
Adding Non-functional Preferences
to Service Discovery

Fernando Lemos1, Daniela Grigori2, and Mokrane Bouzeghoub1

1 Versailles University, 45 Av. des États Unis 78000 Versailles, France
{fernando.lemos,mokrane.bouzeghoub}@prism.uvsq.fr

2 Paris-Dauphine Univ., Pl. Maréchal de Lattre de Tassigny 75775 Paris, France
daniela.grigori@dauphine.fr

Abstract. The growth of the number of published services rendered
searching for a specific service within repositories a critical issue. In this
paper, we present an approach to extend structure-based service discov-
ery by making it sensitive to user preferences over service quality defined
at different granularity levels of the service structure.

Keywords: Web services, QoS, preferences, process model matching.

1 Introduction

In the last years, the number of published services has been increasingly growing
since more and more organizations invested on service management practices.
However, this growth rendered searching for a specific service within reposi-
tories a critical issue for the success of service computing in general. For the
functional aspect of the search, some approaches allow users to detail the pro-
cess model (PM) describing the structure of the requested service, and thus PM
matching techniques have been proposed to find the services best matching the
query. However, current PM matching approaches [1,2] still return a large num-
ber of services offering similar functionalities [2]. On the non-functional aspect
of the search, non-functional requirements such as quality preferences (e.g., re-
sponse time) are one way to discriminate between structurally similar services.
Nevertheless, current works consider Web services as black boxes, limiting the
approaches to the profile level [3,4,5], which is not sufficient and do not fulfill
user needs as non-functional aspects can be hidden within the specification of the
service structure.

In our vision, service discovery should be based on both structural specifica-
tion and non-functional aspects of services. Targeting this goal poses challenges
at two levels. (i) At the description level, provide a formal model that allows
one to specify, at different granularity levels, non-functional attributes as an-
notations of the functional specification; and allow the user to enrich his query
with (required and preferred) non-functional requirements. (ii) At the discovery
level, define a similarity measure aggregating both functional and non-functional
similarities and provide algorithms combining the structural matching and the
non-functional matching.

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 299–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 F. Lemos, D. Grigori, and M. Bouzeghoub

In this work, we extend service matching algorithms based on the PM speci-
fication by making them sensitive to user preferences concerning service quality.
Our contributions to the above challenges are: (i) we extend the PM representing
service structure with adornments for non-functional factors. Each annotation is
defined either at the activity level or at level of the service itself. The user query
is also a PM complemented with a set of selection clauses, which are defined
either as required or preferred criteria in order to avoid empty or overloading
answers. (ii) The service discovery is seen as a matching process between the user
query PM and a target PM, in which, at the different stages, quality preferences
are taken into account. To the best of our knowledge, there is no other approach
addressing user preferences on quality factors in the service matching process.

Section 2 presents our model. Section 3 details our approach and experimental
results. Section 4 discusses related works. Section 5 concludes the paper.

2 Abstract Representation of Service Process Model

Process models consists of a set of atomic activities, combined using control
flow structures to construct complex processes. To abstract from a specific PM
description language (e.g., WS-BPEL and OWL-S) and provide a broader general
approach, we introduce a graph-based model, as follows. A process model is a
directed labeled graph G = (V, E), where V is a set of activities and connector
nodes and E is a set of edges. An activity node is described by its name,
inputs and outputs. Connector nodes are: (i) start or end, representing the
beginning or the termination of the process execution, respectively; (ii) AND-
split, triggering all of its outgoing concurrent branches that are synchronized by a
corresponding (iii) AND-join; (iv) XOR-split, representing a choice between one
of several alternative branches that are merged by a corresponding (v) XOR-join.

For example, the service PM graph depicted in Figure 1(a) converts common
types of documents to PDF. It receives as input a file and its extension and
executes a pre-flight activity to check whether the file can be converted. If so,
createPDF activity converts the file to PDF and activity createLink returns a
link so user can download the converted file. Otherwise, an error message is sent.

