
Adding Real-time Capabilities to a SML Compiler

Muyuan Li, Daniel E McArdle, Jeffrey C Murphy, Bhargav Shivkumar, Lukasz Ziarek
SUNY Buffalo

{muyuanli,demcardl,jcmurphy,bhargavs,lziarek}@buffalo.edu

ABSTRACT
There has been much recent interest in adopting functional and re-
active programming for use in real-time system design. Moving
toward a more declarative methodology for developing real-time
systems purports to improve the fidelity of software. To study the
benefits of functional and reactive programming for real-time sys-
tems, real-time aware functional compilers and language runtimes
are required. In this paper we examine the necessary changes to
a modern Standard ML compiler, MLton, to provide basic support
for real-time execution. We detail our current progress in modify-
ing MLton with a threading model that supports priorities, a chun-
ked object model to support real-time garbage collection, and low
level modification to execute on top of a real-time operating sys-
tem. We present preliminary numbers and our work in progress
prototype, which is able to boot ML programs compiled with ML-
ton on x86 machines.

1. INTRODUCTION
Recent work on functional reactive programming has once again

spurred interest in examining the usage of functional and declar-
ative languages for main stream real-time system design and pro-
gramming [2, 6, 17, 20]. Functional programming, much like the
mantra of real-time Java, provides a type-safe vehicle for real-time
system implementation that by nature of the language structure it-
self prevents common errors and bugs, like buffer under/over flow
and null pointer dereference, from being expressed. Programmers
can thus produce higher fidelity code with lower programmer ef-
fort. Additionally, functional programming languages are typically
easier to analyze statically than their object oriented counter parts,
and significantly easier than C. As such, they purport to reduce time
and effort from a validation and verification perspective.

As the research community explores new programming models
that leverage the benefits of functional and reactive programming,
there is an increasing need to examine the addition of real-time
capabilities to functional language runtimes. Additionally, classic
optimization strategies that most compilers for functional program-
ming languages leverage to achieve performance need to be revis-
ited and adapted for predictable execution.

Copyright retained by the authors.

In this paper we present a work in progress system that exam-
ines what mechanisms must be in the language runtime to facilitate
the development of functional, real-time systems. Specifically we
investigate what changes need to be made to MLton [8], a mod-
ern SML compiler, in order to add real-time capabilities. This in-
cludes an overhaul of the threading system to support fixed prior-
ity based scheduling, a new chunked object model for predictable
allocation and non moving real-time garbage collection, as well
as bindings for a real-time OS for embedded deployment. We
leverage our previous experience with Multi-MLton [15, 16] and
the Fiji real-time virtual machine [9] in guiding our modifications
to MLton. Our changes sit below the MLton library level, pro-
viding building blocks to explore new programming models. We
present preliminary performance numbers, indicating the viabil-
ity of our prototype. Our prototype supports embedded execu-
tion on x86 architectures and is publicly available for download
at: https://github.com/UBMLtonGroup.

2. MLTON OVERVIEW
MLton [8, 21] is a whole-program optimizing compiler for SML

97. MLton’s leverages whole-program optimization using a simply-
typed first-order intermediate language. There are numerous issues
that arise when translating SML into a simply-typed IL. First, how
does one represent SML modules and functors, since these typi-
cally require much more complicated type systems? MLton’s an-
swer: defunctorize the program [12]. This transformation turns an
SML program with modules into an equivalent one without mod-
ules by duplicating each functor at every application and eliminat-
ing structures by renaming variables. Second, how does one rep-
resent SML’s polymorphic types and polymorphic functions? ML-
ton’s answer: monomorphise the program [19]. This transforma-
tion eliminates polymorphism from an SML program by duplicat-
ing each polymorphic datatype and function at every type at which
it is instantiated. Third, how does one represent SML’s higher-order
functions? MLton’s answer: defunctionalize the program. This
transformation replaces higher-order functions with data structures
to represent them and first-order functions to apply them; the re-
sulting IL is Static Single Assignment form. Because each of the
above transformations requires matching a functor, function def-
inition, or type definition with all possible uses, MLton must be
a whole-program compiler. MLton’s whole-program compilation
strategy has a number of implications. Most importantly, MLton’s
use of defunctorization means that the placement of code in mod-
ules has no effect on performance. In fact, it has no effect on the
generated code whatsoever. Modules are purely for the benefit of
the programmer in structuring code. Also, because MLton dupli-
cates functors at each use, no run-time penalty is incurred for ab-
stracting a module into a functor. The benefits of monomorphisa-



