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SUMMARY

The development of Internet of Things (IoT) applications can be facilitated by encoding the meaning of
the data in the messages sent by IoT nodes, but the constrained resources of these nodes challenge the
common Semantic Web solutions for doing this. In this article, we examine enabling technologies for
adding semantics to the IoT. Especially, we analyze data formats, which enable IoT applications consume
semantic [oT data in a straightforward and general fashion, and evaluate resource usage of different
alternatives with a sensor system. Our experiment illustrates encoding and decoding of different data
formats and shows how big a difference a data format can make in energy consumption. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Internet of Things (IoT) is expected to bring the Internet truly into our everyday lives by
connecting a vast amount of devices and objects to the Internet. All these devices and objects—
from white goods, bicycles, and sport watches to environmental sensors, traffic lights, and tools
used in factories—will have their unique identifiers (IDs) and will communicate with other
peers and servers on the Internet. The resulting uniform access to these devices and objects will
introduce significant possibilities for applications that help people to achieve their goals, companies
to improve their processes—generally, the society to improve its citizens’ quality of life.

While the main challenges of connecting IoT nodes in low level are being solved, integrating
and interoperating huge amounts of information provided by IoT nodes are becoming increasingly
important. Even more can be achieved if we add semantics to the information produced by the
IoT nodes. As pointed out by Berners-Lee ef al. in their landmark article about the Semantic Web,
‘developments will usher in significant new functionality as machines become much better able to
process and understand the data’ [1]. We see this significant new functionality possible when [oT
nodes send data directly in a format that contains semantics in addition to the raw data. Because the
meaning of the data is encoded in the message, the receiver of the message can utilize the data in
a straightforward and general fashion. The receiver does not need node-specific knowledge but can
process data from all nodes in a similar way. However, because IoT nodes are often small devices
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with modest computing, communication, memory, and energy resources, they introduce challenges
not present in the common scenarios of Semantic Web.

In this article, we tackle the challenge of adding semantics to IoT without breaking the constraints
on resource usage. Common semantic technologies offer expressive representations. However,
these representations require a considerable amount of resources, which are not available in IoT
systems, and this conflict introduces a considerable challenge. We present the enabling technologies
for adding semantics to IoT, compare the different approaches, and measure their resource usage,
especially energy consumption with a sensor system. The main contributions of this article are
(1) comparing the semantic expressivity of different data formats adding semantics to IoT, (2)
measuring the resources needed to encode and decode them in a sensor system, and (3) suggesting
data formats offering the best compromise between the usually conflicting characteristics of good
expressivity and modest resource requirements.

We focus on different data formats enabling semantics. Hence, we assume that each encoded
message is delivered under similar conditions (i.e., with the same protocol and along the same path)
and do not discuss the effect of protocols or architectures on resource usage. Under these assump-
tions, a simple architecture suffices for the experiments. Moreover, we utilize one well-known public
access ontology to determine the meanings encoded in the different data format. Other ontologies
may give slightly different meanings to data items based on their own knowledge structures. We
concentrate on studying generally how to map data values to ontologies, without referring to any
specific ontology.

We published a brief comparison of data formats and preliminary evaluation in [2] and reported
detailed introduction of different formats and approaches and careful analysis with new experiments
here. The rest of this article is organized as follows: Section 2 presents data format alternatives,
and Section 3 discusses energy efficiency issues. We present our system and evaluation results in
Section 4, discuss the future work in Section 5, and conclude the paper in Section 6.

2. DATA FORMATS

One of the main challenges of IoT data formats is mapping between data formats and models
used for constrained devices and data formats and models used in the Web and Semantic Web,
such as eXtensible Markup Language (XML), Javascript Object Notation (JSON) [3], and Resource
Description Framework (RDF) [4].

A data format should set minimal requirements for both IoT nodes and the data consumers, which
are IoT applications and services utilizing data and supporting functionalities. ‘Minimal require-
ments for IoT nodes’ means that the solution should increase resource consumption as little as
possible. ‘Minimal requirements for consumers’, in turn, means that the solution should be general,
and any consumer should be able to interpret the data with minimal effort and a priori knowledge.
Moreover, the data format should be compatible with Semantic Web, as only then, can the exist-
ing Semantic Web tools be used for inference, knowledge bases, ontology alignment, and semantic
queries. A data format fulfilling these requirements allows application developers to easily utilize
nodes implemented and deployed by others. Such a lightweight and easy-to-use data format could
even bridge the current gap between different IoT domains and applications.

Research on Semantic Web has produced well-established specifications for formal knowledge
representations. These knowledge representations allow logical reasoning that is able to infer new
information from existing assertions and rules. Standard representations are potential candidates for
representing sensor data. Among them, RDF is the most widely used data model for representing
semantic data. RDF represents data as triples in the form (subject, property, and object). A triple
denotes that a subject has a property whose value is the object. IoT data usually originate from
devices, humans, and other entities in the physical world. It refers to attributes of phenomena and to
relations among these entities. The simplest way of semantically representing IoT data, like a mea-
surement made by an IoT device, is denoting the IoT device as the subject, the measured quantity
as the property, and the measured value as the object. For example, ‘sensor 1’ is the subject, ‘tem-
perature’ is the property, and ‘25’ is the value. The unit of measurement, for example, ‘Celsius’, can
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be defined separately. Similarly, when Alice is in campus, ‘Alice’ is the subject, ‘isLocated’ is the
property, and ‘Campus’ is the value.

We utilize a running example of two kinds of sensor nodes. One sensor node sends a time stamp
value together with temperature, acceleration, and magnetic field values. A second one sends loca-
tion data (longitude and latitude) with a user ID. Other sensor data can be represented in a similar
way. Table I presents in RDF/XML format the first sensor data example of temperature, acceler-
ation, and magnetization. This is produced by a sensor in our sensor system. Table II presents in
RDF/XML format the second sensor data about location. A clear advantage of RDF is that the exist-
ing higher level languages RDF Schema [5] and Web Ontology Language [6] provide a standard
vocabulary for defining classes and relationships among classes, which enables high-level infer-
ence. Hence, when IoT nodes express data in RDF, these languages facilitate realizing advanced
semantic processing.

