
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

6-2003

Adding Semantics to Web Services Standards Adding Semantics to Web Services Standards

Kaarthik Sivashanmugam

Kunal Verma
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

John Miller

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Sivashanmugam, K., Verma, K., Sheth, A. P., & Miller, J. (2003). Adding Semantics to Web Services
Standards. .
https://corescholar.libraries.wright.edu/knoesis/687

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

Adding Semantics to Web Services Standards

Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, John Miller
Large Scale Distributed Information Systems (LSDIS) Lab
Department of Computer Science, University of Georgia

Athens, GA 30602

Abstract

With the increasing growth in popularity of Web services,
discovery of relevant Web services becomes a significant
challenge. One approach is to develop semantic Web
services where by the Web services are annotated based
on shared ontologies, and use these annotations for
semantics-based discovery of relevant Web services. We
discuss one such approach that involves adding
semantics to WSDL using DAML+OIL ontologies. Our
approach also uses UDDI to store these semantic
annotations and search for Web services based on them.
We compare our approach with another initiative to add
semantics to support Web service discovery, and show
how our approach may fit current standards-based
industry approach better.

Keywords: Semantic Annotation of Web service,
Semantic Web service discovery, Semantic Web services,
Ontologies, Semantic extensions to WSDL, adding
semantics to UDDI

1. Introduction

“Web services are modular, self-describing, self-
contained applications that are accessible over the
Internet” [1]. They have been identified as the technology
for business process execution and application
integration. Given the dynamic environment in e-
businesses, the power of being able to find Web services
on the fly to create business processes is highly desirable.
A key step in achieving this capability is the automated
discovery of Web services. Currently, the industry
standards for Web services are Web Services Description
Language [2] and Universal Description Discovery and
Integration [3] specifications. Web services are described
using WSDL definitions and advertised in UDDI
registries. The current discovery mechanism supported
by UDDI is not powerful enough for automated
discovery. The main inhibitor is the lack of semantics in
the discovery process and the fact that UDDI does not use
information in the service descriptions during discovery.
This makes UDDI less effective, even though it provides
an interface for keyword and taxonomy based searching.

The key to semantic discovery of Web services is having
semantics in the description itself (i.e., “formally self
described” [4] and machine processable) and then using
semantic matching algorithms to find the required
services.

Ontologies have been identified as the basis for semantic
annotation that can be used for discovery. Ontologies are
the basis for shared conceptualization of a domain [5],
and comprise of concepts with their relationships and
properties. Use of ontologies to provide underpinning for
information sharing and semantic interoperability has
been long realized [6, 7, 8]. By mapping concepts in a
Web resource (whether data or Web service) to
ontological concepts, users can explicitly define the
semantics of that resource in that domain. An approach
for semantic Web service discovery is to have the ability
to construct queries using ontological concepts in a
domain. This in turn requires mapping concepts in Web
service descriptions to ontological concepts. By having
both the description and query explicitly declare their
semantics, the results will be more relevant than keyword
matching based information retrieval. Our approach of
adding semantics in this paper uses ontologies. However
we could potentially use enumerated vocabulary also.

There have been a number of efforts to add semantics to
the discovery process. An early work in this area has
been the creation of DAML-S [9], which uses a
DAML+OIL based ontology for describing Web services.
While DAML-S provides the expressiveness required for
automated discovery, it does not have constructs to
represent communication level details of Web services.
The latest draft release [10] of DAML-S uses WSDL in
conjunction with DAML-S for Web service descriptions.
In this paper, we explore the possibilities of adding
semantics to WSDL and UDDI to achieve sufficient
expressiveness to automate the discovery process. Our
approach involves relating concepts in WSDL to
DAML+OIL ontologies in Web service description and
then providing an interface to UDDI that allows querying
based on ontological concepts. WSDL has been accepted
as the industry standard for Web service description. If
extending it without adding significant complexity could
provide the same functionality as DAML-S, our approach

may be more attractive to industry and practitioners
compared to that of migrating from WSDL to DAML-S
which entails the use of a more complex and non-
standard framework. Since our approach is backward
compatible with existing WSDL standards, service
providers also have an option to describe and publish
their services with or without semantics. We further
provide a matching algorithm to use this semantic
information for Web service discovery that considers not
only inputs and outputs, but also functional specification
of operations and effects. Matchmaking with DAML-S as
described in [11] does not consider operations. Compared
to semantic annotation of data, Web services add the new
dimension of operation. Hence we consider this
component of our work to be of critical importance. The
work discussed in this paper forms a part of the
METEOR-S project, which seeks to address the entire
lifecycle of Semantic Web Process, involving semantic
specification, annotation, discovery, composition and
orchestration of Web services.

