case of
the MDKP was done in order to produce results that are comparable to the best existing
approaches from the literature, which were also applied 100 times to each problem instance.

Due to space restrictions we present a comparative analysis of the 11 algorithms in
terms of critical difference (CD) plots [48] and so-called heatmaps. In order to produce the
average ranks of all algorithms—both for the whole set of problem instances (per problem)
as well as for instance subsets—the Friedman test was applied for the purpose of comparing
the 11 approaches simultaneously. In this way we also obtained the rejection of the
hypothesis that the 11 techniques perform equally. Subsequently, all pairwise algorithm
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comparisons were performed using the Nemenyi post-hoc test [49]. The obtained results
are shown graphically (CD plots and heatmaps). The CD plots show the average algorithm
ranks (horizontal axis) with respect to the considered (sub-)set of instances. In those cases
in which the performances of two algorithms are below the critical difference threshold—
based on a significance level of 0.05—the two algorithms are considered as statistically
equivalent. This is indicated by bold horizontal bars joining the markers of the respective
algorithm variants.

5.3.1. Results for the MDS Problem

Figure 1a shows the CD plot for the whole set of 160 MDS instances, while Figure 1b,c
present more fine-grained results concerning random graphs (RGs) and random geometric
graphs (RGGs), respectively. Furthermore, the heatmaps in Figure 2 show the average
ranks of the 11 algorithms in an even more fine-grained way. The graphic shows exactly
one heatmap for each algorithm. The ones of algorithms ACO-CPL+neg, ACO-CPLneg and
ACO-CPL+ are shown in Figure 2a, the ones of algorithms ACO-ACO+

neg, ACO-ACOneg and
ACO-ACO+ in Figure 2b, and the ones of the remaining five algorithms in Figure 2c. The
upper part of each heatmap shows the results for RGs, while the lower part concerns the
results for RGGs. Each of these parts has two columns: the first one contains the results for
the graphs with 5000 nodes, and the second one for the ones with 10,000 nodes. Moreover,
each part has four rows, showing the results for the four considered graph densities. In
general, the more yellow the cell of a heatmap, the better is the relative performance of the
corresponding algorithm for the respective combination of features (graph type, graph size,
and density).

2 3 4 5 6 7 8 9

(a) All instances
2 3 4 5 6 7 8 9

(b) RG instances

1 2 3 4 5 6 7 8 9 10

(c) RGG instancres

Figure 1. Criticial difference plots concerning the results for the MDS problem.
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Figure 2. Heatmaps concerning the results for the MDS problem.

The global CD plot from Figure 1a allows to make the following observations:

• All the six algorithm variants proposed in this paper significantly improve over the
remaining five algorithm variants, that is, over the baseline MMAS (ACO) and over
the four considered negative learning variants from the literature.

• The three algorithm variants that make use of CPLEX for generating the negative
feedback (option 1) outperform the other three variants (making use of option 2) with
statistical significance. This shows the importance of the way in which the negative
feedback is generated. In fact, the more accurate the negative feedback, the better the
global performance of the algorithm.

• Concerning the four negative learning mechanisms from the literature, it is shown
that only ACO-SAP and ACO-EA are able to outperform the baseline MMAS algo-
rithm. In contrast, ACO-PAP and ACO2o perform significantly worse than the baseline
MMAS algorithm.

• When comparing variants ACO-CPL+neg and ACO-CPLneg with ACO-CPL+, it can be
observed that ACO-CPL+neg has only a slight advantage over ACO-CPL+ (which is not
statistically significant). This means that, even though negative learning is useful, the
additional positive feedback obtained by making use of solution Ssub for updating
solutions Sib and Srb is very powerful.
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• The comparison of the three algorithms making use of option 2 (ACO-ACO+
neg,

ACO-ACOneg and ACO-ACO+) shows a significant difference to the comparison con-
cerning the three algorithms using option 1: the two versions that make use of negative
learning (ACO-ACO+

neg and ACO-ACOneg) outperform the version without negative
learning (ACO-ACO+) with statistical significance. This can probably be explained
by the lower quality of the positive feedback information, as solutions Ssub can be
expected to be generally worse than solutions Ssub of the algorithm version using
option 1.