tion are similar. Thus, with MLton, a programmer does not suffer
the time and space penalties from an extra level of indirection in a
list of doubles just because the compiler needs a uniform represen-
tation of lists.

We believe that the MLton approach is beneficial for real-time
programming as it yields very efficient code, both in time and space.
MLton’s whole program optimization strategy provides us with pre-
cise low-level information about object layouts and sizes, which
can be leveraged to optimize existing real-time garbage collection
approaches proposed for real-time Java. MLton is easily adaptable
to an embedded workflow, by having MLton emit ANSI-C code
and then cross compiling using specialized C cross-compilers pro-
vided by most real-time OS vendors. Unfortunately, MLton was
not designed with real-time applications in mind. Specifically, ML-
ton’s threading model and GCs are neither priority aware nor pre-
dictable. In the following sub-sections we discuss MLton’s inter-
nals and their implication on real-time execution.

2.1 Threading
MLton provides a concurrent, but not parallel, threading model.

As such, MLton created threads are green threads that are mul-
tiplexed over a single OS level thread. MLton’s thread API is
well suited for implementing user defined schedulers, including
preemptive and cooperative threading models as well as Concur-
rent ML [11]. A thread in MLton is a lightweight data structure
that represents a paused computation. Threads contain the cur-
rently saved execution state of the program, namely the call stack.
When a thread is paused, a copy of its current stack is saved and
when it is switched to, the stack is restored. MLton also provides a
ready queue from which the next runnable thread is accessed by the
scheduler. This is a regular FIFO queue with no notion of priority,
however the structure is implicit, relying on continuation chaining
and is embedded in the thread switching code. Threading libraries
build on top of the MLton thread primitives typically leverage a
thread queue data structure (e.g. CML).

One of the main prerequisites of a real-time programming lan-
guage is a threading model consisting of an analyzable scheduling
mechanism as well as a scheduling algorithm. MLton’s implemen-
tation of threading does involve the underlying operating system
in any way. The absence of direct relation between a MLton green
thread and an OS level thread, results in the operating system seeing
only one MLton thread and schedules it for execution along with
other non-MLton threads in the system. All MLton green threads
are considered equal and the existing model preempts threads either
after a fixed interval of time (preemptive) or when the currently ex-
ecuting thread decides to yield (cooperative). The absence of the
notion of priority is quite crucial to the use of MLton for real-time
systems as the criticality of computations are ignored. Such a case
can be explicitly observed when any MLton thread makes a block-
ing IO call. Since all the green threads are mapped onto a single
OS thread, this blocks all other MLton green threads as well until
the OS finishes the execution of the IO operation and the blocking
green thread can be descheduled to allow another thread to execute.

MLton’s execution model places the SML call stack on the heap
during the compilation, when it maps SML functions to C code.
MLton requires the intervention of the GC when a thread has to
grow its stack during execution. The GC clears up space on the
heap and then allocates a bigger stack and copies the existing stack
into the new location. This process requires the execution of the
current thread to pause until the GC exits, thus introducing a point
of non deterministic overhead that is undesirable in a real-time sys-
tem. These properties of MLton make it unsuitable for use as a
real-time system out of the box.

2.2 Garbage Collection
MLton adopts a hybrid model of Cheney Copy GC and Mark-

Compact. The garbage collector dynamically switches between the
two schemes back and forth based on runtime memory utilization.
Its heap layout is depicted in Fig. 1.