QoS information is added by service providers as graph annotations of the
form (m, r), where r is a value for a QoS attribute m. They can characterize
the service as a whole (profile annotations) or specific activities (activity
annotations). Figure 1(a) shows the previous service PM graph adorned with
the profile annotations a1 and a2 indicating the cost and response time and
several activity annotations a3 to a9 indicating the response time, reliability and
security. We precise that service PMs are considered to be already annotated
with QoS attributes by their providers using techniques like in [6].

Providers can also define aggregation functions to automatically calculate
global QoS information from activity annotations. An aggregation function
is a function of the form f[m] : G→ R, where m is a QoS attribute, G is a PM
graph and R is a set of atomic values. We denote by F the set of aggregation
functions. Specifications of such functions can be found in [6].

Adding Non-functional Preferences to Service Discovery 301

start

end

XOR
join

XOR
split

returnError

out: errorMsg

createPDF

in: file, fileExt
out: pdfFile

preflight

in: file, fileExt
out: status

[status=ok]

[status=ko]

createLink

out: link

start

end

AND
join

AND
split

createLink'

out: link

createPDF'

in: file, fileExt
out: pdfFile

preflight'

in: file, fileExt
out: status

HARD PREFERENCES

SOFT PREFERENCES

SOFT PREFERENCE

HARD PREFERENCE ,

(a) (b)

Fig. 1. Mapping between (a) target graph T1 and (b) query graph Q1

A user query is specified by (i) a PM graph describing structural requirements
and (ii) a set of preferences describing QoS requirements, which are defined for
the service as a whole (profile preferences) or for specific activities (activity
preferences). Preferences can also be: (i) hard, when they must be satisfied
and they are specified as relational expressions of the form (m, o, r), where o is
a relational operator and r is a value for QoS attribute m1; or (ii) soft, when
their satisfaction is optional, but desirable.

A soft preference is specified using a subset of the preference constructors
proposed by Preference SQL [7], one of the first ones to provide a declara-
tive and semantically intuitive model of preferences. The constructors are: (i)
around (m, rdesired): it favors the value rdesired for attribute m; otherwise, it fa-
vors those close to rdesired; (ii) between (m, rlow, rup): it favors the values inside
the interval [rlow , rup]; otherwise, it favors those close to the limits; (iii) max (m):
it favors the highest value; otherwise, the closest value to the maximum is fa-
vored; (iv) min (m): it favors the lowest value; otherwise, the closest value to the
minimum is favored; (v) likes (m, rdesired): it favors the value rdesired; otherwise,
any other value is accepted; (vi) dislikes (m, rundesired): it favors the values dif-
ferent from rundesired; otherwise, rundesired is accepted; (vii) ⊗ (pi, pj): it states
that the soft preferences pi and pj are equally important; (viii) & (pi, pj): it
states that the soft preference pi is more important than the soft preference pj .

1 We abstract from the different units in which a value can be described.

302 F. Lemos, D. Grigori, and M. Bouzeghoub

Preference SQL distinguishes two types of preferences: atomic (around, be-
tween, max, min, likes and dislikes) and complex (⊗ and &). It also distinguishes
two types of atomic preferences: numerical (around, between, max and min) and
non-numerical (likes and dislikes). In this work, the values in non-numerical
preferences are taken from a global ontology O given by the user. As specified,
complex preferences can be defined over existent complex preferences.

Figure 1(b) shows a sample user query annotated with hard and soft prefer-
ences: (i) the profile preference hp1 indicates the response time must be less than
60 ms; (ii) the soft preference sp2 indicates that user prefers services having ac-
tivity B with maximal reliability; (iii) the complex preference sp4 indicates that
to satisfy preference sp2 is more important than the satisfaction of sp3.

3 Dealing with Preferences in Service Discovery

The evaluation of query preferences is strongly dependent of a structural map-
ping between the PMs of query and target services, as described in Subsections
3.1 and 3.2. An important class of solutions to the problem of finding a mapping
between PMs is that of approximate matching algorithms [1,2], that allow to
find target PMs similar to user query. Early approaches of this class reduce the
problem to the discovery of a (sub) graph isomorphism between two PMs [2].