When looking at the results in a more fine-grained way, the following can be observed:

• Interestingly, the graph type seems to have a big influence on the relative behavior of
the algorithms. In the case of RGs, for example, ACO-CPL+ is the clear winner of the
comparison with ACO-CPL+neg in second place. However, the really interesting aspect
is that ACO-CPLneg finishes last with statistical significance. This means that negative
learning seems even to be harmful in the case of RGs. On the contrary, ACO-CPLneg is
the clear winner of the competition in the context of RGGs, with ACO-CPL+neg finishing
in second place (with statistical significance), and ACO-CPL+ only in third place. This
means that, in the case of RGGs, negative learning is much more important than the
additional positive feedback provided by solution Ssub, which even seems harmful.

• Another interesting aspect is that, in the context of RGs, two negative learning versions
from the literature (ACO-SAP and ACO-EA) clearly outperform our proposed negative
learning variants using option 2.

• The heatmaps from Figure 2 also indicate some interesting tendencies. Negative learn-
ing in the context of our algorithm variants ACO-CPL+neg, ACO-CPLneg, ACO-ACO+

neg
and ACO-ACOneg seems to gain importance with an increasing sparsity of the graphs.
On the other side, in the context of RGs, it is clearly shown that the relative quality
of ACO-SAP and ACO-EA grows with increasing graph size (number of vertices) and
with increasing density.

5.3.2. Results for the MDKP

Figure 3a shows the CD plot for the whole set of 90 MDKP instances, while Figure 3b–g
present more fine-grained results concerning instances with different numbers of resources
and with a varying instance tightness. Again, the heatmaps in Figure 4 complement this
more fine-grained presentation of the results. The 11 algorithms are distributed in the same
way as described in the context of the MDS problem into three heatmap graphics. Each
heatmap (out of 11 heatmaps in total) has three rows: one for each number of resources
(5, 10, 30). Moreover, each heatmap has three columns: one for each considered instance
tightness (0.25, 0.5, 0.75). Interestingly, from a global point of view (Figure 3a) the relative
difference between the algorithm performances is very similar to the one observed for the
MDS problem. In particular, our negative learning variants using option 1 perform best.
Again, ACO-CPL+neg has a slight advantage over ACO-CPL+, which is—like in the case of
the MDS problem—not statistically significant. Basically there is only one major difference
to the results for the MDS problem: ACO-SAP, one of the negative learning variants from
the literature, outperforms ACO-ACOneg and ACO-ACO+.
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1 2 3 4 5 6 7 8 9 10

(a) All instances
1 2 3 4 5 6 7 8 9 10

(b) Instances with density 0.25

1 2 3 4 5 6 7 8 9 10

(c) Instances with 5 resources
1 2 3 4 5 6 7 8 9 10

(d) Instances with density 0.5

1 2 3 4 5 6 7 8 9 10

(e) Instances with 10 resources
1 2 3 4 5 6 7 8 9 10

(f) Instances with density 0.75

1 2 3 4 5 6 7 8 9 10

(g) Instances with 30 resources

Figure 3. Criticial difference plots for more fine-grained subdivisions of instances concerning the results for the MDKP problem.

When studying the results in a more fine-grained way, the following observations can
be made:

• The negative learning component of our algorithm proposal seems to gain importance
with a growing number of resources. This can especially be observed for algorithm
variants ACO-CPL+neg, ACO-ACO+

neg and ACO-ACOneg. However, there is an interest-
ing difference between ACO-CPL+neg and ACO-ACO+

neg: while ACO-CPL+neg improves
with an increasing instance tightness, the opposite is the case for ACO-ACO+

neg.
• Again, as in the case of the MDS problem, the relative performance of ACO-SAP, the

best one of the negative learning variants chosen from the literature, is contrary to
the relative performance of ACO-ACO+

neg. In other words, the relative performance
of ACO-SAP improves with a decreasing number of resources and with an increasing
instance tightness.
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Figure 4. Heatmaps concerning the results for the MDKP.