Figure 1: Heap layout in MLton

The default GC scheme is Cheney Copy GC, in which the new
objects are allocated in Nursery. When there is insufficient space,
a minor Cheney Copy is used to move objects from the nursery
to "to space". If a minor GC fails to collect enough heap space
for the new object, a major Cheney Copy GC is used, in which a
secondary heap is allocated and the GC will attempt to copy objects
from current heap to secondary heap. When the total memory usage
exceeds 50%, the GC falls back to a 2-generation Mark-Compact
GC where the objects are moved to the old generation if the live
ratio is low.

MLton has 4 types of objects: normal object, arrays, weak object
and stack. These objects are treated differently in GC allocation.
Arrays and stacks are typically allocated in Old Generation, since
they tend to persist over the lifetime of the program. MLton makes
bump-pointer allocation at the frontier for normal and weak objects.
However, weak objects are not common – they are typically created
by programmers explicitly via primitive calls.

MLton’s GC scheme moves objects to achieve compaction, which
can be a source of unpredictability. Fig. 2 depicts such unpre-
dictability. We preform a micro benchmark on MLton by allocating
int array option objects, in which we randomly choose be-
tween allocating NONE or SOME array of 10 million elements.
MLton first tries to allocate object by following a Cheney Copy
scheme. Then it compacts the heap by copying the object to To
Space, which introduces non-predictable behavior. In this bench-
mark, the time to move objects randomly goes up to 2x with no
obvious pattern.

Time
0.0

0.5

1.0

1.5

2.0

A
llo

ca
ti

on
T

im
e

A
ve

ra
ge

of
N

on
-Z

er
o

A
llo

ca
ti

on
T

im
e

Figure 2: Unpredictable object allocation time in MLton

3. THREADING MODEL
In order to adapt MLton for use in real-time systems, we propose

exposing the POSIX threading API within MLton. This will allow
us to propagate priority information from the ML thread tracking
structure to the RTOS and to leverage the RTOS scheduler. Ad-
ditionally, this model allows for the use of the established ML-
ton green threading models within each POSIX thread providing



a many-to-one mapping of green-to-OS threads. This model also
allows for the grouping of threads by activity, for example IO ver-
sus computation, which in turn helps isolate long-blocking activi-
ties such as IO into their own threads. Fig. 3 shows threads being
isolated by priority as well as migrating between priorities, but al-
ternate models bucketing threads by activity are also possible.

Figure 3: Priority-based Thread Queue

Our base scheduling mechanism is a fixed priority scheduler,
mapping one MLton thread of a given priority to a single RTOS
thread of the same priority. The maximum number of threads is
specified by the programer in a configuration parameter, which al-
lows for static preallocation of threads. We note that this mirrors
the approach taken by many RTOSes. We are currently investigat-
ing a tiered scheduling mechanism, which allows multiple MLton
threads of the same priority to execute on top of a single RTOS
thread with user defined schedulers to dictate their scheduling pol-
icy. In order to handle priority inversion,we are looking into the use
of Priority Inheritance Protocol locks [13].

In order to facilitate the use of OS level threads, several things
must change within MLton. For example, the GC must first be
moved to a separate thread and made concurrent. For slack based
RTGC support this also includes making the GC the lowest priority
thread in the system and supporting a concurrent GC that is inter-
ruptible at any point [10]. Secondly, the MLton model of a thread
requesting GC needs to be changed so that computation is never
stalled on GC.

4. HYBRID FRAGMENTING GC
The design of a real-time garbage collector should ensure pre-

dictability. To eliminate GC pauses induced by defragmentation
and compacting the heap, we make sure that objects are allocated
as fixed-size chunks so that objects will never need to be moved for
defragmentation through the use of a hybrid fragmenting GC [10].
Small (normal and weak) objects, arrays and stacks are allocated
on 3 separate regions of the heap. We maintain the array region
and the normal object region by 2 free lists, whereas the stacks are
allocated in bump-pointer manner.