Notation3 (N3) [7], Turtle [8], and N-Triples [9] are alternatives for RDF. They are also based
on triplet structure, but they differ in expressivity. They all can be transformed into RDF in a
straightforward manner and are in most cases more lightweight than RDF/XML. Among these
alternatives, N3 is a flexible language with strong expressive capability going beyond the RDF
model, Turtle is an RDF-compatible subset of N3 while N-Triples has constrained expressivity.
N3 and Turtle have short-hand syntaxes. These syntaxes shorten the descriptions but, on the other
hand, require more computing resources when the descriptions are processed. Table III presents the
temperature, acceleration, and magnetic sensor data in N3 format. Table IV presents location sensor
data in N3 format.

RDEF, N3, Turtle, and N-Triples are designed to be used by Web applications; hence, resource
usage was not the main issue when these languages were designed. SenML [10], on the other hand, is
a sensor data description language for representing simple sensor measurements and device param-
eters. It is targeted for resource-constrained devices, and hence, the amount of processing and the
size of data were considered when it was designed. A SenML description carries a single base object

Table [. Temperature, acceleration, and magnetic sensor data
in Resource Description Framework.

Resource Description Framework

<rdf:RDF xml:base="http://iot.fi/0”” xmlns:i="http://iot.fi/o#”
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<i:Sensor rdf:ID="accmagSensor01”>
<i:timeStamp>2012-05-18T12:00:00</i:timeStamp>
<i:aceX>618</i:accX> <itaccY>319</irtaccY>
<i:accZ>671</i:accZ> <i:magX>123</i:magX>
<i:magY>234</i:magY> <i:magZ>345</i:magZ>
<ittemp>22.5</i:temp>

</i:Sensor> </rdf:RDF>

Table II. Location sensor data in Resource Description
Framework.

Resource Description Framework

<rdf:RDF xml:base="http://iot.fi/0”” xmlns:i="http://iot.fi/o#”
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’>
<i:LocationSensor rdf:ID="locaSensor767”>
<i:ownerID>*“Alice”</i:ownerID>
<i:longitude>25.468</i:longitude>

<i:latitude>65.058 </i:latitude>

</i:LocationSensor>

</rdf:RDF>
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Table III. Temperature, acceleration, and magnetic sensor
data in N3.

N3

@prefix i:<http://iot.fi/o#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
i:accmagSensor(Q1

i:accX “6187; i:accY “3197; i:accZ “6717;

imagX “123”; itmagy ‘“234”; iimagZ “345”;

iitemp “22.5”; irtimeStamp “2012-05-18T12:00:00;

a i:Sensor.

Table I'V. Location sensor data in N3.

N3

@prefix i: <http://iot.fi/o#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
i:locaSensor767 i:ownerID “Alice”;

izlongitude “25.468”; i:latitude “65.058;

a i:LocationSensor.

consisting of attributes and an array of entries. Each entry, in turn, consists of attributes such as a
unique ID for the sensor, the time the measurement was made, and the current value. SenML can be
represented in JSON, XML, and Efficient XML Interchange (EXI) [11]. The SenML format can be
extended with further custom attributes. For example, the resource type (rt) attribute can be used to
define the meaning of a resource. Other semantic attributes can be defined in a similar way. Finally,
additional information can be made available by including in a SenML description a link in the
CoRE Link Format [12], but then additional communication is required to fetch that information.
Table V presents the temperature, acceleration, and magnetic sensor data in SenML, using JSON,
XML, and EXI, respectively (‘bt’ is base time and ‘bn’ is base name, in this case, it denotes a device
ID). Table VI presents the location sensor data in SenML. ‘pr’ stands for prefix in Tables V and
VI, which can be transformed to xml:base="http://iot.fi/0” when SenML data are transformed to
RDF/XML.

Another emerging attempt is to enable RDF level semantics for JSON format. Several proposals,
including RDF/JSON [13], JSN3 [14], JTriples [15], RDFj [16], and JSON for Linked Data (JSON-
LD) [17], have been presented. They allow an RDF graph to be written in a format compatible with
JSON. To achieve this, the essential idea is to introduce universal IDs for JSON objects via the use
of uniform resource identifiers (URIs), a mechanism to serialize a set of RDF triples as a series of
nested data structure in JSON, and a mechanism to associate data types with values. RDF working
group compared these formats with examples in [18]. Among alternatives, JSON-LD seems to be a
most promising one and became World Wide Web Consortium candidate recommendation. JSON-
LD is designed to be completely compatible with JSON, and it expresses semantics slightly over
RDF model. This means in practice it can be considered to be a JSON serialization for RDF. JSON-
LD requires minimal effort from developers to transform normal JSON to JSON-LD, in its easiest
way, only two key words (@context and @id) need to be known for utilizing basic feature JSON-LD
supports. The upper part of Table VII presents a compact JSON-LD packet describing temperature,
acceleration, and magnetic sensor data, while the lower part of Table VII presents a corresponding
context referred JSON-LD packet. Contexts describe short-hand terms for JSON-LD, and it can be
directly embedded into data packets or be referenced. [oT nodes can agree contexts at design time or
send full contexts on request between nodes for decreasing communication overhead in this way. For
example, a node receiving context-referenced JSON-LD data (shown in the lower part of Table VII)
can retrieve context information at http://iot.fi/json-1d/contexts. Table VIII shows location sensor
data in compacted and context-referenced JSON-LD format.
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Table V. Temperature, acceleration, and mag-
netic sensor data in different formats of SenML.

Sensor data in Javascript Object Notation

“e” [ {“n”: “accX”, “v”: 618},
“n”: “accY”, “v”: 319},
“accZ”, “v’: 671},
“magX”, “v’: 123},
“magY”, “v”: 234},
“magZ”, “v’: 345},
“temp”, “v: 22.5}],
‘bn”: “accmagSensor01”,
“pr’”: “http://iot.fi/o#”,
“bt”: “3296120023”,

“rt”: “Sensor” }

I
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Sensor data in eXtensible Markup Language

<senml xmlns="urn:ietf:params:xml:ns:senml”
pr="http://iot.fi/o#”
bn="accmagSensor01”
bt="3296120023"
rt="Sensor” >

<e n="accX” v="618" />
<en="accY” v="319" />
<e n="accZ” v="671" />
<en="magX” v="123" />
<en="magyY” v="234" />
<en="magZ” v="345" />
<e n="“temp” v="22.5" />
</senml>

Sensor data in Efficient XML Interchange

0x80419cd95b ... 145 bytes ... 0801001000

bn, base name; bt, base time; pr, prefix; rt, resource
type.

