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Abstract—In this paper, we propose an automatic video re-
trieval method based on high-level concept detectors. Research
in video analysis has reached the point where over 100 concept
detectors can be learned in a generic fashion, albeit with mixed
performance. Such a set of detectors is very small still compared to
ontologies aiming to capture the full vocabulary a user has. We aim
to throw a bridge between the two fields by building a multimedia
thesaurus, i.e., a set of machine learned concept detectors that is
enriched with semantic descriptions and semantic structure ob-
tained from WordNet. Given a multimodal user query, we identify
three strategies to select a relevant detector from this thesaurus,
namely: text matching, ontology querying, and semantic visual
querying. We evaluate the methods against the automatic search
task of the TRECVID 2005 video retrieval benchmark, using a
news video archive of 85 h in combination with a thesaurus of
363 machine learned concept detectors. We assess the influence
of thesaurus size on video search performance, evaluate and
compare the multimodal selection strategies for concept detectors,
and finally discuss their combined potential using oracle fusion.
The set of queries in the TRECVID 2005 corpus is too small for us
to be definite in our conclusions, but the results suggest promising
new lines of research.

Index Terms—Concept learning, content analysis and indexing,
knowledge modeling, multimedia information systems, video
retrieval.

I. INTRODUCTION

V
IDEO has become the medium of choice in applications

such as communication, education, and entertainment. In

each of these, the video carries a semantic message which can

be very versatile. For a human the meaning of the message is

immediate, but for a computer that is far from true. This dis-

crepancy is commonly referred to as the semantic gap [1].

Semantic video indexing is the process of automatically de-

tecting the presence of a semantic concept in a video stream.

It is impossible to develop a dedicated detector for each pos-

sible concept as there are just too many concepts. A recent trend

in semantic video indexing has therefore been to search for

generic methods that learn a detector from a set of examples
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[2]. This emphasis on generic indexing has opened up the pos-

sibility of moving to larger sets of concept detectors. MediaMill

has published a collection of 101 machine-learned detectors [3].

LSCOM is working towards a set of 1000 detectors [4]. Both are

learned from manually annotated examples from a news video

corpus and have varying performance. Annotation constitutes a

major effort and for any domain new concepts and new exam-

ples will have to be added. It is unrealistic to assume that such

a purely data-driven approach will ever reach the richness of

users’ vocabularies.

This richness of vocabulary is also a well-known problem for

humans describing video in words. A variety of terms are used

to describe the same video fragment by different users, or by the

same user in different contexts. Exploiting ontologies [5]–[7] to

structure terms employed by users can make descriptions more

consistent and can aid the user in selecting the right term for a

semantic concept.

Our aim in this paper is to link a general-purpose ontology

(with over 100 000 concepts) to a specific detector set (with sev-

eral 100s of concepts). In this way, inherently uncertain detector

results will be embedded in a semantically rich context. Hence,

we can, for example, disambiguate various interpretations or

find more general concepts. As the news domain is broad and

can in theory contain any topic, a large and domain indepen-

dent ontology is a must. As our ontology we use WordNet [5], a

lexical database in which nouns, verbs, adjectives, and adverbs

are organized into synonym sets (synsets) based on their mean-

ings and use in natural language. We establish a link between

WordNet and a set of 363 detectors learned from both MediaMill

and LSCOM annotations.

The first to add semantics to detectors by establishing links

with a general-purpose ontology were Hoogs et al. [8] who con-

nected a limited set of visual attributes to WordNet. Combining

low-level visual attributes with concepts in an ontology is dif-

ficult as there is a big gap between the two. In this paper we

take a different, more intuitive approach: we link high-level con-

cept detectors to concepts in an ontology. It should be noted,

however, that detectors and the elements of an ontology are of

a different nature. Detectors are uncertain whereas ontologies

use symbolic facts. As a consequence they have been studied

in completely different research fields. Having established a re-

lation does not necessarily mean that the results of a task orig-

inating in one field will improve when augmented with tech-

niques from the other field.

Our main research question therefore addresses the fol-

lowing: do semantically enriched detectors actually enhance

results in semantic retrieval tasks? We evaluate retrieval results

on 85 h of international broadcast news data from the 2005

TRECVID benchmark [9].
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The paper is organized as follows. We discuss related work

in Section II. We explain the process of adding semantics to

detectors in Section III. We then present different strategies for

selecting semantically enriched detectors for video retrieval in

Section IV. Our experimental setup is presented in Section V

and the experimental results in Section VI. We conclude in

Section VII.

II. RELATED WORK

Traditional video retrieval methods handle the notion of con-

cepts implicitly. They extract low-level features from the video

data and map this to a user query, assuming that the low-level

features correspond to the high-level semantics of the query.