Normal and weak objects are represented as linked lists. Since
object sizes in MLton are typically small, we achieve constant ac-
cess time when allocating these objects. Arrays are represented
as trees, in which each node is fixed-size. Internal nodes have a
large number of branches (32 in our implementation), which keeps
access time log32(n) and is close to constant. MLton constantly al-
locates small sized arrays and even zero sized arrays. We represent
such arrays as a single leaf to eliminate the overhead of finding the
immediate child of the root. During collection, the GC first marks
all fixed-size chunks that are currently live. Then it sweeps the heap
and returns all unmarked chunks to the two free lists.

Heap Layout: In MLton, the size of normal objects, arrays and
stacks vary significantly. To minimize the overhead induced by
object chunking, we partition the heap into three regions for normal
/ weak objects, arrays and stacks.

Object Layout: MLton tries to pack small objects into larger
ones. In our empirical study, most MLton objects are around 24

bytes. We choose 32 bytes as the chunk payload that carries MLton
object along with extra 12 bytes overhead associated with chunk
management. Objects that are larger than 32 bytes are split into
multiple chunks. In our current implementation, we limit object to
two chunks each since we haven’t noticed objects that are greater
than 64 bytes. The object layout is depicted in Fig. 4.

Figure 4: Chunked object layout

When an object fits into one chunk, the object field is calculated
by:

objectField(p, offset) = p - HEADER_SIZE +
offset

If an object is chunked, the CO field records the smallest offset that
causes the chunk. The object field is then retrieved by:

objectField(p, offset) = (p - HEADER_SIZE)
->next + offset - CO

Arrays are represented as trees. In MLton, arrays are typically
passed around using a pointer to its payload. The header and length
of an array are retrieved by subtracting the header size and array
length size from current pointer. We stick to this representation as
much as possible. Array nodes are represented in Fig. 5. Internal
nodes carry 32 pointers to their children. We pass an array around
via a pointer to its first leaf. A root pointer and a next pointer is
embedded in the leaf node. The leaf pointer connects all leaves that
actually carry payloads for potential linear traversal optimization.
For an array that is 128 bytes or less, we can fit it into 1 leaf chunk.
For arrays that span multiple chunks, we construct trees. When ac-
cessing an element of an array, we first follow the root pointer to
retrieve the root node and then access the array in a top down man-
ner, in which we determine the branch in current node by index
% CO, then we follow the branch to an alternative internal node.
The process is repeated until we finally arrive at a leaf.

In our current implementation, we leave the stack allocated by
bump pointer. The rationale is that, stacks never need to be moved
in our implementation. Stacks grow and shrink by pushing and
popping stack frames which results in chunks being added and re-
moved as necessary. They are self-managed and do not need GC
intervention to grow as they do in the MLton GC model.

Flattening refers to the multiple optimization passes in MLton
that reduces the overhead for accessing nested objects. Flattening
in MLton changes our array access scheme. The following code
creates an array of tuples of int and bool shown in Fig. 6. Then
it reads the second part of the 4th element.

val arr = Array.tabulate (5, fn i => (i,
true))

val a = #2 (Array.sub (arr, 4))

Figure 6: Accessing array of tuples

Without flattening, the read is translated into:

tup = arrayOffset(arr, elemSize=8, index=4)
a = objectOffset(tup, elemSize=4, index=1)



Figure 5: Chunked array layout

and with flattening, the read consists only a single element:

a = arrayOffset(arr, elemSize=4, index=9)

Unfortunately, it is difficult to reliably decide on an array ele-
ment size after flattening that can be used at the time of alloca-
tion, since tuples can carry elements that differ in size. Our tree-
structured array has no information about flattening and the access
scheme generated from MLton after flattening cannot work with
our chunked array model. Hence, we need to disable some of the
flattening optimization passes. We first tried disabling all the flat-
tening passes including local flatten and deep flatten. But in our
later investigation, only deep flatten will try to flatten objects in
arrays. The local flatten passes are totally compatible with our im-
plementation. The effects of disabling / enabling flatten passes are
detailed in Section 6.