5.3.3. Comparison to the State-of-the-Art

Even though the objective of this study is not to outperform current state-of-the-art
algorithms for the chosen problems, we are certainly interested to know how our globally
best algorithm (ACO-CPL+neg) performs in comparison to the state-of-the-art.

In the case of the MDS problem we chose for this purpose one of the classical bench-
mark sets, which was also used in one of the latest published works [37]. This benchmark
set is labeled UDG and consists of 120 graphs with numbers of vertices between 50 and
1000. For each of the six graph sizes, UDG contains graphs of two different densities. The
benchmark set consists of 10 graphs per combination of graph size and graph density. Fol-
lowing the procedure from [37], we applied ACO-CPL+neg 10 times with a time limit of 1000
CPU seconds for each application to each of the 120 instances of set UDG. Note that we did
not specifically tune the parameters of ACO-CPL+neg. Instead, the same parameter values
as in the previous section were used. The results are shown in a summarized way—as
in [37]—in Table 6. In particular, each table row presents the results for the 10 instances
of the respective instance family. For each of the six compared algorithms, the provided
number is the average over the best solutions found for each of the 10 instances within 10
runs per instance. The best result per table row is indicated in bold face. Surprisingly, it
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can be observed that ACO-CPL+neg matches the performance of the best two approaches.
It is also worth mentioning that the five competitors of ACO-CPL+neg in this table were all
published since 2017 and are all based on local search. In particular, algorithm RLSo [50]
was shown to outperform all existing ACO and hyper-heuristic algorithms, which were
the state-of-the-art before this recent start of focused research efforts on sophisticated local
search algorithms. Concerning computation time, in [37] it is stated that CC2FS requires on
average 0.21 s, FastMWDS requires 0.83 s, and FastDS requires 22.19 s to obtain the best
solutions of each run. ACO-CPL+neg is somewhat slower by requiring on average 36.14 s.

In the context of the MDKP, we compare ACO-CPL+neg to the current state-of-the-art
algorithms: a sophisticated particle swarm optimization algorithm (DQPSO) from [44],
published in 2020, and a powerful evolutionary algorithm (TPTEA) from [45], published in
2018. As these two algorithms—in their original papers—were applied to the 90 benchmark
problems used in this work, it was not required to conduct additional experiments with
ACO-CPL+neg. A summarized comparison of the three algorithms is provided in Table 7.
Each row contains average results for the 10 problem instances for each combination of
the number of resources (5, 10, 30) and the instance tightness (0.25, 0.5, 0.75). In particular,
we show averages concerning the best solutions found (table columns 3–5), the average
solution quality obtained (table columns 6–8), and the average computation times required
(table columns 9–11). As in the case of the MDS problem, we were surprised to see that
ACO-CPL+neg can actually compete with current state-of-the-art algorithms. The state-of-
the-art results were even improved by ACO-CPL+neg in some cases, especially for what
concerns medium instance tightness for 5 and 10 resources, and low instance tightness for
30 resources. Moreover, the computation time of ACO-CPL+neg is much lower than that of
TPTEA, and comparable to the one required by DQPSO.

Table 6. MDS problem: summarized comparison to the state-of-the-art. Competitor names are
accompanied by publication year and the reference.

Instance Family CC2FS FastMWDS RLSo ScBppw FastDS ACO-CPL+neg

2017 [51] 2018 [52] 2018 [50] 2019 [53] 2020 [37]

V50U150 12.9 12.9 12.9 12.9 12.9 12.9
V50U200 9.4 9.4 9.4 9.4 9.4 9.4
V100U150 17.0 17.0 17.0 17.3 17.0 17.0
V100U200 10.4 10.4 10.4 10.6 10.4 10.4
V250U150 18.0 18.0 18.0 19.0 18.0 18.0
V250U200 10.8 10.8 10.8 11.5 10.8 10.8
V500U150 18.5 18.5 18.6 20.1 18.5 18.5
V500U200 11.2 11.2 11.2 12.4 11.2 11.2
V800U150 19.0 19.0 19.1 20.9 19.0 19.0
V800U200 11.7 11.7 11.9 12.6 11.8 11.7
V1000U150 19.1 19.1 19.2 21.3 19.1 19.1
V1000U200 12.0 12.0 12.0 13.0 12.0 12.0
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Table 7. MDKP: summarized comparison to the state-of-the-art.