Entity Notation (EN) [19, 20] is another lightweight data format for distributed systems.
It supports Semantic Web technologies and has been designed to be compatible with RDF and Web
Ontology Language. EN has almost equal expressivity with RDF and N3 on the data exchange level.
As can be seen from Table IX, the complete EN format resembles the triple structure of these rep-
resentations. ‘Sensor’ and ‘accmagSensorO1’ define the type and ID of the sensor; each line below
contains a property and an object (i.e., value) for that subject. Type information about the subject is
mandatory for complete EN packets, because it enables linking this packet to higher level ontology
knowledge defining entity hierarchies and relations, types of properties, and so on. The short EN
format is based on templates, IDs, and variables. The upper part of Table IX presents a complete
EN packet describing temperature, acceleration, and magnetic field data, while the lower part of
Table IX presents a corresponding short EN packet. Similarly, Table X presents complete and short
EN packets for location sensor data. Universally unique ID in the short packet is used to identify the
template. It is an ID that is guaranteed to be unique across space and time.

Table XI presents a template for transferring a short EN packet to a complete EN packet shown
in Table IX. This template basically contains a description of the constant part of this complete EN
packet and placeholders for the variable items. The corresponding short packets contain a value for
each variable item. A sequence of complete EN packets can also be shortened with one template.
A short packet sent over communication links needs to contain only a template ID and the variable
items. A template can be stored locally in an IoT node decoding EN packets. Otherwise, it can be
transferred between lIoT nodes with a sequence of EN packets [19]. Transferring EN templates intro-
duces extra encoding and decoding cost, but this is not a considerable amount of extra cost when a
template can be utilized for decoding a large amount of short EN packets.
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Table VI. Location data in different formats of
SenML.

Sensor data in Javascript Object Notation

{“e”: [ { “n”: “longitude”, “v”: 25.468},
{ “n”: “latitude”, “v"": 65.058}],

“bn’’: “locaSensor767”,

“pr’”: “http://iot.fi/o#”,

“bt”: “3296123968”,

“rt”: “LocationSensor” }

Sensor data in eXtensible Markup Language

<senml xmIns="“urn:ietf:params:xml:ns:senml”
pr="http://iot.fi/o#”

bn="locaSensor767”

bt="3296123968"

rt="Sensor”’>

<e n="longitude” v="25.468">

<e n="latitude” v="65.058">

</senml>

Sensor data in Efficient XML Interchange

3c73656e6d6e ... 59 bytes ... 303538223e

bn, base name; bt, base time; pr, prefix; rt, resource
type.

Table VII. Temperature, acceleration, and magnetic sensor data in Javascript
Object Notation for Linked Data.

Sensor data in compacted Javascript Object Notation for Linked Data format

{

“@context”:

“1”: http://iot.fi/o#”,

“accX’: “i;accX”, “accY”: “i:accY”, “accZ”: “i:accZ”,

“magX’: “i:magX”, “magY¥”: “i:magY”, “magZ”: “i:magZ”,
2. s e

“temp”: “irtemp”,

}

“

99, ¢

timeStamp’”: “i:timeStamp”

@id”: “i:accmagSensor01”,

“@type”: “i:Sensor”,

“accX’: “618”, “accY”: “319”, “accZ”: “671”,
“magX”: “123”, “magY”: “234”, “temp”: “22.5”,
“timeStamp”: “2012-05-18T12:00:00”

}

Sensor data in context-referenced Javascript Object Notation for Linked Data format

{

“@context”: “http://iot.fi/json-1d/contexts”,
“@id”: “i:taccmagSensor01”,

“@type”: “i:Sensor”,

“accX”: “6187, “accY”: “319”, “accZ”: “6717,
“magX”: “123”, “magY”: “234”, “temp”: “22.5”,
“timeStamp”: “2012-05-18T12:00:00”

}
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Table VIII. Location sensor data in Javascript Object Notation for Linked Data.

Sensor data in compacted Javascript Object Notation for Linked Data format

{

“@context”:

{
“4”: “http://iot.fi/o#”,
“ownerID”: “i:ownerID”,

“longitude”: “i:longitude”, “latitude”: “i:latitude”

2
“@id”: “i:locaSensor767”,

“@type”: “i:LocationSensor”,

“ownerID”: “Alice”,

“longitude”: “25.468”, “latitude”: “65.058”

}

Sensor data in context-referenced Javascript Object Notation for Linked Data format

{ “@context”: “http://iot.fi/json-1d/contexts”,
“@id”: “i:locaSensor767”,

“@type”: “i:LocationSensor”,

“ownerID”: “Alice”,

“longitude”: “25.468”, “latitude”: “65.058”

}

Table IX. Temperature, acceleration, and magnetic sensor data in Entity
Notation.

Sensor data in Entity Notation complete packet

[http://iot.fi/o#Sensor

http://iot.fi/o#accmagSensor01

http://iot.fi/o#timeStamp “2012-05-18T12:00:00”

http://iot.fi/o#taccX “618” http://iot.fi/o#accY “319” http://iot.fi/o#accZ “671”
http://iot.fi/o#fmagX “123” http://iot.fi/o#magy “234” http://iot.fi/o#magZ “345”
http://iot.fi/o#temp “22.5”]

Sensor data in Entity Notation short packet

[urn:uuid:311b4e80-d9fd-11de-8a39-0800200c9a66
“2012-05-18T12:00:00” “618” “319” “671” “123” “234” “345” *22.5”]

Table X. Location sensor data in Entity Notation.

Sensor data in Entity Notation complete packet

[http://iot.fi/o#LocationSensor
http://iot.fi/o#locaSensor767
http://iot.fi/o#fownerID “Alice”
http://iot.fi/o#longitude “25.468”
http://iot.fi/o#latitude “65.058”]

Sensor data in Entity Notation short packet

[urn:uuid:4e663b23-d0ef-11e2-8b8b-0800200c9a66 “Alice” “25.468” “65.058”]

We compare the semantic expressivity of RDF, N3, SenML, JSON-LD, and EN in Table XII.
RDF, N3, JSON-LD, and EN can be mapped to conceptual graphs [21]. Hence, they support
ontologies straightforwardly. RDF and N3 have a triple centric structure as the base representation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



X.SUETAL.

Table XI. A template example for shortening Entity Notation packets.

A template for transferring EN short packet to EN complete packet shown in Table IV

[http://iot.fi/o#Sensor http://iot.fi/o#accmagSensor 01
http://iot.fi/o#timeStamp ?1

http://iot.fi/o#taccX 72 http://iot.fi/o#taccY ?3 http://iot.fi/o#accZ 74
http://iot.fi/o#magX ?5 http://iot.fi/o#fmagy ?6 http://iot.fi/o#magZ ?7
http://iot.fi/o#temp 28]

Table XII. Data format comparison.