4.1 Allocator Limitations
Relative addressing for arrays: An example of relative ad-

dressing is: given p = &a[5]; then *(p + 5) refers to the
value stored in a[10]. Such addressing is not used in the SML li-
brary but is crucial to connect to C via FFI. Our current implemen-
tation does not allow relative addressing for arrays. This problem
is extremely common when dealing with strings, especially when
passing strings around to IO calls such as printf since almost all
IO calls assume a continuous buffer layout. Our temporary fix is
to set an array pointer in the first leaf. However, we note that such
an implementation restricts string sizes to 128 bytes or less, which
can be annoying when dealing with file IO operations.

Infinite precision integers: MLton implements infinite preci-
sion integers with the GMP library. MLton allocates an infinite
integer struct by first creating an object header similar to an array
header, then it maps the struct to the frontier’s position and adjusts
frontier accordingly. If the calculated result can fit into a fixed-sized
representation, MLton resets frontier and converts the representa-
tion of the integer. However, such a scheme is difficult to realize in
our model as there is no direct conversion between an array chunk
and an object chunk. We plan to look into this issue in the future.

Mapping and reducing over arrays: Operations that span over
whole arrays are implemented in terms of array random access in
MLton’s basis library. Example of Array.foldl is implemented
in the Fig. 7 (simplified, without boundary check).

In MLton’s representation, this implementation is fast – access-
ing to each element incurs O(1) cost. But this implementation
induces unnecessary overhead in our scenario due to O(log(n))
accessing time to each element. Since leaf nodes are connected
by a next pointer, we could implement these functions in terms of
MLton’s FFI that maps MLton calls to C runtime. Delivering an
efficient array module requires considerable time investment and it
is left as our future work.

4.2 GC Limitations

fun foldl f a arr =
let

val l = Array.length arr
fun loop (i, acc) =
if i >= l
then acc
else loop (i + 1, f (acc, Array.sub (

arr, i)))
in

loop (0, a)
end

Figure 7: MLton Fold Implementation.

For collection, our GC leverages a traditional mark and sweep
scheme. We start with global objects and traverse object pointers
to mark all chunks that are live. Then we sweep through the heaps
and return the chunks that are not marked. Theoretically, a GC
is performed whenever there is insufficient memory to allocate a
new object. Yet, MLton only records stack frames prior to current
function. Objects in current stack frame are accessed by adding
the offset to stackTop. In other words, we cannot simply iterate
through the stack to mark all objects as the layout of the current
stack frame is unknown. An alternative option is to rely on MLton’s
GC checks.

MLton performs complicated data flow and control flow analysis
to insert GC checkpoints to minimize the number of garbage collec-
tions needed. However, the data flow and control flow analysis as-
sumes a single heap model and objects are calculated by number of
bytes required, which is incompatible with our model. One solution
is to patch up each path in the GC check flow, redirecting all GC
checks to our GC runtime function and let the C runtime function
decide whether a garbage collection is needed. However, as will
be discussed in Section 6, such a method introduces high overhead.
We currently add an RSSA optimization pass which sums up the al-
locations in a block and inserts a check to see if there are adequate
chunks left. If the block does not allocate objects at all, we ignore
it. Such a check only introduces a branch and an inlined integer
comparison, which is much faster than the former method. Since
arrays are allocated in the C runtime, MLton ensures the stack is
completely prepared before jumping into GC_arrayAllocate.
We can thus safely make GC checks in the array allocation.

To further speed up object allocation, MLton caches the fron-
tier in a register. Yet, we discovered that with our chunked alloca-
tion, the frontier is not properly flushed correctly due to changes to
the control flow of the program. We currently disable the frontier
cache, but expect to be able to infer flush points with a specialized
analysis. MLton also uses carding to optimize the GC. Since the
card map is not present in our heap layout, we need to disable it to
ensure correct behavior.