Features can stem from textual resources that can be associated

to video, like closed captions, or speech recognition results, e.g.,

[10], [11]. Alternatively, low-level visual features, e.g., color

[12], texture [13], shape [14], and spatiotemporal features [15],

are used in combination with query images. More recently, ap-

proaches have been proposed that combine text and image fea-

tures for retrieval, e.g., [16]–[21]. We adhere to a multimedia

approach also, but we use the notion of concepts explicitly, by

expressing user queries in terms of high-level concept detectors

rather than low-level features.

Such a high-level video retrieval approach requires detec-

tion of concepts. Early approaches aiming for concept detection

focused on the feasibility of mapping low-level features, e.g.,

color, pitch, and term frequency, directly to high-level semantic

concepts, like commercials [22], nature [23], and baseball [24].

This has yielded a variety of dedicated methods, which exploit

simple decision rules to map low-level features to a single se-

mantic concept. Generic approaches for concept detection [3],

[25]–[29] have emerged as an adequate alternative for specific

methods. Generic approaches learn a wide variety of concepts

from a set of low-level features, which are often fused in various

ways. In contrast to specific methods, these approaches exploit

the observation that mapping multimedia features to concepts

requires many decision rules. These rules are distilled using ma-

chine learning. The machine learning paradigm has proven to be

quite successful in terms of generic detection [26], [28]. How-

ever, concept detection performance is still far from perfect; the

state-of-the-art typically obtains reasonable precision, but low

recall.

Learning requires labeled examples. To cope with the de-

mand for labeled examples, Lin et al. initiated a collaborative

annotation effort in the TRECVID 2003 benchmark [30]. Using

tools from Christel et al. [31] and Volkmer et al. [32], [33] a

common annotation effort was again made for the TRECVID

2005 benchmark, yielding a large and accurate set of labeled ex-

amples for 39 concepts taken from a predefined collection [4].

We provided an extension of this compilation, increasing the

collection to 101 concept annotations, and also donated the low-

level features, classifier models, and resulting concept detectors

for this set of concepts on TRECVID 2005 and 2006 data as part

of the MediaMill Challenge [3]. Recently, the LSCOM consor-

tium finished a manual annotation effort for 1000 concepts [4];

concept detectors are expected to follow soon. This brings con-

cept detection within reach of research in ontology engineering,

i.e., creating and maintaining large, typically struc-

tured sets of shared concepts.

Ontologies provide background knowledge about various

topics. Examples are SnoMed, MeSH, the Gene Ontology and

the metathesaurus UMLS for health care, AAT and Iconclass

for art, and the generic ontologies WordNet and Cyc. Ontolo-

gies have various uses in the annotation and search process.

Existing, well-established ontologies provide a shared vocabu-

lary. The vocabulary terms and their meanings are agreed upon.

Meaning is partially captured in the (hierarchical) structure of

the ontology. Polysemous terms can be disambiguated, and

relations between concepts in the ontology can be used to

support the annotation and search process [34], [35]. Ontolo-

gies are currently being used for manual annotation [36], [37],

and where manual annotations are not feasible or available,

they have been used to aid retrieval based on captions or other

text associated with the visual data [38]. These ontologies

are, however, not suitable for semantic retrieval based on the

visual properties of the data, since they contain little visual

information about the concepts they describe.

Some work has been done to combine ontologies with vi-

sual features. Hoogs et al. [8] linked ontologies and visual fea-

tures by manually extending WordNet with tags describing vis-

ibility, different aspects of motion, location inside or outside,

and frequency of occurrence. In [39] a visual ontology was built

that contains general and visual knowledge from two existing

sources: WordNet and MPEG-7. Bertini et al. [40] propose a

“pictorially enriched” ontology in which both linguistic terms

and visual prototypes make up the nodes of the ontology. To the

best of our knowledge, no work exists that links an ontology to

the high-level concepts appearing in video data.

III. ADDING SEMANTICS TO DETECTORS

Fig. 1 shows the schema used for semantically enriching con-

cept detectors. We call the semantically enriched collection of

concept detectors a multimedia thesaurus. It consists of textual

descriptions, links to WordNet synsets, and visual models of the

concept detectors, as detailed below.

A. Textual Descriptions

Each concept detector is associated with a manually created

textual description, . It elaborates on the visual elements that

should—or should not—be present. For example, the descrip-

tion for the concept detector storms is “outdoor scenes of stormy

weather, thunderstorms, lightning.” It explicitly indicates that

video containing lightning and thunderstorms should be tagged

as storms. The descriptions are by no means exhaustive, usually

consisting of one or two sentences [3], [4], but they do contain

a significant amount of information about the different kinds of

visual content associated with each detector.