Our recent work [2] proposes an algorithm based on state-space searching to
discover the best mapping between two PM graphs. To reduce the space search,
a pruning function is proposed. The returned mapping has a structural similarity
SS that defines a total order between targets [2], but cannot distinguish between
graphs having similar structure and different quality. Moreover, targets very
similar to the query and better satisfying the preferences should top the ranking.
For these reasons, we extend the PM matching by: (i) evaluating hard preferences
during the matching task to reduce the space-search; and (ii) evaluating the soft
preferences to rank potential graphs considering structural and quality aspects.

3.1 Evaluating Hard Preferences in Service Matching

The evaluation of query profile preferences against target profile annotations may
reduce the number of target service PMs to be matched. However, the structural
mapping between query and target may “change” some profile attributes. For
example, by considering the matching between Q1 and T1 in Figure 1, found
by a matching algorithm like in [2], the trace containing activity returnError
will never be consumed (executed). Thus, recalculating the response time of T1

ignoring activity returnError gives 50 ms. According to the profile preference
hp1, if the recalculation had not been done, T1 would be discarded.

The recalculation of profile annotations is done over the target’s consumable
graph, which is a graph containing only the consumable paths of the target ac-
cording to its structural mapping with the query. More formally, a consumable
graph of a graph G w.r.t. to a mapping M is the graph obtained by eliminat-
ing from each block b of G the branches containing no activity mapped by M .

Adding Non-functional Preferences to Service Discovery 303

A block is any subgraph limited to a split node, its respective join node and
the branches between them. Therefore, our algorithm is composed of two steps:

Step 1: Evaluation of Hard Activity Preferences. The first step in eval-
uating the hard preferences of a query activity is to discover the target activity
that semantically corresponds to it. For this, we propose to extend the prun-
ing technique of the PM matching algorithm described in [2] to also discard
non-promising mappings according to hard preferences. Thus, a target activity
semantically equivalent to a query activity must also satisfy all the hard prefer-
ences of the query activity. Given an activity hard preference hp = (m, o, r) and
a target annotation a = (m, v), a satisfies hp iff the expression (v, o, r) is true.

Step 2: Evaluation of Hard Profile Preferences. Once a target satisfying
all activity preferences is discovered, its hard profile preferences are evaluated.
The evaluation algorithm (i) recalculates the profile annotations using the con-
sumable graph and the aggregation functions, and then (ii) checks if all hard
profile preferences are satisfied by the target profile annotations. In Figure 1,
the consumable graph of T1 satisfies all the hard preferences of Q1.

3.2 Dealing with Soft Preferences in Service Selection

The satisfaction degree (δ) is our metric to define how well the annotations
of a target satisfy the soft preferences of a user query. First, we calculate the
satisfaction degree between each soft atomic preference and its corresponding
annotation. Then, we aggregate the satisfaction degrees of atomic preferences
according to the order of importance defined by the complex preferences.

The Evaluation of Soft Atomic Preferences depends on their type. For
a numerical preference p, given its corresponding annotation a = (m, r), the
satisfaction degree δ (p, a) between them is given by the equation δ (p, a) =
1/(1+d(p,a)). This equation normalizes the Satisfaction Distance d (p, a), which
measures how far is the value r in annotation a from those favored by preference
p. The satisfaction distance depends on the type of p as described in Table 1.

For non-numerical preferences, the satisfaction degree is based on the seman-
tic similarity between concepts given by wp (OG, c1, c2), where c1 and c2 are the
concepts to be compared according to an ontology OG. Among the similarity
metrics defined in the literature [8], we applied the classic edge counting tech-
nique proposed in [9]. Given a non-numerical preference p and an annotation a,
the satisfaction degree δ (p, a) between them is presented in Table 2.

Based on the mapping of Figure 1 and on the ontology in Figure 2, the satis-
faction degrees of soft preferences of query Q1 are δ (sp1, a4) = 1, δ (sp2, a6) = 0.03,
δ (sp3, a5) = 0.09 and δ (sp5, a7) = 1, where d (sp2, a6) = 40 and d (sp3, a5) = 10.