4.3 Potential Optimizations



Our GC takes about 1.5x the time of MLton with corresponding
optimization passes disabled, which is far from optimal. We are
currently investigating the following to improve performance:

• CFG-based GC Checks: we can perform control flow anal-
ysis to track down the object allocation and insert GC checks
at the start of a group of blocks and loop entries / exits instead
of doing it per block;

• Improving Object Allocation and Referencing: Standard
ML provides rich type information that we may leverage to
increase object allocation and reference efficiency, since we
are able to figure out the number of chunks of the object and
offset of the reference at compile time;

• Re-enabling MLton’s Optimization Passes: We will ex-
amine those disabled optimization passes to explore the pos-
sibility of making them compatible with our object layout.

5. PORTING MLTON TO RTEMS
RTEMS API emulates POSIX in many places but it is not 100%

compatible. We ported MLton to RTEMS 4.10.2 instead of the lat-
est 4.11, due to an issue when compiling GMP with GCC 4.9.2
provided by RTEMS Source Builder. MLton calls mmap to allo-
cate the heap and munmap to release it, both of which are miss-
ing as of RTEMS 4.10.2. We used malloc and free to manage
the memory directly. MLton determines object alignment based on
page size. Due to lack of virtual memory, the page size for RTEMS
is rather arbitrary and we have coded it to be 1 MB. rlimit is
missing in RTEMS, and so we needed to fall back to MLton’s com-
patible implementation originally intended for MinGW. RTEMS’
network structure is not compatible in various places, for example,
there is no definition for socket_len. We had to strip all the
POSIX networking primitives from MLton to ensure a successful
compilation.

6. RESULTS
We compare our current prototype of RT MLton with various

configurations of vanilla MLton. Both versions of MLton are based
on MLton Git commit 2a2ebce6d12f7fc40. The evaluation is con-
ducted on a workstation with Intel Core i7-3770 3.4GHz CPU, run-
ning Gentoo Linux. Fig. 8 shows our preliminary numbers.

MLton makes exceptional effort to optimize the final program.
Unfortunately, we need to disable various optimization passes for
correctness as mentioned in Section 4. In Fig. 8a, we demon-
strate the effect of disabling optimization passes in MLton and
compare our implementation with those configurations. Disabling
optimization passes increases code size and slows the performance
for MLton by multiple times. Compared to MLton with those op-
timizations disabled, our current implementation is approximately
3x slower. We are unfortunately very conservative at inserting GC
checks at each path, resulting in interrupted control flow through
jumps to a (potentially unnecessary) GC checkpoint. This also
prevents further optimization passes from taking effect. Table. 1
compares the code size before / after limit check and at the start of
machine IL (right after RSSA finished). We add an RSSA optimiza-
tion pass to insert GC checks block-wise. As shown in Fig. 8a, it
improves the performance dramatically. In the Fibonacci and MD5
benchmark, our implementation achieves identical performance to
MLton with optimization passes disabled. Array referencing is par-
ticularly slow at the moment as demonstrated in the Matrix Multi-
plication benchmark. Currently, to allocate and iterate through an
array of 10,000,000 integers, our array implementation takes 0.3

Vanilla MLton Conservative limit check
Before limit check 57,328 bytes 54,956 bytes
After limit check 77,904 bytes 179,324 bytes
Machine IL 103,028 bytes 216,960 bytes

Table 1: Impact of limit check on RSSA optimization

seconds. The Matrix Multiplication benchmark multiplies matri-
ces heavily based on individual element reference that introduces
O(log(n)) cost at each access. We believe it could be sped up
dramatically if the program is made aware of our architecture and
implements matrix multiplications as reduction over continuous se-
quences and with the delivery of sequential access optimizations
discussed in Section 4.2. We envision that to ensure performance in
real time setting, a functional program still needs to be aware of the
low level object model and optimize algorithm / code towards the
model. Fig. 8a also shows the potential benefit of enabling the local
flattening passes while leaving deep flattening off. Local flattening
ensures smaller object sizes and significantly reduces allocations.
In fact, in Mandelbrot and MD5, with local flattening enabled, the
GC is never activated. The result in this case is very similar to the
vanilla MLton, which proves that the chunked object access adds
only little overhead.