RDF N3 SenML  JSON-LD EN

Conceptual graphs Y Y N Y Y
Triplet centric structure Y Y N N N
Entity centric structure N N Y Y Y
Device type Y Y Y Y Y
Data types XSD XSD four types XSD N
External semantics Y Y Y Y Y

RDEF, Resource Description Framework; JSON-LD, Javascript Object
Notation for Linked Data; EN, entity notation; XSD, XML Schema
data types.

JSON-LD and EN follow entity centric approach, but they support mechanisms of transforming
to triple structure. SenML has a more arbitrary data structure, which cannot be mapped to a
conceptual graph in a similar fashion. Hence, SenML data cannot be utilized by knowledge-based
systems as easily as the other alternatives. On the other hand, SenML may be easy to produce
by IoT nodes, because it resembles the basic data structures of programming languages. The
JSON-LD and short EN format have the same benefit. Describing device types is important for
all data formats, because it enables a linking to higher level knowledge. All alternatives can express
device types; but EN complete packets require this as a mandatory element. The type of the data
(i.e., the physical quantity) can be defined with all these formats, which facilitates associating mea-
sured data values to concepts. RDF and N3 support rich XML Schema data types, while SenML
allows only four basic data types, that is, floating points, integers, Boolean values, and strings. EN
packets do not include data type information, but such information can be accessed from advanced
knowledge bases, for example, from some ontologies, when EN packets are integrated into them.
All these data formats support external semantic information. RDF and N3 support mechanisms
to import additional knowledge; EN does not have a similar mechanism, but its packet structure
enables a natural way of knowledge integration. SenML and JSON-LD support additional semantics
via Web linking.

In addition to these formats, several other representations have been suggested for semantic
annotations. Semantic Sensor Web [22] enables semantic annotations in terms of time, location,
and thematic data into the actual sensor data by using Resource Description Framework in
Attributes [23]. SemSOS [24] is a similar solution for adding semantic annotations into sensor
observations. Finally, semantic extensions are being built for the Product Markup Language [25],
which is an XML-based language for describing physical objects in Electronic Product Code Net-
works. However, XML-based solutions have limitations in supporting semantic interoperability and
linking resources to knowledge.

Binary formats for XML such as EXI, X.694 ASN.1 [26], WAP Binary XML Content Format
[27], Fast Infoset [28], and Xebu [29] can be used to transfer data from embedded sensors. World
Wide Web Consortium recommends EXI, which is a compact representation for the XML Informa-
tion set and is intended to simultaneously optimize the performance and utilization of computational
resources [30]. By using a relatively simple algorithm, it produces encodings of XML event streams.
Its simplified mode of operation called schema-informed mode allows embedded devices to work
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directly with the encoding without the need to work with a full XML parser. Binary formats them-
selves do not support any semantics, but semantic information in RDF/ XML and SenML, for
example, can be encoded in binary formats to decrease communication load. We have measured
the amount of computation required to produce messages in the EXI binary format that is targeted
for resource-constrained environments. These measurements are presented later in this article. There
are other solutions for compressing XML. For example, XMLPPM can compress an XML file into
8.25% of the original size [31]. However, many of these solutions increase the computational load,
and some compression methods also lose some content. They are not as such suitable for adding
semantics to IoT.

Resource Description Framework Header-Dictionary-Triples (HDT) [32,33] is a binary format
for RDF, especially for large RDF data sets. RDF HDT provides a method for encoding RDF docu-
ments in a compact manner and supports splitting large RDF documents into chunks. RDF graphs
are reorganized into header (optional), dictionary, and triples. HDT Dictionary organizes all vocabu-
laries and HDT Triples, which enables the compression of an RDF graph in a compact form. Similar
to EN, unique IDs are assigned to each element in RDF, and prefixes are utilized to shorten URISs.
Hasemann er al. [34] reported an approach to enable IoT nodes act as services providing sensor data
in the RDF HDT format.

3. ENERGY EFFICIENCY

Energy consumption is a key issue for small devices like IoT nodes. Hence, when semantics is
added into IoT, energy efficiency is a key criterion when comparing alternative solutions. Energy
consumption together with other limited resources is one of the key drivers in wireless sensor net-
work research. However, widely cited surveys, for example, Yick et al. [35], Sohrabi et al. [36], and
Akyildiz et al. [37] do not have any explicit discussion on adding semantics to the data. It seems
that integrating sensors into Semantic Web has not yet attracted much attention from wireless sensor
network researchers.

Lee et al. [38] and Siekkinen et al. [39] have studied and compared the energy consumption
of sensor radios. These results allow estimating the energy consumption of data formats with
semantics. Similarly, a large body of knowledge about mobile phone energy consumption is avail-
able (e.g., [40,41]). However, the mobile phone energy consumption is not trivial to quantify as
it depends on a number of attributes, such as the wireless interface used (WiFi, 3G, and 4G), the
bitrate (higher bitrate saves energy), the shape of the traffic (especially with 3G the tail energy is
high), influence of other users, and distance to base station. These are often application and context
dependent parameters.

Collecting comparable data from different studies is not easy, but estimating from the data in
[39,40,42], we can have a rough comparison of the energy utilities of different technologies. Energy
utility, that is, the amount of data transferred with one unit of energy, is strongly dependent on the
transfer speed. If we assume the uplink data rate 10 kBytes/s, then the energy utility is 900 kBytes/J
for Bluetooth, 500 kBytes/J for Bluetooth low energy, 300 kBytes/J for 802.15.4, 25 kBytes/J for
WiFi, and 8 kBytes/J for 3G. When the bitrate is slower, the cellular radio and WiFi energy utilities
drop quite rapidly while, for example, the Bluetooth low energy utility is rather constant until bitrate
drops below 0.1 kBytes/s. It should be noted that these estimations are only about the active transfer
phase and they are influenced by many other factors.

In wireless sensor networks, communication is easily the most energy consuming operation. It is
reported in [43] that communication is over one thousand times more expensive in terms of energy
than performing a trivial aggregation operation. Ni et al. [44] observe that energy can be saved by
aggregating data when routing sensory data in networks. The semantics of sensory data can be used
as a basis for aggregation decisions. Bista and Chang [45] present one of the few studies available
that aimed to quantify the energy consumption of in-network data aggregation. They analyze the
energy consumption both via analytical models and simulations. Zafeiropoulos et al. [46] review
data management in sensor network with Semantic Web technologies. Energy consumption is one
of the key criteria of their analysis.
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Figure 1. Architecture of the system in our experiment.