In this paper we first outline our approach for adding
semantics in WSDL and UDDI. Then, we discuss our
semantic discovery algorithm. Thereafter, we compare
our approach with DAML-S for adding semantics to Web
services and using it for discovery. The rest of the paper
is organized as follows. Section 2 outlines the related
work. Our approach of adding semantics to WSDL and
UDDI are discussed in Sections 3 and 4, respectively.
Semantic Web service discovery is discussed in Section
5. Section 6 provides a comparison of our approach with
DAML-S approach. Finally in Section 7, we present
conclusions and future work.

2. Adding Semantics in WSDL

Currently Web services are described using WSDL
descriptions, which provide operational information.
Although WSDL descriptions do not contain (or at least
explicate) semantic description, they do specify the
structure of message components using XML schema
constructs. We suggest adding semantics to WSDL using
extensibility in elements and attributes supported by
WSDL specification version1.2. Using this extensibility
we relate existing and extended WSDL constructs to
DAML+OIL ontologies. The use of ontologies allows to
represent Web service descriptions in a machine-
interpretable form like DAML-S. These extensions are
similar to the extensions suggested for ServiceGrounding
in DAML-S.

2.1. Mapping Operations to Ontological Concepts

Recent tools like Web Services Invocation Framework
[12] allow invoking Web services if the locations of the
WSDL file and the name of the operation are known. So
service discovery involves not only locating the WSDL
description, but also the relevant operation to invoke.
Each WSDL description may have a number of
operations with different functionalities. The WSDL file1
shown in figure 3 represents a sample Web service and
has operations for both booking and canceling flight
tickets. In order to add semantics and to find relevant
operations, these operations should be mapped to
concepts in appropriate DAML+OIL ontologies that
depict functionality of operations. In figure 3, the
operations buyTicket and cancelTicket are mapped to
ontological concepts TicketBooking and
TicketCancellation, using the attribute operation-concept,
respectively. This allows users to search for operations
based on ontological concepts. An approach to store the
mapping between operation names and ontological
concepts in UDDI is discussed in section 4.

2.2. Mapping Message Parts to Ontological
Concepts

Message parts, which are input and output parameters of
operations, are defined in WSDL files using XML
schema constructs. XML schemas could be used as
shared definitions of concepts. Since service providers
typically embed the schema definitions as inline elements
along with service descriptions, it becomes difficult to
share and reuse them. Ontologies, which are more
expressive and meant for sharing definitions, can be used
to annotate the message parts in WSDL. Using ontologies
not only brings user requirements and service
advertisements to common conceptual space, but also
helps to apply reasoning mechanism to find a better
match. Hence by using DAML+OIL ontologies in
WSDL, the semantics implied by these structures in
service descriptions, which are known only to the writer
of the description (provider of Web service), can be made
explicit. In figure 3, the WSDL constructs input
TravelDetails and output Confirmation are mapped2 to
ontological concepts TicketInformation and
ConfirmationMessage, respectively.
2.3. Adding New Tags for Preconditions and
Effects

1 The names spaces LSDISOnt and LSDISExtension respectively
contain TravelServices ontology and the extended WSDL schema used
in the examples
2 In a related work, we are investigating semantic heterogeneity between
schema constructs in WSDL and ontological concepts during mapping
of message parts to ontology [13]

Each operation may have a number of preconditions and
effects. The preconditions may be some logical
conditions, which must be true for executing the
operation. Effects are changes in the world after the
execution of the operation. We propose adding
precondition and effect elements as children of the
operation element in WSDL. Figure 3 shows the added
preconditions and effects to each of the operations in the
WSDL description. The operation buyTicket has the
precondition and effect mapped to ontological3 concepts
ValidCreditCard and CardCharged-TicketBooked-
ReadyForPickUp respectively.