To evaluate the actual performance on a real time system, we
have conducted evaluation on RTEMS both in x86 QEMU and real
x86 CPU. The workstation has Intel Xeon E3-1230 v2 3.3GHz.
QEMU is configured with 4G available memory and KVM enabled.
Direct execution on the CPU is enabled by connecting GRUB with
the compiled RTEMS executable. Fig. 8b depicts the results. We
observe a smaller performance gap between our implementation
and vanilla MLton. In both cases, our implementation is at 3 - 5x
slower than vanilla MLton. Directly running RTEMS executable on
the CPU results in a slightly slower performance, which may due to
Linux Kernel’s awareness of Turbo Boost of the CPU. We haven’t
observed as significant performance boost as running on x86 Linux
by refining the limit checks – generally, it runs only 1 - 2 s faster
than the numbers in Fig. 8b. Note that we make every effort to
ensure the comparison is fair but various factors could contribute
to the performance results, including of platform specific functions
to RTEMS largely based on MinGW platform implementation for
MLton, which might not be efficient when used on RTEMS. ML-
ton’s lack of knowledge of RTEMS may be a contributing factor to
the ineffectiveness of its optimizations. Old version (4.4) of GCC
that lacks particular knowledge of certain flow optimization used
by RTEMS 4.10 tool-chain might cause inefficient code organiza-
tion. Targeting i386 instead of i686 in our RTEMS port may disable
a few optimizations. We thus consider this result as a preliminary
baseline, but expect better performance once we consider optimiza-
tions geared toward RTEMS and embedded execution.

Fig. 8c depicts the relation between time taken by garbage col-
lection for our RTGC compared to heap size while running Man-
delbrot set benchmark of size 8192.

7. RELATED WORK
Real-Time Garbage Collection: There are roughly three classes

of RTGC: (i) time based [1] where the GC is scheduled as a task
in the system, (ii) slack based [10] where the GC is the lowest pri-
ority real-time task and executes in the times between release of
higher priority tasks, and (iii) work based [14] where each alloca-
tion triggers an amount of GC work proportional to the allocation
request. In each of these RTGC definitions, the overall system de-
signer must take into consideration the time requirements to run
the RTGC. We currently have adopted a slack based approach in



Fibonacci Mandelbrot MD5 Matrix
0

50

100

150

200

250

300

350

400
T

im
e

(s
)

16 20
7

0

16

42

7 3

19

45

7 3

20

53

8 4

20

89

9 7

22

146

12 1012

28

68

17

61

299

30

72

19

227

14

69

18 20
8

30

baseline
+ disable flatten
+ disable frontier cache
+ disable carding
+ force mark & compact
+ increase GC check
SML/NJ
RTGC
RTGC + improved GC check
RTGC + local flatten

(a) Baseline Performance Comparison

Fibonacci Mandelbrot MD5 Matrix
0

200

400

600

800

1000

1200

1400

1600

T
im

e
(s

)

15

1117

8
43

17

1225

9
4766

1430

34

123
75

1577

38

134

MLton on x86 QEMU
MLton on x86 processor
RTGC on x86 QEMU
RTGC on x86 processor

(b) Embedded Performance on RTEMS

16 32 64 128 256 512 1024 2048
Heap size (MB)

1

2

3

4

5

6

T
im

e
(s

)

(c) RTGC time vs heap size
Figure 8: Performance metrics of RT MLton

the context of real-time MLton, though a work based approach is
also worth exploring.

Real-Time Java: The real-time specification for Java RTSJ [4]
and safety critical Java (SCJ) [7], both provide definitions for scoped
memory [5], a region based automatic memory management scheme.
We believe it would be interesting to leverage previous work on
region inference [3] in the context of ML [18] to eschew RTGC
entirely through the use of scoped memory.