B. Links to Wordnet

We manually create links between concept detectors and

WordNet synsets. To allow for scalability one prefers to obtain

the link between concept detectors and WordNet synsets auto-

matically. However, automatically mapping a concept detector

to an ontology is still a difficult issue. The manual process

guarantees high quality links, which are necessary to avoid
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Fig. 1. Data model for semantically enriched detectors. A semantically enriched detector consists of a textual description, a link to WordNet, and a visual model.
We refer to a collection of semantically enriched concept detectors as a multimedia thesaurus.

obscuring the experimental results. When automatic reasoning

methods become available that automatically link concepts

with high accuracy, these might at least partly substitute the

manual process. The links, , are based on a comparison

between the textual descriptions associated with each concept

detector and WordNet “glosses,” which are short descriptions

of the synsets. Each concept is linked to 1–6 synsets, with at

most two per part of speech (noun, verb, adjective). Concept

detectors for specific persons that are not present in WordNet

are linked as instances of a noun-synset. E.g., Ariel Sharon is

not present in WordNet and is therefore linked as an instance

of the noun-synset “Prime Minister.” Each concept was linked

to WordNet by two people independently. Overlap between the

linkers was consistently around 65%, and the concepts without

initial agreements were discussed until agreement was reached.

C. Visual Model

To arrive at a visual model for a concept detector, we

build on previous work in generic concept detection, e.g., [3],

[25]–[29]. Similar to this work, we view concept detection in

video as a pattern recognition problem. Given a pattern , which

is part of a shot, the aim is to obtain a confidence measure,

, which indicates whether semantic concept is present

in a shot.

Feature extraction is based on the method described in [3],

[29], which is robust across different video data sets while main-

taining competitive performance. We first extract a number of

color invariant texture features per pixel. Based on these, we

label a set of predefined regions in a key frame with similarity

scores for a total of 15 low-level visual region concepts, re-

sulting in a 15-bin histogram. We vary the size of the predefined

regions to obtain a total of 8 concept occurrence histograms that

characterize both global and local color-texture information. We

concatenate the histograms to yield a 120-dimensional visual

feature vector per key frame, .

For machine learning of concept detectors we adopt the ex-

perimental setup proposed in [3]. Hence, we divide a data set

a priori into nonoverlapping training and validation sets. The

training set contains 70% of the data, and the validation set

holds the remaining 30%. We obtain the a priori concept occur-

rence by dividing the number of labeled video examples by the

total number of shots in the archive. To obtain the confidence

measure we use the Support Vector Machine (SVM)

framework [41]; see [3], [26], [28]. Here we use the LIBSVM

implementation [42] with radial basis function and probabilistic

output [43]. SVM classifiers thus trained for , result in an es-

timate , where are parameters of the SVM. We ob-

tain good parameter settings by performing an iterative search

on a large number of SVM parameter combinations on training

data. We measure performance of all parameter combinations

and select the combination that yields the best performance after

3-fold cross validation. The result of the parameter search over

is the improved visual model , contracted to

.

Summarizing this section, a semantically enriched detector

is defined as:

(1)

and the multimedia thesaurus is the union over all .

IV. DETECTOR SELECTION STRATEGIES

In the video retrieval paradigm, user queries may consist

of example videos, natural language text, or both. Although

current practice suggests that combining concept detectors

with traditional text and image retrieval techniques [44], [45]

may yield improved performance, they might equally well

hurt performance as none of these techniques is perfect yet.

Speech recognition for the Dutch language, for example, is

still problematic. We therefore opt for automatic selection of

a concept detector appropriate to the query, allowing users to

quickly retrieve a list of relevant video fragments. We focus

on the selection of a single best detector to maximize retrieval

performance, and base our selection methods on the modalities

associated with the user query: the textual modality and the

visual modality. We also try to model the original user intent

motivating the query by using ontology knowledge.

Based on the different query modalities and the user intent we

identify three different approaches for selecting the most appro-

priate detector, as shown in Fig. 2. In the textual modality we use
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Fig. 2. Three different strategies for selecting a semantically enriched con-
cept detector from a multimedia thesaurus, given a multimodal user query: text
matching, ontology querying, and semantic visual querying.

a detector selection method based on text matching. When mod-

eling the user’s intent, we elicit semantic knowledge through

natural language analysis and ontology linking, using this to

create a detector selection method based on ontology querying.

In the visual modality we use a detector selection method based

on semantic visual queries. Below, we detail our detector selec-

tion strategies.

A. Selection by Text Matching

As in our multimedia thesaurus each detector is associated

with a textual description , we can match the text specifica-

tion of a query with the textual description of a detector. Both the

description and the query text are normalized: commonly occur-

ring words are removed using the SMART stop list [46], all text

is converted to lower case, and punctuation is removed. Each de-

tector description, or document, is represented by a term vector,

where the elements in the vector correspond to unique normal-

ized words, or terms. The concept descriptions are written in

natural language—as such, the term distribution roughly corre-

sponds with Zipf’s law. Therefore, the vector space model [47],

which discounts for frequently occurring terms and emphasizes

rare ones, is appropriate to match the words in the user query to

words in the detector descriptions.