We believe that preconditions and effects are important
for Web service selection. After matching services based
on operations, inputs and outputs, preconditions and
effects could be used to select the most relevant service.
It is possible for a number of operations to have the same
functionality, as well as, the same inputs and outputs, but
different effects. For example, there could be an
operation called bookTicketAndSend, with the same
functionality, inputs and outputs as buyTicket in figure 3,
but with a different effect called “CardCharged-
TicketBooked-Sent”. Upon execution,
bookTicketAndSend sends tickets to the user of the
service rather than making them ready for pickup. In this
case, depending on the requirements of the user, the most
relevant operation can be chosen.

3. Adding Semantics in UDDI

We provide semantic discovery using UDDI by doing the
following two tasks. Firstly, we store the semantic
annotation of Web services mentioned in section 3 in the
existing structures of UDDI. Secondly, we provide an
interface to construct queries that use that semantic
annotation. This approach is similar to the one suggested
by [14], which maps DAML-S to UDDI structures, but is
consistent with the use of industry standard WSDL rather
than requiring DAML-S.

UDDI only supports a limited form of semantics using
tModels, which are used to characterize and categorize
businesses and their services. During a Web service
publication, ontological concepts representing operations,
and their message parts, preconditions, effects of the
WSDL descriptions of the Web service are stored using
the UDDI structures, tModels and CategoryBags. tModels
are metadata constructs in UDDI data structure that
provide the ability to describe compliance with a

3 A discussion of creating an ontology depicting preconditions and
effects are beyond the scope of this paper.

specification, a concept or a shared understanding. They
have various uses in UDDI registry. Commonly agreed
specifications or taxonomies can be registered with UDDI
as tModels. They can also be used to associate entities
with individual nodes in taxonomies. When a tModel is
registered with UDDI registry, it is assigned a unique
key, which can be used by entities to refer to it. To
categorize entities in UDDI, tModels are used in relation
with CategoryBags, which are data structures that allow
entities to be categorized according to one or more
tModels. Using the new grouping construct
keyedReferenceGroups in UDDI version 3 specifications,
categorization using tModels can be grouped. We propose
using the keyedReferenceGroup, along with tModels to
group operations with their inputs and outputs.

To represent the semantic information in UDDI, we have
created four tModels in that registry. The first tModel
represents the ontology of concepts representing
functionality of operations in a relevant domain, the
second and third represent the ontologies of input and
output concepts respectively. Finally, the fourth tModel
represents the grouping of each operation with its inputs
and outputs. These tModels are linked with the respective
ontologies using overviewURL tag of these tModels. All
the tModels could as well be linked to a single
comprehensive ontology. As shown in figure 1, two
keyedReferenceGroups can be created for the WSDL file
in figure 3 to represent two operations, buyTicket and
cancelTicket along with their inputs and outputs. Each
keyed reference has a keyValue, which represents an
ontological concept, and a tModelKey, which represents
the ontology itself. For example, the tModel
OPERATION_CONCEPTS is used to store the mapping
between an WSDL operation and a concept in ontology.
It contains the name of the operation as keyName and the
ontological concept it is mapped to as keyValue. Similarly
the inputs and outputs of each operation are mapped
using INPUT_CONCEPTS and OUTPUT_CONCEPTS
tModels, respectively. Preconditions and effects need
similar technique (not shown in figure 1). Each operation
along with its inputs, outputs, preconditions and effects
are grouped using MAPPINGGROUP tModel into
keyedReferenceGroups.

4. Semantic Web Service Discovery

Semantic annotations added in WSDL and in UDDI are
aimed at improving discovery and composition of
services. In this section we briefly describe our
mechanism for template based ontology enabled
discovery. Figure 2 shows the conceptual process of
mapping WSDL constructs given in figure 3, to the nodes
in a domain specific ontology. This mapping is then

stored in UDDI during Web service publication. As
shown in the figure 2, the operations buyTicket and
cancelTicket are mapped to the nodes TicketBooking and
TicketCancellation, respectively, the input concept
TravelDetails and output concept Confirmation in WSDL
file are mapped to the TicketInformation node and
ConfirmationMessage in the TravelServices ontology,
respectively.