8. CONCLUSION AND FUTURE WORK
In this paper we presented our prototype implementation of a

real-time capable version of MLton. Our next steps are to inves-
tigate necessary changes to the optimization passes we needed to
disable to ensure correctness and predictability. We also plan on in-
vestigating new optimizations, specifically targeted at reducing the
overheads of the hybrid fragmenting GC. Previous experience with
the Fiji VM indicates that this is feasible. Lastly, we will consider
optimizations specific to RTEMS and revisit the I/O libraries.

References
[1] D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling fragmentation and

space consumption in the metronome, a real-time garbage collector
for java. In Proceedings of the 2003 ACM SIGPLAN Conference on
Language, Compiler, and Tool for Embedded Systems, LCTES ’03,
pages 81–92, New York, NY, USA, 2003. ACM.

[2] C. Belwal and A. M. K. Cheng. Feasibility interval for the transac-
tional event handlers of p-frp. In Proceedings of the 2011IEEE 10th
International Conference on Trust, Security and Privacy in Comput-
ing and Communications, TRUSTCOM ’11, pages 966–973, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[3] M. Deters and R. K. Cytron. Automated discovery of scoped mem-
ory regions for real-time Java. In Proceedings of the 3rd interna-
tional symposium on Memory management, ISMM ’02, pages 132–
142, New York, NY, USA, 2002. ACM.

[4] J. Gosling and G. Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[5] H. Hamza and S. Counsell. Region-based RTSJ memory manage-
ment: State of the art. Sci. Comput. Program., 77(5):644–659, May
2012.

[6] Y. Jiang, Q. Zhou, X. Zou, and A. M. K. Cheng. Minimal schedula-
bility testing interval for real-time periodic tasks with arbitrary release
offsets. In Proceedings of the 2014 IEEE Intl Conf on High Perfor-
mance Computing and Communications, HPCC ’14, pages 611–614,
Washington, DC, USA, 2014. IEEE Computer Society.

[7] JSR 302. Safety Critical Java Technology, 2007.

[8] MLton. http://www.mlton.org.

[9] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. High-level pro-
gramming of embedded hard real-time devices. In Proceedings of the
5th European conference on Computer systems, EuroSys ’10, pages
69–82, New York, NY, USA, 2010. ACM.

[10] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: fragmentation-tolerant real-time garbage collection. In Pro-
ceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 146–159, New
York, NY, USA, 2010. ACM.

[11] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, New York, NY, USA, 1999.

[12] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher Order Symbol. Comput., 11(4):363–397,
Dec. 1998.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Trans. Com-
put., 39(9):1175–1185, Sept. 1990.

[14] F. Siebert. Realtime garbage collection in the jamaicavm 3.0. In Pro-
ceedings of the 5th International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’07, pages 94–103, New
York, NY, USA, 2007. ACM.

[15] K. Sivaramakrishnan, L. Ziarek, R. Prasad, and S. Jagannathan.
Lightweight asynchrony using parasitic threads. In Proceedings of
the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multi-
core Programming, DAMP ’10, pages 63–72, New York, NY, USA,
2010. ACM.

[16] K. C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan. MultiMLton:
A multicore-aware runtime for standard ML. Journal of Functional
Programming, 24:613–674, 2014.

[17] W. Taha, P. Hudak, and Z. Wan. Directions in functional program-
ming for real(-time) applications. In Proceedings of the First Interna-
tional Workshop on Embedded Software, EMSOFT ’01, pages 185–
203, London, UK, UK, 2001. Springer-Verlag.

[18] M. Tofte and J.-P. Talpin. Region-based memory management. Inf.
Comput., 132(2):109–176, Feb. 1997.

[19] A. Tolmach and D. P. Oliva. From ml to ada: Strongly-typed language
interoperability via source translation. J. Funct. Program., 8(4):367–
412, July 1998.

[20] Z. Wan. Functional Reactive Programming for Real-Time Reactive
Systems. PhD thesis, Department of Computer Science, Yale Univer-
sity, December 2002.

[21] L. Ziarek, S. Weeks, and S. Jagannathan. Flattening tuples in an
ssa intermediate representation. Higher Order Symbol. Comput.,
21(3):333–358, Sept. 2008.