Specifically, with a collection of descriptions , a candidate

description in and query containing terms , we use the

following implementation of the vector space model [48]:

(2)

where

We select the detector with the highest similarity between the

query vector and the description vector, , from mul-

timedia thesaurus :

(3)

B. Selection by Ontology Querying

When designing a detector selection method based on on-

tology querying, we attempt to model the user intent from the

query. We first perform syntactic disambiguation of the words

in the text query. The memory-based shallow parser described

in [49] is used to extract nouns and noun chunks from the text.

These are then translated to ontological concepts. First, we look

up each noun in WordNet. When a match has been found the

matched words are eliminated from further lookups. Then, we

look up any remaining nouns in WordNet. The result is a number

of WordNet noun-synsets related to the query text.

As described in Section III-B, the concept detectors are also

linked to WordNet synsets. We now query the ontology to de-

termine which concept detector is most related to the original

query text.1 Here, we must define what “most related” means.

Simply counting the number of relations between a query-synset

and a concept-detector-synset does not give a good indication

of relatedness, since the distances of the relations in WordNet

are not uniform. In addition, we encounter the problem of dis-

tinguishing between concept detectors that are equally close to

the textual query. To overcome this we use Resnik’s measure

of information content [50], where a concept is viewed as the

composite of its synonyms and its sub-concepts. E.g., vehicle is

defined not only by all occurrences of the word “vehicle”, but

also by all occurrences of the words “car,” “truck,” “SUV,” and

so on. The information content of a concept is negative the log

likelihood of that concept occurring in a tagged text, where the

likelihood of a concept is defined in terms of occurrences of that

concept and all subconcepts, or subsumers, of that concept:

(4)

where is a linked concept, words is the set of all noun

lemmas belonging to and all subsumers of is the total

number noun lemmas observed in an external corpus, and

count is the number of times each member of words

is observed in the external corpus. We used the SemCor news

corpus [51] as our external corpus. We select the concept de-

tector that maximizes information content:

(5)

C. Selection by Semantic Visual Querying

Concept detectors may also be selected by using semantic

visual querying. Although it is hard to expect that general users

will prefer to provide a number of image examples rather than

explicitly specifying the semantic concept they need, semantic

visual querying might prove a valuable additional strategy when

other selection strategies fail. For semantic visual querying we

1An RDF/OWL representation of the ontology can be queried at
http://www.cs.vu.nl/~laurah/semantics2detectors.html/
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Fig. 3. Schematic overview of our video retrieval experiments, using the con-
ventions of Fig. 2. In experiment 1 we assess the influence of an increasing the-
saurus size on video retrieval performance. In experiment 2 we evaluate three
concept detector selection strategies. Experiment 3 explores an oracle fusion of
individual detector selection methods.

follow the approach by Rasiwasia et al. [52]. In this scenario

all available visual models are applied to the query image; next,

the model with the highest posterior probability is selected as

most relevant. In our implementation, concept detector selection

based on semantic visual querying first extracts visual features

from the query images , as explained in Section III-C. Based

on the features, we predict a posterior concept probability for

each query image. We select the detector with the maximum

posterior probability:

(6)

V. EXPERIMENTAL SETUP

For evaluation we use the automatic search task of the 2005

TREC Video Retrieval Evaluation (TRECVID) [9]. Rather than

aiming for the best possible retrieval result, our goal is to as-

sess the influence of adding semantics to detectors. To that end,

our experiments focus on the evaluation of strategies for selec-

tion of a single concept detector, given an information need. We

first determine the best possible single concept detector for an

information need, or topic, given an increasing thesaurus of con-

cept detectors. Then, we assess different algorithms for the three

strategies described in Section IV and select the best implemen-

tation for each strategy. We compare the individual approaches;

analyzing their strengths and weaknesses. Finally, we explore

a combination method that fuses individual detector results. A

schematic overview of the experiments is depicted in Fig. 3. We

will now detail the search task, data set, multimedia thesaurus,

and our experiments.

A. TRECVID Automatic Video Search Task

The goal of the search task is to satisfy a number of video in-

formation needs. Given such a need as input, a video search en-

gine should produce a ranked list of results without human inter-

vention. The 2005 search task contains 24 search topics in total.

For each topic we return a ranked list of up to 1000 results. The

ground truth for all 24 topics is made available by the TRECVID

organizers, and to assess our retrieval methods we use average

precision (AP), following the standard in TRECVID evalua-

tions [9]. The average precision is a single-valued measure that

is proportional to the area under a recall-precision curve. This

value is the average of the precision over all relevant judged

results. Hence, it combines precision and recall into one per-

formance value. We report the mean average precision (MAP)

over all search topics as an indicator for overall search system

performance.