We have developed a three-phase algorithm for semantic
Web service discovery that requires the users to enter
Web service requirements as templates constructed using
ontological concepts. In the first phase, the algorithm
matches Web services (operations in different WSDL
files) based on the functionality4 they provide. In the
second phase, the result set from the first phase is ranked
on the basis of semantic similarity [15] between the input
and output concepts of the selected operations and the
input and output concepts of the template, respectively.
The optional third phase involves ranking based on the
semantic similarity between the precondition and effect
concepts of the selected operations and preconditions and
effect concepts of the template. Figure 2 shows the
creation of a template5 using ontological nodes for
semantic discovery of services. The template has the
operation concept TicketBooking, the input concept
TicketInformation and the output concept
ConfirmationMessage. The template created by the user
is converted to a UDDI query by our interface [16]. This
template would map to an UDDI query which first
searches for all Web services categorized using a
keyedReferenceGroup6 which has the TicketBooking
mapped to the operation tModel. The result set is then
ranked based on the semantic similarity [15] between the
input concepts of the returned Web services to the input
concepts (TicketInformation) of the template and the
output concepts of the returned Web services to the
output concepts (ConfirmationMessage) of the template.

5. Related Work

DAML-S [9] is based on DAML+OIL and it provides an
ontology markup language expressive enough to
semantically represent capabilities and properties of Web
services. Its goals are to achieve automatic Web service
discovery, invocation, composition and execution
monitoring. DAML-S has an upper ontology, which
characterizes Web services using three types of

4 Functionality is specified using ontological concepts that map to
operations
5 Preconditions and effects are not shown as they are optional
6 Our implementation uses UDDI Version 1 API. Hence we have
grouped operations with its inputs and outputs using the keyName
parameter instead of keyedReferenceGroup

knowledge about the services - ServiceProfile,
ServiceModel and ServiceGrounding. ServiceProfile is
used to describe what a Web service does, ServiceModel
describes how it works and ServiceGrounding is used to
specify how to access it. Paolucci et al [11] presents a
mapping engine to match service advertisements with
requests. It provides a semantic algorithm to match inputs
and outputs of Web service requests with inputs and
outputs of Web service advertisements during the
matchmaking process. It adds an additional mapping
layer over UDDI and uses DAML-S as service
description language to provide better service discovery
than keyword based search.

The latest version (draft release 0.7) of DAML-S
suggests using a WSDL file along with a DAML-S
description to represent a service. Our approach involves
annotating and extending WSDL constructs with
DAML+OIL ontological concepts. Since ServiceProfile
is used by DAML-S to describe and discover a Web
service, all our extensions aim to provide the same
functionality as ServiceProfile for Web service discovery.
Some of the details in the ServiceProfile like service
provider details are already supported by UDDI, so we
have not added them to WSDL. We have used an
approach similar to Paolucci et al [14] to store the
semantic information about inputs, outputs and operations
of a WSDL description in UDDI. As argued earlier, our
approach has the advantage of an ontology-based
approach that fits better with existing industry norms and
standards, rather than requiring new infrastructure as
needed by DAML-S. While the matching algorithm
provided in Paolucci et al [11], uses only inputs and
outputs to search for required Web services, our
discovery algorithm first selects the services using
ontological concepts representing functionality of
operations, and then uses inputs and outputs to prune the
search. In the example WSDL file given in figure 3, both
the operations buyTicket and cancelTicket have the same
inputs and outputs, but they have different functionalities,
therefore, searching just based on inputs and outputs
would lead to incorrect results. Our algorithm also
recommends using other details like preconditions and
effects from the WSDL file to ensure that the operation
matches exact requirements.

Ogbuji [17] discusses representing WSDL in RDF
instead of XML. Our approach uses DAML+OIL
ontologies in RDFS format to add semantics to Web
service descriptions. The WSMF architecture [18]
discusses using semantics at different levels of Web
services stack. It proposes a conceptual framework that
provides a model to describe Web services and their
composition. Their approach is not specific to any of the

industry standards as they aim to use mediation to adapt
to any standard.