The Evaluation of Soft Complex Preferences aims, at first, to assign
weights to the satisfaction degrees of atomic preferences to capture the order of
importance defined by complex preferences. Then, these weighted degrees are
aggregated to provide the satisfaction degree between the query and the target.
The evaluation the complex preferences is composed of the following steps:

304 F. Lemos, D. Grigori, and M. Bouzeghoub

Table 1. Satisfaction distance of numerical preference p w.r.t. annotation a = (m, r)

Numerical Preference p Satisfaction Distance d(p, a)

around (m, rdesired) d (p, a) = |r − rdesired|

between (m, rlow, rup) d (p, a) =

⎧
⎪⎨

⎪⎩

0, r ∈ [low, up]

low − r, r < low

r − up, r > up

max (m) d (p, a) = rmax − r, where rmax is the highest value
min (m) d (p, a) = r − rmin, where rmin is the lowest value

Table 2. Satisfaction degree of non-numerical preference p w.r.t. annotation a = (m, r)

Non-numerical Preference p Satisfaction Degree δ(p, a)

likes (m,rdesired) δ (p, a) =

⎧
⎪⎨

⎪⎩

1, rdesired = r

1, rdesired subsumes r

wp(OG, rdesired, r), otherwise

dislikes (m, rundesired) δ (p, a) = 1 − likes (m, rundesired)

security

encryption

protocol

DES
AES
RSA
Kerberos
SSHroot

Fig. 2. Sample Security ontology

Fig. 3. Preference tree of query Q1

Step 1. We construct a preference tree tsp whose nodes represent atomic pref-
erences, edges represent a prioritized (&) preference, from parent to child, and
each level li of the tree has weight μi = 1/i. We denote by p.l the level assigned to
preference p. We consider that user has not defined any contradictory preference.

The construction of the tree first addresses each preference & (pi, pj) by (i) if
pi.l = null, then pi.l← l1 and pj .l ← l2, and (ii) if pi.l �= null, then pj ← pi.l+1.
Next, it evaluates each preference ⊗ (pi, pj) by applying the following rules:
Rule 1: pi.l �= null ∧ pj.l = null then pj .l ← pi.l; Rule 2: pi.l = null ∧ pj.l �=
null then pi.l ← pj .l; Rule 3: pi.l = null ∧ pj .l = null then pi.l ← l1 and
pj .l ← l1; Rule 4: pi.l �= null ∧ pj .l �= null then: (a) pi.l < pj .l then pj .l ← pi.l
and the levels of pj descendants are updated accordingly; (b) pj.l < pi.l then
pi.l ← pj .l and the levels of pj descendants are updated accordingly; Rule 5:
level l1 is assigned to remaining preferences. Figure 3 shows the tree of Q1.
Step 2. The satisfaction degree between a query Q and a target T w.r.t. a
mapping M is given by δ (Q, T, M) =

∑
p∈Ssp

δ(p,a)×μp.l/
∑

p∈Ssp
μp.l, where a is the

annotation corresponding to the QoS attribute of preference p. This equation is
a sum of the satisfaction degrees of atomic preferences affected by the weights
of their levels in the tree. In our example, δ (Q1, T1, M1) = 0.53.

Adding Non-functional Preferences to Service Discovery 305

3.3 Service Ranking Based on Structural and Quality Aspects

Two classic methods are used to order the potential targets of a given query
according to structural and quality aspects. The first is the lexicographic order :
targets are ordered according to the structural similarity degree SS and the
preference satisfaction degree is used to break ties. The second is the weighted
average wa (TQ, M) = μSS×SS (M)+(1− μSS)×δ (Q, T, M), where 0 < μSS <
1 is the weight assigned to the semantic similarity degree. The user can specify
the contribution of each degree to the calculation of the overall similarity.

3.4 Preliminary Experimental Results

To evaluate our approach, we implemented a prototype on top of the service
matching platform proposed by [2]. Our experiments considered 64 services of
average size of 15 activities and providing 12 quality properties. The first ex-
periments measured the evaluation time of (i) hard preferences in the matching
algorithm and (ii) soft preferences after the matching step. In both cases, the
extra time represents less than 1% of the matching time.