B. Data Set & Multimedia Thesaurus Building

The TRECVID 2005 video archive contains 169 h of video

data, with 287 episodes from 13 broadcast news shows from

US, Arabic, and Chinese sources, recorded during November

2004. The test data collection contains approximately 85 h

of video data. The video archives come accompanied by a

common camera shot segmentation, which serves as the unit

for retrieval. We face the task of specifying a set of semantic

concept detectors for the TRECVID 2005 data set. We adopt

the set of 101 concept detectors made publicly available as part

of the MediaMill Challenge [3]. These use the implementation

sketched in Section III-C. Using the same method, we learn

concept detectors based on the manual annotations of LSCOM

[4]. Concept detectors in both sets of annotations are related to

program categories, settings, people, objects, activities, events,

and graphics. Concepts are added to the combined thesaurus

only when at least 30 positive instances are identified in the

TRECVID 2005 training set. When concepts in the MediaMill

and LSCOM thesauri link to the same WordNet synset they

are considered to be similar. In those cases, the performance

on validation set is used as selection criterion. This process

results in a combined thesaurus of 363 concept detectors.

C. Experiments

We investigate the impact of adding semantics to detectors by

performing the following three experiments.

• Experiment 1: What is the Influence of Increasing the

Concept Detector Thesaurus Size for Video Search?

To assess the influence of growing concept detector thesauri on

video retrieval performance we randomly select a bag of 10 con-

cepts from our thesaurus of 363 detectors. We evaluate each de-

tector in the bag against all 24 search topics and determine the

one that maximizes AP for each topic. Hence, we determine the

upper limit in MAP score obtainable with this bag. In the next it-

eration, we select a random bag of 20 concept detectors from the

thesaurus, and once more the optimal MAP is computed. This

process is iterated until all concept detectors have been selected.

To reduce the influence of random effects, which may disturb

our judgement of increasing thesaurus size on video search per-

formance, we repeat the random selection process 100 times.

• Experiment 2: How to Select the Most Appropriate Con-

cept Detector for a Video Search Query?

For each of the three modalities identified in Fig. 2, we want

to identify the most appropriate concept detector. Hence, our



980 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 5, AUGUST 2007

second experiment consists of three sub-experiments, as de-

tailed below, and a fourth sub-experiment that compares the

three individual methods.

1) Experiment 2a: What Is the Most Appropriate Concept

Detector Using Text Matching?: We assess the influence of text

matching on concept detector selection by indexing the concept

detector descriptions in the Lucene [48] search engine, using the

implementation described in Section IV-A. Within text retrieval,

collections are generally quite large compared to the 363 con-

cept descriptions that we have available. We hypothesize that

in this small collection, where there are comparatively few text

terms to match, recall is a bigger issue than in large collections.

Effective ways to increase recall are stemming, where words are

reduced to their root forms, and character -gramming, where

words are iteratively broken up into sequences of charac-

ters. We perform three experiments for text matching—perfect

match, stemmed match, and character -gram match. For stem-

ming we use the Porter stemming algorithm [53]. For character

-grams we use sequences of four characters as this approach

has been shown to perform well for English [54].

2) Experiment 2b: What Is the Most Appropriate Concept

Detector Using Ontology Querying?: As described in Sec-

tion IV-B, we query the ontology for the concept detector

most closely related to the noun-synsets in the query. Several

approaches exist for estimating the semantic distance between

synsets (see for example [55]). In this paper, we employ two

approaches that have shown promising results in earlier studies.

The first uses Resnik similarity, which is a measure of semantic

similarity in an is-a taxonomy based on information content

[50] (see Section IV-B); in the case of WordNet, the “is-a

taxonomy” translates to the hyponym/hypernym hierarchy. The

second approach uses subsumption relations (hyponym/hy-

pernym) as well as part-of relations. While the use of hyponym

relations is commonly accepted, a recent study [35] showed

that the inclusion of part-of and hypernym relations further

improves retrieval results, especially for visual data. A con-

cept detector directly matching the query synset is considered

closest. After that, a concept detector that has a hypernym

relation to the query synset is considered closest, followed

by a concept detector that has a hyponym or part-of relation

to the query synset. Many queries consist of more than one

noun synset. When this is the case, we first seek the closest

concept detector that is related to the first query synset. If there

are no matching concept detectors, we proceed to the next

query synset, until a detector is found or the last synset has

been reached. In addition, we test two methods to break ties

between detectors that are equally close to a query synset: 1)

the information content of the concept detector and 2) the a

priori chance that a concept is present in our data set.