A significant amount of recent research has focused on
effective discovery of services, which is the key required
capability of the Web services framework. The discovery
mechanisms suggested to improve keyword based
discovery range from categorization and domain
independent characterization of services [19] to better
techniques exploiting semantic representations of the
services. Trastour et al. [20] analyses the problem of
matchmaking and highlights the need for metadata for
better results and suggests requirements for advanced
matchmaking as high degree of flexibility and
expressiveness; ability to express semi-structured data;
support for type and subsumption; ability to express
constraints over ranges of possible values as well as
definite values of a specification. They have also
observed that UDDI does not allow much expressiveness
and flexibility. With our approach we use DAML+OIL
ontologies to add these capabilities to UDDI data
structure. Our approach involves storing semantically
annotated Web service descriptions in UDDI, and using
that semantic information for querying. Bernstein et al
[21] suggests using process models to capture service
behavior. The process models are created by indexing
services to nodes in the process ontology. They also
provide a process querying language for logic based
querying of the process ontology to retrieve the most
relevant services. Our approach maps operations in Web
service descriptions to ontological concepts that represent
functionalities and querying is based on templates.

6. Conclusions and Future Work

In this paper, we have presented our approach of adding
semantics to Web services descriptions for improved
Web service discovery. The current approach involves
using DAML-S for adding semantics to Web services
description. Since WSDL and UDDI are current industry
standards, we believe that a pragmatic solution for adding
semantics to Web services would be to add semantics to
both of them, instead of creating a new language. While
DAML-S is a highly expressive language, in which the
features are meant not only for discovery but also for
composition, execution and monitoring. In this paper, we
have concentrated on adding enough semantics to WSDL
using DAML+OIL ontologies, for it to have the same
descriptive power as DAML-S for discovery. We have
also discussed an algorithm for semantic discovery of
Web services which uses functionality of the service as
the main criterion for search. The main contributions of
this work are

• Using the extensibility feature of WSDL to add
semantics to service descriptions

• Using UDDI data structures to represent
grouping of operations with their inputs and
outputs

As part of the ongoing METEOR-S project, we are
currently working on enhancing WSDL to make them
better suited for service selection in e-commerce. Some
of the features we intend to add are functional and
behavioral attributes like QoS and constraints. We are
also working on developing richer ontologies to depict
functionality of operations [20], preconditions and
effects. To fully utilize the potential of DAML+OIL
ontologies, which we use for adding semantics to WSDL
and UDDI, we are working on developing a more
powerful logic based querying mechanism.

7. References

[1] Curbera, F., Nagy, W. and Weerawarana, S. “Web Services:
Why and How.” Workshop on Object-Oriented Web Services –
OOPSLA 2001, Tampa, Florida, USA, October 2001.
[2] Chinnici, R., Gudgin, M., Moreau, J. and Weerawarana, S.
“Web Services Description Language (WSDL) Version 1.2 ",
W3C Working Draft 24 January 2003, Available at
http://www.w3.org/TR/2003/WD-wsdl12-20030124/
[3] Universal Description, Discovery and Integration: UDDI
Technical White paper. 2000.
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.p
df
[4] Sheth, A. and Meersman, R. “Amicalola Report: Database
and Information Systems Research Challenges and
Opportunities in Semantic Web and Enterprises,” ACM
SIGMOD Record, Vol. 31, No. 4, December 2002, pp. 98-106.
[5] Gruber, T.R. “A Translation Approach to Portable Ontology
Specifications.” Knowledge Acquisition, 5(2), 199-220, 1993.
[6] Gruber, T.R. The role of common ontology in achieving
sharable, reusable knowledge bases. In J. A. Allen, R. Fikes,
and E. Sandewall, editors, , San Mateo, CA, 1991. Morgan
Kaufman
[7] Kashyap, V. and Sheth, A. Semantics-based Information
Brokering. In Proceedings of the Third International Conference
on Information and Knowledge Management (CIKM),
November 1994.
[8] Wache, H., V ogele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and Hubner, S. Ontology-based
integration of information - a survey of existing approaches. In
Stuckenschmidt, H., ed., IJCAI-01 Workshop: Ontologies and
Information Sharing, 2001, 108--117.
[9] Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O.,
Martin, D.L., McDermott, D., McIlraith, S.A., Narayanan, S.,
Paolucci, M., Payne T.R., and Sycara, K. The DAML Services
Coalition, "DAML-S: Web Service Description for the
Semantic Web", The First International Semantic Web
Conference (ISWC), Sardinia (Italy), June, 2002.
[10] DAML-S 0.7 Draft Release, 2002.