On a general level, Madden et al. [47] studied distributed data management in sensor networks.
They observe a trade-off between energy consumption and the answer accuracy. Moreover, the
sensor type should be taken into consideration when defining the sampling policy. Slow chang-
ing data like temperature should be sampled much less frequently than some fast changing data.
The energy consumption of pull and push based solutions are also very different.

4. EXPERIMENTS

We measured the resource usage of encoding and decoding for different data formats of the same
data (shown on Tables I, III, V, VII, and IX) in a sensor system. As shown in Figure 1, this sys-
tem consists of two sensors and a knowledge processing component on a PC. Sensor A encodes
the different formats and sends them to sensor B. Sensor B decodes the received data formats to
easy-to-use formats. For instance, EN packets are converted to RDF triples, and EXI packets are
converted to XML documents. RDF, N3, SenML in XML and JSON, and JSON-LD are considered
as easy-to-use formats, so sensor B simply forwards them. All these packets are sent from sensor B
to a knowledge processing component on a PC and integrated into OntoSensor [48] ontology. As a
result, the data generated by IoT nodes are compatible with knowledge systems, which can reason
additional knowledge and actions based on these data.

Sensor A measures temperature, as well as acceleration and magnetic field in three dimensions.
The node consists of an Atmel’s 8-bit (Atmel Corporation, San Jose CA, USA) ATmega32 micro-
controller (MCU) with 256 kB flash and 128 kB SRAM memory, a 3-axis accelerometer, a 3-axis
magnetometer, a thermometer, and a short range radio link. The node has a real-time clock; thus, it
can send a timestamp together with the measurements. The firmware of the sensor node has been
implemented as a standalone application, and no operating system has been used.

As we were interested in the payload only, we did not use any specific lightweight protocol, but
simply created a message and sent it with Bluetooth. All other messages were created by filling the
data values in a string, but SenML/EXI messages were encoded using the ‘Embeddable EXI imple-
mentation in C’ software (http://exip.sourceforge.net/). The available EXIP software was used as
such, so smaller memory footprint could be achieved by leaving out the functionality not needed
in this experiment. All messages were sent to the receiver by calling the write function, which is
associated with the low-power radio interface of the sensor node.

Figure 2 presents the packet lengths of different formats communicated between sensors A and B.
These packets contain the same data and semantic information. Short EN format is the most compact
format, while SenML/EXI is the second shortest packet. Compact JSON-LD is the longest packet
format, while the other formats produce somewhat shorter packets. The shortest format (Short EN)
is about 28% of the longest format (Compact JSON-LD).

Figure 3 presents the amount of CPU cycles needed to generate the messages by sensor A. It
is clear that generating EXI messages requires much more computation. All other messages are
produced by filling measurement values in a string.

A typical IoT sensor node is made up of several components, including sensing electronics, a
MCU, a transmission chip, and other devices such as LEDs and flash RAMs. Each component
may be in one of a set of activity. We consider the energy consumption in each state to be con-
stant. We focus on energy consumptions of two operations, that is, coding/decoding data formats
with the MCU and sending/receiving data packets with the transmission chip. The overall energy
consumption thus consists of computing energy and communication energy. We leave energy con-
sumptions of sensing electronics, RAMs, and LEDs out of overall energy consumption, because
they are independent of data formats.
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Figure 2. Comparison of packet lengths of different data formats communicated between sensors A and B.
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Figure 3. Comparison of CPU cycles for generating different messages by sensor A.

EOverall = EComp + Ecomm

Computing energy is strongly dependent on MCU cycles and communication energy on
message lengths.

Eoverall = f(CyCle) + f(Length)

The electric current needed for the MCU is 1.1 mA at 1 Mhz with 3 V operating voltage, which
means an average of

0.0011 A x3 ¥V x0.000001 s =3.3nJ

energy consumption for each executed instruction assuming that each instruction takes one clock
cycle to execute. The exact number of clock cycles the execution of the code takes depends on the
C compiler and the code optimization settings.

The radio interface of the sensor node A is implemented using Bluegiga WT12 Bluetooth Mod-
ule (Bluegiga, Espoo, Finland). The maximum current of the Bluetooth module is 60 mA at 3 V
operating voltage. Many low-power radio solutions exist, which are superior to Bluetooth for wire-
less connectivity, but as we are interested in the differences between different formats, Bluetooth
is a viable selection for this experiment. With WT12 Bluetooth module, each transmitted byte con-
sumes approximately 4-puJ energy. The data rate of WP12 Bluetooth module is 350 kbps when radio
frequency communication protocol stack is used. Sending one byte of data is about one thousand
times more energy consuming than one process cycle.

As shown in Figure 4, generating SenML/EXI messages requires more energy (MCU Energy in
the figure) than other alternatives, but transmission energy consumption for SenML/EXI is among
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the lowest ones. When comparing overall energy consumption on sensor A, the short EN for-
mat requires the least energy, and N3 requires the second least. Generating short EN messages
only consumes about 24% of generating SenML/EXI messages, which consume the largest amount
of energy.

On sensor B, messages with RDF, N3, SenML in XML and JSON, and JSON-LD data format
will be forwarded to knowledge processing component without any decoding. Three data formats,
that is, SenML/EXI, EN complete packet, and EN short packet, are decoded to easy-to-use formats.
EN packets are converted to RDF triples, and EXI packets are converted to XML documents.

Values from a short EN packet are filled in a template to produce a complete EN packet. The glob-
ally unique IDs in the short EN messages enable this processing to be performed unambiguously.
Complete EN packets are transformed to RDF, which can directly utilized by knowledge processing
component. SenML/EXI packets are transformed to XML. Figure 5 presents how much transmis-
sion energy is needed for reception and how much MCU energy is needed for decoding operation
on sensor B. Transmission energy consumption equals to overall energy consumptions on sensor B
for those data formats that only need simple forwarding. Figure 6 shows a comparison of overall
energy consumption for both sensors, including data sending, receiving, encoding, and decoding
operations. SenML/EXI processing generates XML and requires additional processing for produc-
ing RDF. We can also conclude that the short EN packets require the least energy to produce data in
RDF format.

The overall MCU energy consumption for encoding and decoding data depends on complexity
of methods, and EXI is clearly the most complex one. The transmission energy consumption of
different format scales linearly with the payload size. Short EN format requires the smallest amount
of transmission energy, while SenML/EXI requires the second least amount of transmission energy.