3) Experiment 2c: What Is the Most Appropriate Concept

Detector Using Semantic Visual Querying?: Selecting concept

detectors using semantic visual querying may be a brittle

approach when concepts are not distributed equally in the

data set, as is often the case in realistic video retrieval appli-

cations. Rather than selecting the concept with the maximum

score—which is often the most robust but also the least informa-

tive one, e.g., person, face, outdoor—we also assess a heuristic

selection mechanism that takes concept frequency into account.

Similar to the vector space model used in Section IV-A, we

discount for frequently occurring terms and we emphasize rare

ones. We take the posterior probability as a substitute for term

frequency and divide by the logarithm of the inverse concept

frequency. By doing so, we prioritize less frequent, but more

discriminative, concepts with reasonable posterior probability

scores over frequent, but less discriminative, concepts with

high posterior probability scores.

4) Experiment 2d: What Are the Strengths and Weaknesses of

the Selection Strategies?: We compare the three different selec-

tion strategies quantitatively as well as qualitatively. Based on

previous TRECVID search results [9], [16]–[21], we anticipate

that the AP varies highly per topic. Therefore, we normalize the

AP scores of the three methods by dividing them by the AP score

of the best possible detector. These percentages give a better in-

dication of the differences between the methods than the raw

AP data. This has the added advantage that unreliable statistical

results due to outliers are avoided.

We examine whether there are significant differences be-

tween the three detector selection methods. Since the data

are not normally distributed we perform a nonparametric

Kruskal-Wallis test. We also perform pairwise Wilcoxon signed

rank tests. We look for correlation between the three selection

methods with Spearman’s rank correlation coefficient. Finally,

we qualitatively examine the differences by looking at which

detectors are selected by the three methods.

• Experiment 3: What is the Influence of Combining De-

tector Selection Strategies?

Since the individual concept detector selection strategies in ex-

periment 2 work with different modalities, it is natural to ask

to which extent they complement each other. A combination of

some or all of them could further improve video retrieval per-

formance [56]. Various combination methods exists; the linear

combination of individual methods is often evaluated as one of

the most effective combination methods, see for example [57],

[58]. We adopt a linear combination function, similar to [21],

[58], which uses a single combination factor for pair-wise

combination of two concept detectors, defined as:

(7)

where . To allow for three-way combination of se-

lected concept detectors we extend (7) with an additional com-

bination factor , defined as:

(8)

where , and . To assess the influence of

combining detector selection mechanisms, we perform an ex-

periment that evaluates all possible linear combinations with

steps of 0.1 for both and . We term this combination “or-

acle fusion” as it uses the test set results to select the optimal

combination on a per-query basis. It is included to explore the

upper limits of performance that are reachable by combining de-

tector selection strategies.

We compare the oracle fusion experiments using a

Kruskal-Wallis test and pairwise Wilcoxon signed rank tests.

Wilcoxon’s test is also used to examine differences between
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Fig. 4. Box plot showing the positive influence of an increasing thesaurus size, in random bags of 10 machine learned concept detectors, on MAP over 24 topics
from the TRECVID 2005 video retrieval benchmark. Extreme values after 100 repetitions are marked (+) as outliers.

the results of the fusion experiments and the results of the

single-method experiments.

VI. RESULTS

A. Experiment 1: What Is the Influence of Increasing Concept

Detector Thesaurus Size for Video Search?

We summarize the influence of an increasing thesaurus of

concept detectors on video search performance in the box plot in

Fig. 4. There is a clear positive correlation between the number

of concept detectors in the thesaurus and video retrieval perfor-

mance. The box plot also shows that the median is shifted to-

wards the bottom of the box for the first 30 concept detectors,

even when the outliers are ignored. This indicates that, on av-

erage, performance is low for small thesauri, but some detectors

perform well for specific topics. However, it is unlikely that a

large variety of topics can be addressed with a small thesaurus,

which explains the skew. With only 10 randomly selected con-

cept detectors the median MAP score is 0.008. Indeed, the usage

of few concept detectors is of limited use for video retrieval.

However, a steady increase in thesaurus size has a positive in-

fluence on search performance. For the first 60 concept detectors

this relation is even linear, increasing MAP from 0.008 to 0.047.

When thesauri grow, more search topics can be addressed with

good performance. However, the shift towards the high end of

the box indicates that a substantial number of concept detectors

in our thesaurus do not perform accurate enough, yet, to be de-

cisive for performance. As a result, when more than 70 concept

detectors are added, the increase is less strong, but it keeps rising

until the limit of this thesaurus is reached for the maximum ob-

tainable MAP of 0.087. Note that this value is competitive with

the state-of-the-art in video search [9].

B. Experiment 2: How to Select the Most Appropriate Concept

Detector for a Video Search Query?

Due to lack of space we are not able to provide detailed break-

downs of scores for all our experiments. Table I lists the AP

scores for the selected concept detector methods (columns 3–5)

and for the best possible single detector (column 2).

1) Experiment 2a: What Is the Most Appropriate Concept

Detector Using Text Matching?: Contrary to our expectations,

we found that using exact text matching provided the best results

with a MAP score of 0.0449, versus 0.0161 for stemmed text,

and 0.0290 for -grammed text. It appears that when retrieving

detector descriptions using query text, it is more important to get

exact matches to the original query terms than it is to aim for re-

call and increase the number of detector descriptions retrieved.

We expect that this is due to our choice to select only a single

best concept detector match. If we allow multiple detectors to be

returned, techniques such as stemming and -gramming might

have a beneficial impact.

In the remainder we will use the exact text matching approach

for concept detector selection using textual matches.

2) Experiment 2b: What Is the Most Appropriate Concept

Detector Using Ontology Querying?: The approach using

Resnik similarity (approach 1) was outperformed by the

approach using subsumption/part-of relations (approach 2)

regarding mean average precision (0.0218 and 0.0485, re-

spectively), but the difference was not statistically significant.

Examining the selected detectors, we see that approach 1

performs better on person queries, while approach 2 benefits

from the use of hypernyms.

A comparison between the use of information content to the

use of a priori chances for distinguishing between concept de-

tectors that are equally close to the topic, shows that the dif-

ferences are minimal. Only four topics get a different detector,
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TABLE I
COMPARISON OF THREE DETECTOR SELECTION STRATEGIES FOR VIDEO RETRIEVAL. SEARCH RESULTS ARE COMPARED AGAINST THE BEST POSSIBLE CONCEPT

DETECTOR SCORE FOR EACH TOPIC IN RELATIVE PERCENTAGES OF AVERAGE PRECISION (AP%). THE BEST RESULT IS GIVEN IN BOLD

and the difference in MAP is only 0.0034. A possible explana-

tion is that for most topics we find one concept detector that is

closest to the topic synsets, which means that neither informa-

tion content, nor a priori chances have to be used. In the re-

maining sections, we continue with the results of the subsump-

tion/part-of approach using information content, since this gives

us the highest AP scores.

Using this approach, a detector was found for all but one of

the queries of TRECVID 2005 that is at most one hypenym/

hyponym/part-of relation away from a topic synset. This sug-

gests that our large detector pool has a good coverage of the

TRECVID queries.

3) Experiment 2c: What Is the Most Appropriate Concept

Detector Using Semantic Visual Querying?: We observe that

selection of concept detectors from semantic visual examples

profits from a normalization step that takes a priori concept oc-

currence into account. When we do not normalize the posterior

probability, selection based on semantic examples picks in 23

out of 24 queries (data not shown) one of the four most frequent

concepts appearing in this data set, namely people, face, over-

layed text, or outdoor [3]. While this is often correct, the concept

is so general that it hardly contributes to retrieval performance.

The only exception is the search topic for tennis players, where

the selected sport games detector has good AP.

When we take a priori concept frequency into account,

search results improve. Results of this experiment are summa-

rized in the last column of Table I. We observe that selected

detectors sometimes accurately reflect the semantics of the

search topics, e.g., Iyad Allawi, Graphical Map, Tennis Game,

Helicopter Hovering, Cigar Boats, Basketball Game, and

Grass. This is not always the case however, and questionable

detectors are selected for some search topics. This especially

hurts the person queries; for the topic find shots of George

Bush entering or leaving a vehicle, for example, the optimal

detector is rocket propelled grenades. However, a detector that

matches well in terms of semantics is no guarantee for good

search performance. In cases such as find shots of graphical

maps with Baghdad marked or find shots of ships, the selected
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TABLE II
COMPARISON OF PAIR-WISE (7) AND THREE-WAY (8) ORACLE FUSION OF THE DETECTOR SELECTION STRATEGIES FROM TABLE I. SEARCH RESULTS ARE

COMPARED, WITH VARYING � AND � , AGAINST THE BEST POSSIBLE CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE PERCENTAGES OF AVERAGE

PRECISION (AP%). FUSION RESULTS THAT RELY ON ONE DETECTOR ONLY ARE INDICATED WITH—. THE BEST RESULT IS GIVEN IN BOLD

detectors fit the topic, but perform only moderately well. In the

first case the detector is not specific enough, in the second case

its performance is not good enough. These results suggest that a

measure is needed indicating when incorrect optimal detectors

should be preferred over correct ones with bad video search

results.

4) Experiment 2d: What Are the Strengths and Weaknesses

of the Selection Strategies?: We found no significant differ-

ences between the results of the three individual selection exper-

iments. Experiments 2a-2b, 2a-2c and 2b-2c also failed to show

differences. We found a positive correlation between experi-

ments 2a-2b, which was lacking between 2a-2c and 2b-2c. This

suggests that the text-based and WordNet-based concept de-

tector selection methods perform well on the same set of topics

(and perform badly on the same set of topics) while the visual

method scores well on other topics. This is supported by the fact

that the text-based and WordNet-based methods select the same

detector for 10 topics, while the visual method agreed on a de-

tector only four times with the text-based method and only once

with the WordNet based method.

C. Experiment 3: What Is the Influence of Combining Detector

Selection Strategies?

We summarize the results of our combination experiments in

Table II. The increase in MAP for all fusion experiments in-

dicates that combining detector selection strategies pays off in
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general. Pair-wise combination is especially effective when two

different concept detectors obtain good average precision in iso-

lation. For search topics such as find shots with tall buildings

and find shots of an office setting the pair-wise combination

of detectors selected by text matching and ontology querying

even improves substantially upon the best possible single de-

tector. A combination of selection by ontology querying and

selection using semantic visual examples yields the most ef-

fective pair-wise combination strategy in terms of overall per-

formance. However, no significant differences were found be-

tween the three types of pair-wise combination results. Since

a large overlap in selected detectors exists between the three

different selection strategies, three-way combination often boils

down to pair-wise combination. For those search topics where

three different concept detectors are selected, e.g., find shots of

palm trees, three-way combination yields a further, but modest,

increase over the best pair-wise combination. Again, no sig-

nificant difference was found between pair-wise and three-way

combination. However, using a Wilcoxons signed rank test, we

did find significant differences between the results of the combi-

nation experiments and the results of the single-method exper-

iments. The fusion experiments were consistently better at the

0.01 -level.

VII. DISCUSSION AND CONCLUSION

We view this paper as a first step in a novel multidisciplinary

approach to tackle the problem of semantic video retrieval. The

results are not conclusive in the sense that they provide a solid

basis for preferring a particular approach over others.

Experiment 1 gives indications about the number of the-

saurus concepts ( thesaurus size) needed for optimal video

retrieval performance. In Fig. 4 we can see that a thesaurus size

of 100–200 already comes close to maximum performance.

However, our experiments consider only 24 topics. A wider

range of topics will likely require a larger thesaurus size to

reach this same performance level.

In the detector selection experiment, experiment 2 we see

that both in terms of MAP and in terms of the highest number

of “best detector selections” the three selection strategies show

comparable results. For text matching (2a) we found that exact

matching works best, but this is probably a consequence of the

fact that we select only a single detector. For ontology querying

(2b) it is interesting to note the distinction between the hy-

ponym/part-of and the Resnik method; the former performing

best on “general concept” queries, the latter on “person ”

queries. This suggests the use of a more refined concept-de-

tector selection mechanism. Semantic visual querying (2c) was

shown to correlate better with a different set of topics than both

text matching and ontology querying. For this selection method

we note the importance of avoiding frequently occurring but

nondiscriminative concept detectors, such as for people and

outdoor.

The fusion experiments (3) clearly show that we can gain

by combining selection methods. It indicates that we can

come close to achieving optimal concept-detector selection

scores if we understand the situations in which it is useful to

combine selection mechanisms. We should consider including

a “selector-of-selector” step based on the query topic, which

would propose a (combination of) selection method(s) that is

likely to be optimal. At the moment, the set of topics included

in this study provides insufficient information as a basis for

such a meta-selection. More experimentation will be needed

to clarify in which cases (e.g., for which classes of topics) two

or more selection methods benefit from combination. The goal

should be to identify, for example, whether topics involving

named people require a different selection method than a topic

involving a general concept such as road. Studying the nature

of query topics might also reveal whether we are missing out

important other categories of topics.

One limitation of our approach is that we have only consid-

ered situations in which the three individual methods select pre-

cisely one detector. This is likely to have been too strong. It is

easy to imagine situations in which the selection strategies pro-

duce a set of multiple detectors. In principle, this would make

it possible to get a higher average precision score than that of

a single detector (which is the maximum score we can achieve

in this study). However, a major increase in detection perfor-

mance is needed before concept detector combination is really

successful. We are planning experiments in which we lift this

limitation.

Adopting a broader perspective, we also need to consider the

effect of the domain we are working in. News video is a do-

main with special characteristics. The stylized shots, the highly

domain-specific concepts (female anchor) and other factors are

likely to make it difficult to predict how our methods would be-

have in other video retrieval domains, such as documentaries.

Finally, coming back to the research question we started with:

have we shown that semantically-enriched detectors enhance re-

sults in semantic retrieval tasks? Our results do not yet permit

us to respond with a firm “yes” to this question, but the results

are encouraging. We have scratched the surface of a semantic

video retrieval approach which combines different techniques.

The results suggest promising new lines of research.
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