[17] Ogbuji, U. 2000. Supercharging WSDL with RDF
Managing structured Web service metadata, http://www-
106.ibm.com/developerworks/library/ws-rdf/?dwzone=ws

[11] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.
"Semantic Matching of Web Services Capabilities."
Forthcoming in Proceedings of the 1st International Semantic
Web Conference, 2002. [18] Bussler, C., Fensel, D. and Maedche, A. A Conceptual

Architecture for Semantic Web Enabled Web Services
SIGMOD Record, Special Issue Semantic Web and Databases
2002/12/01

[12] Duftler, M.J., Mukhi, N.K., Slominski, A. and
Weerawarana, S. Web Services Invocation Framework, 2001.
[13] Patil, A., Oundhakar, S. and Sheth, A. Semantic
Annotation of Web Services, Technical Report, LSDIS Lab,
Department of Computer Science, University of Georgia, March
2003.

[19] Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D.
and Hofstede, A. Towards a Semantic Framework for Service
description. In Proc. of the 9th Int. Conf. on Database
Semantics, Hong-Kong, April 2001. Kluwer Academic
Publishers.

[14] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.
"Importing the Semantic Web in UDDI." To Appear In Web
Services, E-Business and Semantic Web Workshop, 2002.
[15] Cardoso, J. and Sheth A. (2002). "Semantic e-Workflow
Composition." Journal of Intelligent Information Systems (JIIS).
(under revision).
[16] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,
Oundhakar, S. and Miller, J. METEOR–S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology
and Management (submitted).
http://www.cs.uga.edu/~verma/METEOR-S-WSDI-submit.doc

[20] Trastour, D., Bartolini, C. and Gonzalez-Castillo, J. 2001.
A Semantic Web Approach to Service Description for
Matchmaking of Services, Proceedings of the International
Semantic Web Working Symposium (SWWS)
[21] Bernstein, A. and Klein, M. 2002. “Discovering Services:
Towards High Precision Service Retrieval” in Proceedings of
the CaiSE workshop on Web Services, e-Business, and the
Semantic Web: Foundations, Models, Architecture, Engineering
and Applications. Toronto, Canada

<businessService businessKey=”uddi:LSDIS_Travel.example” serviceKey=”…”>
 … <categoryBag>

 <keyedReferenceGroup tModelKey= ”uddi:ubr.uddi.org:categorizationGroup:MAPPINGGROUP”>
 <keyedReference tModelKey=”uddi:ubr.uddi.org:categorization:OPERATION_CONCEPTS”
 keyName=”buyTicket” keyValue=”TicketBooking”/>
 <keyedReference tModelKey=”uddi:ubr.uddi.org:categorization:INPUT_CONCEPTS”
 keyName=”Input” keyValue=”TicketInformation”/>
 <keyedReference tModelKey=”uddi:ubr.uddi.org:categorization:OUTPUT_CONCEPTS”
 keyName=”Output” keyValue=”ConfirmationMessage”/>

 </keyedReferenceGroup>
 <keyedReferenceGroup tModelKey=”uddi:ubr.uddi.org:categorizationGroup:MAPPINGGROUP”>

 …… </keyedReferenceGroup>
… </categoryBag>

</businessService>

Figure 1: Representation of Operations, Inputs and Outputs in UDDI

�������������
�������������
�������������

������������
������������
������������
������������

���
�����������������

WSDL

<Operation>

<Input1>

<Output1>

Service Template

Operation:
buyTicket

Input1:
TravelDetails
Output1:

Confirmation

Annotations

Publish

Search
UDDI

Class

TravelServices

Class
Data

Class
Operations

subClassOf subClassOf

subClassOfsubClassOf subClassOf subClassOf

Class
Ticket

Information

Class
Ticket
Booking

Class
Ticket

Cancellation

Class
Confirmation
Message

Operation:
cancelTicket

Input1:
TravelDetails
Output1:

Confirmation

Figure 27: Semantic Annotation, Publication and Discovery

7 For simplicity of depicting, TravelService Ontology is shown in figure 2 with separate classes called data and operations, meaning TicketInformation or
ConfirmationMessage are of type data, TicketBooking or TicketCancellation are of type Operations.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://decatur.cs.uga.edu:8080/axis/services/LSDISTravelWebService/axis/services/LSDISTravelWebService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:LSDISOnt="http://lsdis.cs.uga.edu/proj/meteor/METEORS/TravelServiceOntology.daml"
 xmlns:LSDISExt="http://lsdis.cs.uga.edu/proj/meteor/METEORS/WSDLExtension"

 <schema targetNamespace="http://LSDIS" xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="TravelDetails">
 <sequence>
 <element name="TravellerName" type="string"/>
 <element name="TravelType" type="string"/>
 <element name="FlightCode" type="string"/>
 <element name="CreditCardNo" type="int"/>
 <element name="OriginAirportCode" type="string"/>
 <element name="DestinationAirportCode" type="string"/>
 <element name="TravelDate" type="date"/>
 </sequence>
 </complexType>

 </schema>
</wsdl:types>
<wsdl:message name="OperationRequest">
 <wsdl:part name="in0" type="tns1:TravelDetails" LSDISExt:onto-concept="LSDISOnt:TicketInformation"/>
 </wsdl:message>
<wsdl:message name="OperationResponse">
 <wsdl:part name="return" type="tns1:Confirmation" LSDISExt:onto-concept="LSDISOnt:ConfirmationMessage"/>
 </wsdl:message>
<wsdl:portType name="Travel">
 <wsdl:operation name="buyTicket" parameterOrder="in0" LSDISExt:operation-concept="LSDISOnt:TicketBooking">
 <wsdl:input message="intf:OperationRequest" name="buyTicketRequest"/>
 <wsdl:output message="intf:OperationResponse" name="buyTicketResponse"/>
 <LSDISExt:precondition name="ValidCreditCard" LSDISExt:precondition-concept="LSDISOnt:ValidCreditCard"/>
 <LSDISExt:effect name="TicketBooked" LSDISExt:effect-concept="LSDISOnt:CardCharged-TicketBooked-ReadyForPickUp"/>
 </wsdl:operation>
 <wsdl:operation name="cancelTicket" parameterOrder="in0" LSDISExt:operation-concept="LSDISOnt:TicketCancellation">
 <wsdl:input message="intf:OperationRequest" name="cancelTicketRequest"/>
 <wsdl:output message="intf:OperationResponse" name="cancelTicketResponse"/>
 <LSDISExt:precondition name="CreditCardValidity" LSDISExt:precondition-concept="LSDISOnt:ValidCreditCard"/>
 <LSDISExt:precondition name="TicketBookedBefore" LSDISExt:precondition-concept="LSDISOnt:TicketExists"/>
 <LSDISExt:effect name="TicketCancelled" LSDISExt:effect-concept="LSDISOnt:CardCredited"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:service name="LSDISTravelService">
 <wsdl:port binding="intf:LSDISTravelWebServiceSoapBinding" name="LSDISTravelWebService">
 <wsdlsoap:address location="http://decatur.cs.uga.edu:8080/axis/services/LSDISTravelWebService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Figure 3: WSDL File Extended8 with Semantic Constructs

8 a. The extended elements and attributes have been underlined and are optional.
 b. Ontologies are common for data (inputs and outputs) and are not typical for operations, preconditions and effects. Hence to enable use of standard
vocabularies and business terminologies, onto-concept attribute is not used with them.

	Adding Semantics to Web Services Standards
	Repository Citation

	tmp.1410793618.pdf.KzzMK