The last experiments measured the ranking effectiveness. Clearly, a discovery
process that takes into account the quality aspect beyond the structural one pro-
vides better responses than a structure-based method. Thus, we were interested
in measuring how close is the ranking of our solution compared to the ranking of
an expert. For this, an expert manually compared each query to each target and
noted it in a Likert scale. Then, the results were sorted according to their sim-
ilarities and compared with our ranking using the NDCG formula. The results
obtained for weighted average and lexicographic order rankings were 0.996967
and 0.998752, respectively, which shows that our solution provides a ranking
that is strongly close to that defined by the experts in all of our experiments.

4 Related Work

Many approaches for service retrieval based on non-functional characteristics
have been proposed in the literature [3,10,11,4]. In these works, quality pref-
erences are specified by (i) relational expressions [3], evaluated to a distance
between the preference and the QoS information provided by the service; (ii)
fuzzy sets [10], described by membership functions mapping each value of qual-
ity attributes to the degree at which the user is satisfied with it; (iii) linguistic
variables [4], whose values are terms (e.g., fast, slow) and whose evaluation re-
turns a match degree in a qualitative scale; or (iv) utility functions [11], similar
to fuzzy sets, but can be specified over a discontinuous domain.

The order of importance between preferences is not addressed by these ap-
proaches. Instead weights are attributed to QoS properties to be multiplied with
the satisfaction degrees of the preferences. These weights are specified by the
user at query definition time [11], by an expert at design time [10], or they
are fixed in the evaluation process [3]. The aggregation of satisfaction degrees is

306 F. Lemos, D. Grigori, and M. Bouzeghoub

done via aggregation functions like the sum [3,11], via solutions to the constraint
satisfaction problem [10], or using match degrees in a qualitative scale [4].

These approaches do not propose preference constructors to help user better
define his preferences and they are not abstract enough to be adapted to different
non-functional contexts. More important, these approaches consider services as
black boxes, so quality requirements for internal activities are not addressed.

5 Conclusions

We presented an approach for service discovery considering structure and quality
requirements. First, we proposed a formal model to annotate service PMs with
quality properties and user queries with quality preferences. Then, we showed
how preferences are addressed in the service discovery process. Our approach can
be easily applied to other non-functional requirements. As future work, we intend
to study preferences considering user’s viewpoint and semantic compositions of
structural similarity and preference satisfaction.

Acknowledgment. This work has received support from the French National
Agency for Research (ANR) on the reference ANR-08-CORD-009.

References

1. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Busi-
ness Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

2. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE TSC 3, 178–192 (2010)

3. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5), 785–808 (2008)

4. Şora, I., Lazăr, G., Lung, S.: Mapping a fuzzy logic approach for QoS-aware service
selection on current web service standards. In: ICCC-CONTI, pp. 553–558 (2010)

5. Zhang, Y., Huang, H., Yang, D., Zhang, H., Chao, H.C., Huang, Y.M.: Bring
QoS to P2P-based semantic service discovery for the universal network. Personal
Ubiquitous Computing 13(7), 471–477 (2009)

6. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227.
Springer, Heidelberg (2010)

7. Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–
322 (2002)

8. Cross, V.: Fuzzy semantic distance measures between ontological concepts. In:
NAFIPS, vol. 2, pp. 635–640 (2004)

9. Wu, Z., Palmer, M.S.: Verb semantics and lexical selection. In: ACL, pp. 133–138
(1994)

10. Xiong, P., Fan, Y.: QoS-aware web service selection by a synthetic weight. In:
FSKD, pp. 632–637 (2007)

11. Agarwal, S., Lamparter, S., Studer, R.: Making web services tradable: A policy-based
approach for specifyingpreferences onweb service properties. JWS7(1), 11–20 (2009)

	Adding Non-functional Preferencesto Service Discovery
	Introduction
	Abstract Representation of Service Process Model
	Dealing with Preferences in Service Discovery
	Evaluating Hard Preferences in Service Matching
	Dealing with Soft Preferences in Service Selection
	Service Ranking Based on Structural and Quality Aspects
	Preliminary Experimental Results

	Related Work
	Conclusions
	References