B MCU Energy

M Transmission Energy

" OverallEnergy

B MCU Energy

M Transmission Energy

W OverallEnergy

Figure 5. Comparison of energy consumption for decoding operation on sensor B.
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Figure 6. Comparison of overall energy consumption on the sensor system.

However, SenML/EXI requires so much computation that the total energy consumption is the sec-
ond largest alternative. Two other syntaxes of SenML require a similar amount of energy in our
experiment. Compact JSON-LD format consumes the largest amount of overall energy because of
its longest messages. RDF/XML messages are second longest. N3 requires less than others but larger
than Short EN. Short EN packets consume the least energy among these formats, it consumes 88%
of the second best alternative (N3) and 29% of the worst one (Compact JSON-LD). As the messages
sent by the locations sensor are quite similar when considering the amount of values and the length
of the messages, the location sensor would generate quite similar energy consumption values.

As a conclusion, short EN is the best data format, when energy consumption of an [oT system has
to be minimized in general, N3 being the second best. For those systems with limited communication
resources but not limited with computing resources, Short EN is the best and SenML/EXI the second
best. However, for those systems with limited computing resources, SenML/EXI is not an alterna-
tive. If only sensor A is required to minimize energy consumption, short EN and N3 are the best
alternatives. If only sensor B is required to minimize energy consumption, for example, it is a very
simple gateway without any processing capabilities, then N3 would be the best option. On the other
hand, when more widely known data formats are looked for, SenML/JSON and Context-referenced
JSON-LD are the best choices in cases like these.

5. DISCUSSION

At its best, research and development on IoT can produce a dynamic and universal network where
billions of identifiable things communicate with each other whenever and wherever communication
is needed. Things become context-aware, configure themselves, exchange information, and show
intelligent behavior when exposed to a new environment and unforeseen circumstances. Intelligent
decision-making algorithms enable rapid responses and revolutionize the ways business value is
generated [49].

Adding semantics can help to address several challenges in building large IoT systems. Among
the challenges listed in [49], semantics help to tackle the challenges related to software, services,
and algorithms, that is, ‘to support interoperable machine to machine and “thing” to “thing”
interaction over a network.” Generally, semantics improves interoperability at the application layer,
as communicating nodes share the meaning of the communicated data. By adding support to
metadata, semantics provides tools for tackling the challenges related to discovery and search engine
technologies as well. Identification technologies are also supported by expressing IoT node identities
in commonly understood manner. However, as Barnaghi et al. [50] have pointed out, ‘the dynamic,
heterogeneous and resource-constrained nature of the IoT requires special design considerations
to be taken into account to effectively apply the semantic technologies in the IoT’. Adding
semantics to [oT is still in its early days. Producing a generic solution on a global scale is a truly
challenging task.
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We are studying the best way to add semantics to IoT data. Thus far, we have studied data
formats, their expressive abilities and resource consumptions. Data formats differ in their expres-
sivity, but our running example shows that they all can be utilized for representing simple events in
IoT systems. When the expressiveness of different formats is considered, data formats with triplets
centric structure (RDF and N3) are more suitable for graph-structured data; data formats with entity
centric structure (SenML, JSON-LD, and EN) show advantages when expressing basic program-
ming languages data structures. When these results are combined with the energy consumption
measurements, we can state that short EN packets and N3 are the best and the second best options.
SenML/EXI can be considered when IoT systems have limited communication resources and rich
computing resources. If IoT systems include a very simple gateway without any processing capa-
bilities, N3 would then be the best option. On the other hand, SenML/JSON and context-referenced
JSON-LD are the best choices in cases of looking for more widely known data formats. Although
our experiment is based on a simple setup, it illustrates how big of a difference a data format can
make in energy consumption.

As pointed out by Anastasi ef al. [S1], many schemas have an effect on energy consumption,
including data reduction, energy-efficient data acquisition, topology control, power management,
and so on. We have so far focused mainly on data formats, which is important for reducing
payload of protocols. We consider data formats supporting semantics on their expressivity and
resource consumption. Moreover, although a common data format supporting semantics facilitates
using IoT data, it is not all that is needed. In addition, the meaning encoded in the messages needs
to be shared by all entities producing and consuming the data. That is, ontologies are needed. The
existing ontologies, such as OntoSensor [48] and Semantic Sensor Network Ontology [52], offer a
good starting point for this work. Semantic Sensor Network Ontology is a well-designed upper level
ontology for describing sensors and observations. Moreover, as [oT systems produce large amounts
of data, reasoning techniques that scale and infer useful information in a reasonable amount of
time are called for. These reasoning techniques need to be deployable into devices with varying
computing resources.

When energy consumption is important, protocols need to be considered in addition to the data
formats. Transmission Control Protocol, User Datagram Protocol, and Internet Protocol are the basic
choices for transferring data in IoT systems. At the application level, hypertext transfer protocol
(HTTP) protocol is an obvious choice, specifically when the representational state transfer (REST)
architectural style is used. HTTP can be used to transform IoT into Web of Things—by integrating
the IoT nodes into the Web and making them available as resources via standard Web mechanisms.
Moreover, the RESTful architectural style is a promising approach for [oT systems because of its
low complexity and loosely coupled stateless interactions. These two features enable Web servers in
the RESTful architecture to be embedded in resource constrained devices and facilitate composing
Web services.

However, optimized protocols such as constrained application protocol (CoAP) [53] and 6LoW-
PAN [54] are more suitable for resource constrained IoT networks for decreasing communication
load. CoAP is complementary to HTTP as it is targeted for resource constrained networks instead
of traditional IP networks. Power, memory, and computation constraints were taken into account
when CoAP was designed. CoAP supports the familiar HTTP methods and a subset of HTTP com-
patible response codes. CoAP messages are delivered using User Datagram Protocol. It supports
asynchronous transactions, although reliable transmission is provided as well with messages requir-
ing acknowledgments. CoAP messages have a short fixed-length binary header that decreases the
header overhead and parsing complexity. The fixed header is 4 bytes and can be extended with binary
options. This results typically in 10-20 bytes header and even 10 times smaller communication load
than HTTP. Devices can be addressed with URIs. Finally, CoAP has built-in resource discovery for
discovering and advertising the resources offered by a device, and it realizes a subscribe/notify push
model for messaging, in addition to the request-response model. Moreover, CoAP supports proxies
that can significantly reduce energy consumption of the system.