# Resources Tightness Best Average Average Time

TPTEA DQPSO ACO-CPL+neg TPTEA DQPSO ACO-CPL+neg TPTEA DQPSO ACO-CPL+neg

0.25 120,629.2 120,627.7 120,628.6 120,612.70 120,619.81 120,611.94 3228.31 117.53 208.31
5 0.5 219,511.6 219,511.9 219,512.7 219,505.29 219,505.79 219,507.46 2673.01 79.51 161.87

0.75 302,363.4 302,362.8 302,363.0 302,359.76 302,358.98 302,356.40 2129.25 66.05 141.21

0.25 118,602.3 118,613.2 118,613.5 118,548.87 118,574.88 118,574.00 3639.40 125.70 232.00
10 0.5 217,318.5 217,318.5 217,321.9 217,281.33 217,282.37 217,283.24 3811.47 141.36 184.32

0.75 302,601.4 302,593.1 302,590.6 302,583.25 302,574.51 302,568.88 2950.25 93.70 174.51

0.25 115,571.0 115,518.0 115,605.3 115,494.70 115,421.82 115,505.89 3943.07 476.50 231.05
30 0.5 216,266.2 216,195.3 216,236.2 21,6200.55 216,130.38 216,186.44 3542.84 407.97 220.29

0.75 302,445.1 302,413.8 302,419.8 302,414.08 302,353.54 30,2374.68 3451.25 433.77 216.52
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6. Discussion and Conclusions

Metaheuristics based on learning—such as ant colony optimization, particle swarm
optimization and evolutionary algorithms—are generally based on learning from positive
examples, that is, they are based on positive learning. However, examples from nature
show that learning from negative examples can be very beneficial. In fact, there have been
several attempts during the last two decades to find a way to beneficially add negative
learning to ant colony optimization. However, hardly any of the respective papers were
able to show that the proposed mechanism was really useful. This is with the exception of
the strand of work on constraint satisfaction problems. The goal of this work was, therefore,
to devise a new negative learning mechanism for ant colony optimization and to show
its usefulness. The main idea of our mechanism is that the negative feedback should not
be extracted from the main ant colony optimization algorithm itself. Instead, it should be
produced by an additional algorithmic component. In fact, after devising a new negative
learning framework, we have tested two algorithmic options for producing the negative
information: (1) making use of the mathematical programming solver CPLEX, and (2)
making use of the baseline ACO algorithm, but in terms of additional applications for
solving sub-instances of the original problem instances.

All considered algorithm variants were applied to two NP-hard combinatorial opti-
mization problems from the class of subset selection problems: the minimum dominating
set problem and the multi dimensional knapsack problem. Moreover, four negative learn-
ing mechanisms from the literature were implemented on the basis of the chosen baseline
ACO algorithm in order to be able to compare our proposals with existing approaches. The
obtained results have shown, first of all, that the proposed negative learning mechanism—
especially when using CPLEX for producing the negative feedback information—is superior
to the existing approaches from the literature. Second, we have shown that, even though
negative learning is not useful for all problem instances, it can be very useful for subsets of
problem instances with certain characteristics. In the context of the minimum dominating
set problem, for example, this concerns rather sparse graphs, while for the multi dimen-
sional knapsack problem the proposed negative learning mechanism was especially useful
for problem instances with rather many resources. From a global point of view, it was
also shown that it is generally not harmful to add negative learning, because the globally
best-performing algorithm variant makes use of negative learning. Finally, we were even
able to show that our globally best-performing algorithm variant is able to compete with
current state-of-the-art algorithms for both considered problems.

Future lines for additional work include the following aspects. First, we aim to apply
the proposed mechanism also to problems of a very different nature. Examples include
scheduling and vehicle routing problems. Second, we aim at experimenting with other
alternatives for producing the negative feedback information.
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