In our experiment, we assume that encoded messages are delivered under similar circumstances,
that is, using the same protocol, along the same route. In the future IoT scenarios, a large amount of
devices exchange data in a variety of architectures [55, 56]. Building these architectures introduces
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heterogeneity, connectivity, scale, energy management, self-management, privacy, and security chal-
lenges [57]. One potential scenario for our future work is a gateway receiving data from several
similar sensors, aggregating the data values, and sending the resulting data forward. CoAP will be
utilized and compared with other protocols in energy efficiency aspect. Comparing the energy con-
sumption of converting the different formats into Semantic Web, compatible formats would also be
interesting. Although these conversions are often made at the server side, some nodes and gateways
might utilize Semantic Web technologies. An interesting task would be to study the total energy
consumption, when semantics are defined in a SenML data packet with a link, and the additional
data are fetched from the given location.

Moreover, we will study the different protocols. As with data formats, protocols can be expected
to produce different header lengths and require different amounts of processing. Together with data
formats, data aggregation and protocols, different messaging patterns will determine the overall
energy consumption when an IoT system is in operation. Publish/Subscribe type messaging and
adaptive sampling are two promising approaches.

6. CONCLUSIONS

Semantic technologies enable machine-interpretable representation formalism for describing
objects, sharing and integrating information, and inferring new knowledge. In the IoT domain, the
addition of semantics helps creating machine-interpretable and self-descriptive data. We believe that
Semantic Web technologies, especially RDF-based linked data, will become the de facto standard
on the Internet for representing physical world phenomena and activities accessed from IoT nodes,
regardless of the application domain. In this article, we focus on investigating different approaches
for adding semantics to IoT data. We also evaluate their resource usages, especially energy con-
sumptions, by a sensor system. Our experiments show the variability a data format can make in
packet length, MCU circles, and energy consumptions. We will continue this work by studying
more complex potential scenarios and messaging patterns.

ACKNOWLEDGEMENTS

This work was supported by TEKES as part of the IoT program of DIGILE (Finnish Strategic Centre for
Science, Technology and Innovation in the field of ICT and digital business). The first author would
like to thank HPY Research Foundation and Tauno Tonningin S#@itié for funding this work. We thank
Dr. Janne Haverinen for his contribution of implementing first version of the system. Johanna Nieminen
did the majority of her work share when she was working at Nokia Research Center, Helsinki.

REFERENCES

1. Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Scientific American: New York, May 2001.

2. Su X, Riekki J, Haverinen J, Nieminen J, Nurminen JK. Enabling semantics for the Internet of Things—data
representations and energy consumptions. Internet of Things Finland 2013; 1(1):28-31.

3. JavaScript Object Notation. Available from: http://www.json.org/ [Accessed on March 2013].

4. RDF Working Group. Resource Description Framework (RDF), 2004. Available from: http://www.w3.org/RD/
[Accessed on March 2013].

5. RDF Vocabulary Description Language 1.0: RDF Schema. Available from: http://www.w3.org/TR/rdf-schema/
[Accessed on March 2013].

6. OWL 2 Web Ontology Language Primer (Second Edition). Available from: http://www.w3.org/TR/ow]2-primer/
[Accessed on March 2013].

7. Berners-Lee T (ed.). Notation3 (N3): a readable RDF syntax. Available from: http://www.w3.org/TeamSubmission/
n3/ [Accessed on March 2013].

8. Beckett D, Berners-Lee T. Turtle—Tease RDF Triple Language, W3C Candidate Recommendation. Available from:
http://www.w3.0rg/TR/2013/CR-turtle-20130219/ [Accessed on March 2013].

9. N-Triples W3C RDF Core WG Internal Working Draft. Available from: http://www.w3.0rg/2001/sw/RDFCore/
ntriples/ [Accessed on March 2013].

10. Jennings C, Shelby Z, Arkko J. Media types for Sensor Markup Language (SENML). Available from: http:
/ltools.ietf.org/html/draft-jennings-senml-08 [Accessed on March 2013].
11. Schneider J, Kamiya T. Efficient XML Interchange (EXI) Format. Available from: http://www.w3.org/TR/exi/

[Accessed on March 2013].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

X.SUETAL.

Shelby Z. Constrained RESTful Environments (CoRE) Link Format. Available from: http://tools.ietf.org/html/
rfc6690 [Accessed on March 2013].

Davic I, Steiner T, J Le Hors A. RDF 1.1 JSON Alternate Serialization (RDF/JSON). Available from: https:
/ldvcs.w3.org/hg/rdf/raw-file/default/rdf-json/index.html [Accessed on September 2013].

Nathan (ed.). JSN3 Unofficial Draft 27 September 2013. Available from: http://webr3.org/apps/specs/jsn3/ [ Accessed
on September 2013].

W3C. JTriples. Available from: http://www.w3.org/wiki/JTriples, http://www.w3.org/wiki/JTriples [accessed on
September 2013].

Birbeck N. RDFj: Semantic Objects in JSON. Available from: http://markbirbeck.com/blog/2009/04/20/
rdfj-semantic-objects-in-json/ [Accessed on September 2013].

Sporny M, Longley D, Kellogg G, Lanthaler M, Lindstrém N. JSON-LD 1.0 A JSON-based Serialization for Linked
Data. Available from: http://www.w3.org/TR/2013/CR-json-1d-20130910/ [Accessed on September 2013].

‘W3C RDF Working Group. JSON Serializations By Example. Available from: http://www.w3.org/2011/rdf-wg/wiki/
JSON-Serialization-Examples [Accessed on September 2013].

Su X, Riekki J, Haverinen J. Entity notation: enabling knowledge representations for resource-constrained sensors.
Personal and Ubiquitous Computing 2012; 16(7):819-834.

Su X, Riekki J. Transferring ontologies between mobile devices and knowledge-based systems. Proceeding of
the 10th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Hongkong, China, 2010;
127-135.

Shadbolt N. The Semantic Web Revisited. IEEE Intelligent Systems; 21(3):96-101.

Sheth A, Henson C, Sahoo SS. Semantic Sensor Web. IEEE Internet Computing; 12(4):73-83.

RDFa 1.1 Primer Rich Structured Data Markup for Web Documents. Available from: http://www.w3.org/TR/
xhtml-rdfa-primer/ [Accessed on September 2013].

Henson C, Pschorr J, Sheth A, Thirunarayan K. SemSOS: Semantic Sensor Observation Service. Proceeding of the
2009 International Symmposium on Collaborative Technologies and Systems, Baltimore, USA, 2009; 18-22.

Toma I, Simperl E, Hench G. A joint roadmap for semantic technologies and the Internet of Things. Proceeding of
the 3rd STI Roadmapping Workshop Charting the next Generation of Semantic Technology, Heraklion, Greece, 2009.
International Telecommunication Union. X.694. Available from: http://www.itu.int/ITUT/studygroups/com17/
languages/X694.pdf [Accessed on March 2013].

Martin B, Jano B. WAP Binary XML Content Format. Available from: http://www.w3.org/TR/wbxml/ [Accessed on
September 2013].

Fast Infoset: Standard-based Binary XML FastInfoset.Net. Available from: http://www.noemax.com/products/
fastinfoset/index.html [Accessed on March 2013].

Kangasharju J, Tarkoma S, Lindholm T. Xebu: a binary format with schema-based optimizations for XML data.
Proceeding of 6th International Conference on Web Information Systems Engineering, New York, USA, 2005;
528-535.

Efficient XML Interchange Evaluation. Available from: http://www.w3.org/TR/exi-evaluation/ [accessed on
March 2013].

Ng W, Yeung LW, Cheng J. Comparative analysis of XML compression technologies. World Wide Web; 9(1):
5-33.

Fernandez JD, Martinez-Prieto MA, Gutierrez C, Polleres A. Binary RDF Representation for Publication and
Exchange (HDT), W3C Member Submission. Available from: http://www.w3.org/Submission/2011/SUBM-HDT-
20110330/ [accessed on June 2013].

Fernandez JD, Martinez-Prieto MA, Gutierrez C. Compact representation of large RDF data sets for publishing and
exchange. Proceedings of the 9th international semantic Web conference, Shanghai, China, 2010; 193-208.
Hasemann H, Kroller A. Pagel M. RDF Provisioning for the Internet of Things. 3rd International Conference on the
Internet of Things, Wuxi, China, 2012; 143-150.

Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks; 52(12):2292-2330.

Sohrabi K, Gao J, Ailawadhi V, Pottie GJ. Protocols for self-organization of a wireless sensor network. /EEE
Personal Communications; 7(5):16-27.

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey. Computer Networks
2002; 38(4):393-422.

Lee J-S, Su Y-W, Shen C-C. A comparative study of wireless protocols: Bluetooth, UWB, Zigbee, and Wi-Fi.
Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007; 46-51.
Siekkinen M, Hiienkari M, Nurminen JK, Nieminen J. How low energy is Bluetooth low energy? Comparative mea-
surements with ZigBee/802.15.4. Proceedings of the IEEE Wireless Communications and Networking Conference
Workshops, Istanbul, Turkey, 2012; 232-237.

Nurminen JK. Parallel connections and their effect on the battery consumption of a mobile phone. Proceedings of
the 7th IEEE Consumer Communications and Networking Conference, Las Vegas, USA, 2010; 1-5.

Xiao Y, Savolainen P, Karppanen A, Siekkinen M, Yld-Jadski A. Practical power modeling of data transmission over
802.11g for wireless applications. Proceedings of the Ist International Conference on Energy-Efficient Computing
and Networking, Passau, Germany, 2010; 75-84.

Balasubramanian N, Balasubramanian A, Venkataramani A. Energy consumption in mobile phones: a measurement
study and implications for network applications. Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, Chicago, USA, 2009; 280-293.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe



43.

44,

45.

46.

47.

48.

49.

50.

ADDING SEMANTICS TO INTERNET OF THINGS

Cantoni V, Lombardi L, Lombardi P. Challenges for data mining in distributed sensor networks. Proceedings of the
18th International Conference on Pattern Recognition, Hongkong, China, 2006; 1000-1007.

Ni LM, Zhu Y, Ma J, Li M, Luo Q, Liu Y, Cheung SC, Yang Q. Semantic sensor net: an extensible framework.
Proceedings of the 3rd International Conference on Computer Network and Mobile Computing, Zhangjiajie, China,
2005; 1144-1153.

Bista R, Chang J-W. Energy-efficient data aggregation for wireless sensor networks. In Sustainable Wireless Sensor
Networks. InTech, 2010, DOI: 10.5772/13708.

Zafeiropoulos A, Spano DE, Arkoulis S, Konstantinou N, Mitrou N. Data management in sensor networks using
Semantic Web Tehnologies. In Data Management in the Semantic Web. Nova Science Publishers, Incorporated,
2009; 97-118.

Madden S, Franklin M, Hellerstein J, Hong W. TinyDB: an acquisitional query processing system for sensor
networks. ACM Transactions on Database Systems 2005; 30(1):122—-173.

Russomanno DJ, Kothari RC, Thomas AO. Building a sensor ontology: a practical approach leveraging ISO and
OGC models. Proceedings of the 2005 International Conference on Artificial Intelligence, Las Vegas, USA, 2005;
637-643.

Sundmaeker H, Guillemen P, Friess P, Woelfflé S (eds). Vision and challenges for realising the Internet of Things.
Cluster of European Research Projects on the Internet of Things: Brussels Belgium, 2010.

Barnaghi P, Wang W, Henson C, Taylor K. Semantics for the Internet of Things: early progress and back to the
future. International Journal on Semantic Web and Information Systems 2012; 8(1):1-21.

51. Anastasi G, Conti M, Francesco DM, Passarella A. Energy conservation in wireless sensor networks: a survey. Ad
Hoc Networks 2009; 7(3):537-568.

52. W3C semantic sensor network incubator group. Semantic Sensor Network Ontology. Available from: http://www.
w3.0rg/2005/Incubator/ssn/ssnx/ssn [Accessed on September 2013].

53. Shelby Z, Hartke K, Bormann C. Constrained Application Protocol (CoAP). Available from: http://tools.ietf.org/
html/draft-ietf-core-coap- 18 [Accessed on September 2013].

54. Shelby Z. 6LoWPAN: the wireless embedded Internet. Wiley Series on Communications Networking & Distributed
Systems: Hoboken, USA, 2009.

55. Ning H, Wang Z. Future Internet of Things architecture: like mankind neural system or social organization
framework? IEEE Communications Letters 2011; 15(4):461-463.

56. Evangelos AE, Tselikas DN, Boucouvalas CA. Integrating RFIDs and smart objects into a unified Internet of Things
architecture. Advances in Internet of Things 2011; 1(1):5-12.

57. Zorzi M, Gluhak A, Lange S, Bassi A. From today’s Intranet of Things to a future Internet of Things: a wireless-and
mobility-related view. Wireless Communications IEEE 2010; 17(6):44-51.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe



