Addition of Optically Pure \boldsymbol{H}-Phosphinate to Ketones: the Selectivity, Stereochemistry and Mechanism

Yong-Ming Sun, ${ }^{,}$Nana Xin, ${ }^{a}$ Zhong-Yuan Xu, ${ }^{a}$ Li-Juan Liu, ${ }^{a}$ Fan-Jie Meng, ${ }^{a}$ He Zhang, ${ }^{a}$ Bao-Ci Fu, ${ }^{a}$ Qiu-Ju Liang, ${ }^{a}$ Hong-Xing Zheng, ${ }^{a}$ Li-Jun Sun, ${ }^{a}$ Chang-Qiu Zhao ${ }^{*}{ }^{a}$ and Li-Biao Han ${ }^{b}$

${ }^{a}$ College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
${ }^{b}$ National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.

Table of Contents

General
S1. Hydrophosphorylation of ketones with 1a to afford α-hydroxyphosphinates
S1-1. Optimization of condition for hydrophosphorylation of ketones
S1-2. Preparation of $\boldsymbol{\alpha}$-hydroxyphosphinates 3 via hydrophosphorylation of ketones
S1-3. Improvement of $\mathbf{d r}_{C}$ for formation of $3 / 3$ ' with reaction time
S1-4. Preparation of various \boldsymbol{H}-phosphinates 1 b to 1 e
S1-5. Hydrophosphorylation of \boldsymbol{p}-bromoacetophenone 2b with \boldsymbol{H}-Phosphinates 1a/1a' to 1e
S2. Ketone and/or aldehyde exchanging reaction for 3 or 6
S3. Crystallographic Information
S4. Density Functional Computations for $\mathbf{3 b} / \mathbf{3 b}$ ' and $\mathbf{3 g} / \mathbf{3 g}$,
S5. Selected ${ }^{1} H,{ }^{31} P$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy of compounds 3

General

All solvents if needed were freshly distilled prior to use. The purity of the products was checked by TLC on precoated plates of Silica gel GF254 using as mobile phase a $3: 1$ mixture of Petrol ether and ethyl acetate. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were obtained with a Varian Mercury Plus 400 MHz spectrometer at $400.13,100.63$ and 161.99 MHz , respectively. Chemical shifts were downfield relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ or TMS. Chemical shifts δ were reported in ppm, and coupling constants J were reported in Hz . All X-ray crystallographic data were collected on a Bruker SMART CCD 1000. Elemental analyses were performed with a PE-2400II apparatus.

S1. Hydrophosphorylation of ketones with 1a to afford α-hydroxyphosphinates

S1-1. Optimization of condition for hydrophosphorylation of ketones

To the solution of $R_{\mathrm{P}}-(L)-(-)$ menthyl phenylphosphinate $\mathbf{1 a}(0.100 \mathrm{~g}, 0.357 \mathrm{mmol})$ in solvent, p-bromoacephenone 2b $(0.073 \mathrm{~g}, 0.357 \mathrm{mmol})$ and base were added in turn. The mixture was stirred at room temperature and the reaction was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (ca. 0.1 ml suspension of reaction mixture dissolved in 0.5 ml chloroform).

S1-2. Preparation of $\boldsymbol{\alpha}$-hydroxyphosphinates $\mathbf{3}$ via hydrophosphorylation of ketones

General procedure: To the solution of $R_{\mathrm{P}}-(L)-(-)$ menthyl phenylphosphinate $1 \mathbf{1 a}(0.103 \mathrm{~g}, 0.368 \mathrm{mmol})$ in DMSO (1 ml), ketone $2(0.368 \mathrm{mmol})$ and potassium carbonate $(0.013 \mathrm{~g}, 0.092 \mathrm{mmol})$ were added in turn. The mixture was stirred at room temperature for 24 to 100 hours, and the reaction was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (ca. 0.1 ml suspension of reaction mixture dissolved in 0.5 ml chloroform). After the reaction finished, water $(2 \mathrm{ml})$ was added to the mixture and the solid was filtered, dried in the air. The crude product was recrystallized with $\mathrm{DCM} / \mathrm{PE}$ (dichloromethane/petroleum ether, $30-60^{\circ} \mathrm{C}$) to afford pure 3.

The spectral data of compounds 3a, 3b, 3c, $\mathbf{3 d} / \mathbf{3 d}{ }^{\prime}, \mathbf{3 e} / \mathbf{3 e}, \mathbf{3 f}, \mathbf{3 g}, \mathbf{3 h}, \mathbf{3 i}, \mathbf{3 j}, \mathbf{3 l}$ or $\mathbf{3 1}{ }^{\prime}, \mathbf{3 m} / \mathbf{3 m}$ ', $\mathbf{3 p}, \mathbf{3 q}$, $\mathbf{3 r}, \mathbf{3 s}, \mathbf{3 t}$ or $\mathbf{3 t}$ ', $\mathbf{3 u}, \mathbf{3 v} / \mathbf{3 v}$ ' and $\mathbf{3 w}-\mathbf{3 w}{ }^{\prime}$, were shown in Supporting Information of our previous publication (H. Zhang, Y.-M. Sun, L. Yao, S.-Y. Ji, C.-Q. Zhao and L.-B. Han, Chem. Asian J. 2014. 9, 1329-1333.).

S1-3. Improvement of $\mathbf{d r}_{C}$ for formation of $\mathbf{3 / 3}$ ' with reaction time

Isolation of 3b/3b,

To the solution of $R_{\mathrm{P}}-(L)-(-)$ menthyl phenylphosphinate $\mathbf{1 a}(1.090 \mathrm{~g}, 3.89 \mathrm{mmol})$ in DMSO (6 ml), p-bromoacetophenone $\mathbf{2 b}(0.778 \mathrm{~g}, 3.89 \mathrm{mmol})$ and potassium carbonate $(0.025 \mathrm{~g}, 0.184 \mathrm{mmol})$ were added in turn. The mixture was stirred at room temperature for 0.5 hours, then water (10 ml) was added to the mixture. The white solid was filtered, weighted 1.080 g after drying in the air.
${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta 38.3$ (3b, 59 \%) 37.6 ($\mathbf{3 b}$, 41 \%)

Improvement of $\mathbf{d r}_{\mathbf{C}}$ for formation of $\mathbf{3 b} / \mathbf{3 b}$,

The same reaction as above was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (ca. 0.1 ml suspension of reaction mixture dissolved in 0.5 ml chloroform). The peaks located at $38.4 \mathbf{(3 b}, \mathrm{~s}, 60 \%), 37.8 \mathrm{ppm}(\mathbf{3 b}$, s , 40%) in 79 \% yield after the mixture was stirred for $0.25 \mathrm{~h} ; 38.4(\mathbf{3 b}, \mathrm{~s}, 62 \%), 38.4 \mathrm{ppm}(\mathbf{3 b}, \mathrm{s}, 38 \%)$ in 91% yield for $1 \mathrm{~h} ; 38.4$ ($\mathbf{3 b}, \mathrm{s}, 77 \%$), $37.8 \mathrm{ppm}(\mathbf{3 b}, \mathrm{s}, 23 \%)$ for 5 h in 97% yield; 38.4 ($\mathbf{3 b}, \mathrm{s}, 97 \%$),
$37.8 \mathrm{ppm}(\mathbf{3 b} \mathbf{b}, \mathrm{s}, 3 \%)$ for 10 h in 97% yield; $38.4(\mathbf{3 b}, \mathrm{~s}, 97 \%), 37.8 \mathrm{ppm}(\mathbf{3 b}, \mathrm{s}, 3 \%)$ for $24 \mathrm{~h} \mathrm{in} 98 \%$ yield; 38.4 ($\mathbf{3 b}, \mathrm{s}, 98 \%$), 37.8 ppm ($\mathbf{3 b}$ ', s, 2%) for 72 h in 98% yield.

Improvement of $\mathbf{d r}_{\mathbf{C}}$ for isolated $\mathbf{3 b} / \mathbf{3 b}$,

To the solution of pure $\mathbf{3 b} / \mathbf{3} \mathbf{b}^{\prime}\left(0.114 \mathrm{~g}, 0.238 \mathrm{mmol}, 59: 41 \mathrm{dr}_{\mathrm{C}}\right)$ in DMSO $(1 \mathrm{ml})$, potassium carbonate $(0.096 \mathrm{~g}, 0.060 \mathrm{mmol})$ were added. The mixture was stirred at room temperature, and the reaction was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (ca. 0.1 ml suspension of reaction mixture dissolved in 0.5 ml chloroform). The peaks located at 38.4 ($\mathbf{3 b}, \mathrm{s}, 94 \%$), $37.8 \mathrm{ppm}(\mathbf{3 b}, \mathrm{s}, 6 \%)$ after the mixture was stirred for $1.5 \mathrm{~h} ; 38.4$ ($\mathbf{3 b}, \mathrm{s}, 97 \%$), $37.8 \mathrm{ppm}(\mathbf{3 b}$ ', s, 3%) for 3 h , respectively.

Solubilities of two diastereomers 3b/3b' in DMSO

The suspension of $\mathbf{3} \mathbf{b} / \mathbf{3} \mathbf{b}^{\prime}\left(0.601 \mathrm{~g}, 1.25 \mathrm{mmol}, 59: 41 \mathrm{dr}_{\mathrm{C}}\right)$ in DMSO $(3.6 \mathrm{ml})$ was stirred for 30 min at room temperature. The white solid was filtered, that and the filtrate were analyzed with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy respectively. The peaks located at $\delta 38.4$ ($\mathbf{3 b}, \mathrm{s}, 61.7 \%$), $37.8 \mathrm{ppm}(\mathbf{3 b}$, s, $38.3 \%)$ for solid; and $\delta 38.4$ ($\mathbf{3 b}, \mathrm{s}, 22.5 \%$), 37.8 ppm ($\mathbf{3} \mathbf{b}$, s, 77.5%) for filtrate.

S1-4. Preparation of various \boldsymbol{H}-phosphinates 1 b to 1 e

To the solution of dichlorophenylphosphine ($8 \mathrm{ml}, 58.95 \mathrm{mmol}$) in 40 ml dry ether, triethylamine (8.21 $\mathrm{ml}, 58.95 \mathrm{mmol}$) and alcohol (58.95 mmol) was added dropwise at $0{ }^{\circ} \mathrm{C}$ in turn. The mixture was stirred at room temperature for 8 hours, then another 20 ml ether was added to the mixture. The mixture was washed with water ($3 \times 20 \mathrm{ml}$), dried over anhydrous magnesium sulfate, and concentrated in vacuo. The resulted colorless oil was purified with column chromatography (silica gel, $\mathrm{PE} / \mathrm{EtOAc}=4: 1$ as eluent).

Ethyl phenylphosphinate (1b) was obtained as colorless oil, weighted 8.5 g , yielding 72%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=564 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.89-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.52$ $(\mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.03(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{dd}, \mathrm{J}=12.8,6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 25.26 (s).

Isopropyl phenylphosphinate (1c) was obtained as colorless oil, weighted 9.1 g , yielding 77%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=560 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.83-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.66$ $(\mathrm{dt}, \mathrm{J}=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 22.85 (s).

Cyclohexyl phenylphosphinate (1d) was obtained as colorless oil, weighted 9.8 g , yielding 80%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=564 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.38(\mathrm{~m}, 3 \mathrm{H}) 4.54$ - $4.33(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.10(\mathrm{~m}, 10 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.71(\mathrm{~s})$.

tert-Butyl phenylphosphinate (1e)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=552 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77(\mathrm{dd}, \mathrm{J}=13.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=9.2,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.63$ (s).

S1-5. Hydrophosphorylation of \boldsymbol{p}-bromoacetophenone 2b with \boldsymbol{H}-Phosphinates 1a/1a' to $\mathbf{1 e}$
 Typical procedure: Addition to 2 b with $R_{\mathrm{P}} / S_{\mathrm{P}}-1 \mathrm{a} / 1 \mathrm{a}$,

To the solution of $R_{\mathrm{P}} / S_{\mathrm{P}}-(L)-(-)$ menthyl phenylphosphinate $\mathbf{1 a} / \mathbf{1 a}{ }^{\prime}\left(0.106 \mathrm{~g}, 0.378 \mathrm{mmol}, \mathrm{dr}_{\mathrm{P}}\right.$ ca. $\left.50: 50\right)$ in DMSO (1 ml), p-bromoacephenone 2b $(0.079 \mathrm{~g}, 0.378 \mathrm{mmol})$ and potassium carbonate $(0.025 \mathrm{~g}, 0.198$ mmol) were added in turn. The mixture was stirred at room temperature, and the reaction was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (0.1 ml the suspension was dissolved in 0.5 ml chloroform). The results were presented in Table S1-1. After reaction completed, water was added dropwise to the mixture and the solid was filtered. After drying, the solid was recrystallized with DCM/PE.

Ethyl [1-hydroxy-1-(4-bromophenyl)ethyl]phenylphosphinate (3bb). The mixture of two diastereomers was obtained 0.750 g , in 81% yield after 3 h , having the peaks at 40.7 and 40.9 ppm on ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy. Major isomer (l) $\mathbf{- 3 b b}$ was obtained as white solid, weighted 0.383 g (41% yield), m. p. 164.4-165.0 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=19.7,9.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.11-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 40.28 (s). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.52$ (s), 133.33 ($\mathrm{d}, J=8.9 \mathrm{~Hz}$), 132.73 (d, $J=2.5 \mathrm{~Hz}), 131.01(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 128.61-127.79(\mathrm{~m}), 126.75(\mathrm{~s}), 121.71(\mathrm{~d}, J=3.9$ $\mathrm{Hz}), 77.54(\mathrm{~s}), 77.32(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 76.90(\mathrm{~s}), 75.71(\mathrm{~s}), 74.61(\mathrm{~s}), 62.27(\mathrm{~d}, J=7.2$ $\mathrm{Hz}), 25.13(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 16.77(\mathrm{~d}, J=5.6 \mathrm{~Hz})$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{PBr}: \mathrm{C}, 52.05 ; \mathrm{H}, 4.91$. Found: C, 51.92; H, 4.83.

Table S1-1. Time-dependences of yield (\%) and dr for the reactions of various H-phosphinates to 2b

Time /h	$\begin{gathered} \mathbf{1 a} \\ (\mathrm{R}=\mathrm{Men})^{[\mathrm{a}]} \end{gathered}$	$\mathbf{1 a} / \mathbf{1 9}{ }^{\prime}(\mathrm{R}=\mathrm{Men})^{[\mathrm{b}]}$	1b (R=Et)	$\begin{gathered} \mathbf{1 c} \\ (\mathrm{R}=i \mathrm{Pr}) \end{gathered}$	$\begin{gathered} 1 \mathbf{1 d} \\ (\mathrm{R}=c \text {-Hex }) \end{gathered}$	$\begin{gathered} 1 \mathbf{e} \\ (\mathrm{R}=t \mathrm{Bu}) \end{gathered}$
0.25	79 (60:40)	NR				
0.5			80 (62:38)	82.7(57:43)		
1	91 (62:38)	82(31:14:30:26)				
5	97 (77:23)	73 (49:5:28:18)		80 (51:49)	84 (38:62)	
10	97 (90:10)	83 (42:4:28:26)				
17			53 (19:81)	80 (20:80)		54 (44:56)
24	98 (97:3)	67 (47:3:26:24)			87 (33:67)	
41			38 (21:79)	$69(20: 80)$		81 (38:62)
54					$80(29: 71)$	
66			20 (46:54)	70.0(22:78)		77 (35:65)
72	98 (98:2)	66 (54:1:25:20)			73 (28:72)	
88					71 (28:72)	73 (31:69)

[a] Yields and dr were estimated by ${ }^{31}$ P-NMP spectroscopy. The dr were presented in parentheses, and assigned as ratio of $S_{\mathrm{P}} R_{\mathrm{C}} / S_{\mathrm{P}} S_{\mathrm{C}}$ stereomers for reaction of $\mathbf{1 a}$, or ratio of ($u / l \mathrm{l}$-stereomers for reactions of $\mathbf{1 b} \mathbf{- 1} \mathbf{1} .[\mathrm{b}] R_{\mathrm{P}} / S_{\mathrm{P}} \mathbf{- 1 a} / \mathbf{1 a}$, (ca. 50:50) was used. The ratio was assignen as $S_{\mathrm{P}} R_{\mathrm{C}}: S_{\mathrm{P}} S_{\mathrm{C}}:\left(R_{\mathrm{P}} R_{\mathrm{C}} / R_{\mathrm{P}} S_{\mathrm{C}}\right)$, and the later two stereomers weren't confirmed.

Isopropyl [1-hydroxy-1-(4-bromophenyl)ethyl]phenylphosphinate (3cb). The mixture of two diastereomers was obtained 0.534 g , in 54% yield after 66 h , having the peaks at 39.2 and 39.4 ppm on ${ }^{31}$ P-NMR spectroscopy. Major isomer was obtained as white solid, weighted 0.352 g (41% yield), m. p. $171.5-172.9{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{dd}, J=12.1,5.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.21$ $(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{br}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 38.96(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 132.60$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}), 130.92(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 128.78(\mathrm{~s}), 128.16(\mathrm{t}, J=7.7 \mathrm{~Hz}), 127.58(\mathrm{~s}), 121.62(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, $77.54(\mathrm{~s}), 77.32(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 76.90(\mathrm{~s}), 75.64(\mathrm{~s}), 74.54(\mathrm{~s}), 71.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 51.00(\mathrm{~s}), 25.06(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}), 24.58(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 24.29(\mathrm{~d}, J=4.2 \mathrm{~Hz})$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{PBr}: \mathrm{C}, 53.28 ; \mathrm{H}, 5.26$. Found: C, 53.11; H, 5.15.

Cyclohexyl [1-hydroxy-1-(4-bromophenyl)ethyl]phenylphosphinate (3db). The mixture of two diastereomers was obtained 0.380 g , in 57% yield after 88 h , having the peaks at 39.4 and 39.7 ppm on ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy. Major isomer was obtained as white solid, weighted 0.250 g (yield 37%), m. p. 179.1-182.3 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.67$ $(\mathrm{s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.17(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.16$ (s), 133.06 (d, $J=8.9$ $\mathrm{Hz}), 132.33(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 128.60(\mathrm{~s}), 128.14-127.64(\mathrm{~m})$, $127.40(\mathrm{~s}), 121.34(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 75.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 75.37(\mathrm{~s}), 74.28(\mathrm{~s}), 33.97(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 33.72(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}$), $25.08(\mathrm{~s}), 24.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 23.55(\mathrm{~s})$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{PBr}: \mathrm{C}, 56.75 ; \mathrm{H}, 5.72$. Found: C, 56.52; H, 5.60.
tert-Butyl [1-hydroxy-1-(4-bromophenyl)ethyl]phenylphosphinate (3eb). The mixture of two diastereomers was obtained 0.650 g , in 53% yield after 88 h , having the peaks at 35.8 and 36.1 ppm on ${ }^{31}$ P-NMR spectroscopy. Major isomer was obtained as white solid, weighted 0.436 g (yield 35%). m. p. $177.6-179.2^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.47(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.59(\mathrm{~s}), 133.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 132.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.76(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, $129.53(\mathrm{~s}), 128.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.00(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 121.47(\mathrm{~s}), 84.52(\mathrm{~d}, J=$ 10.0 Hz), 75.69 (s), 74.57 (s$), 30.91\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}\right.$), $24.83\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}\right.$). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{PBr}$: C, 54.42; H, 5.58. Found: C, 54.16; H, 5.43.

S2. Ketone and/or aldehyde exchanging reaction for 3 or 6

Typical procedure: Reaction of 3b to 2 i

To the solution of optically pure $\mathbf{3 b}(0.102 \mathrm{~g}, 0.21 \mathrm{mmol})$ in DMSO $(0.8 \mathrm{ml})$, p-methoxyacephenone $\mathbf{2 i}$ $(0.065 \mathrm{~g}, 0.42 \mathrm{mmol})$ and potassium carbonate $(8 \mathrm{mg}, 0.053 \mathrm{mmol})$ were added in turn, and the mixture was stirred at room temperature. After 48 h , the suspension $(0.1 \mathrm{ml})$ was dissolved in chloroform (0.5 ml), and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 39.0(\mathbf{3 i}, 13 \%)$, 38.4/37.8 (3b/3b ', in the ratio of 97:3, $\left.60 \%\right), 25.1\left(R_{\mathrm{P}}-\mathbf{1 a}\right.$, 9%).

Reaction of 3b to $\mathbf{2 p}$

After 24 h , the suspension (0.1 ml) was dissolved in chloroform $(0.5 \mathrm{ml})$, and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 40.5$ ($\mathbf{3 p}, 70 \%$), 38.4 (3b, 24%)

Reaction of 3b/3b' to $\mathbf{2 p}$

After 24 h , the suspension (0.1 ml) was dissolved in chloroform $(0.5 \mathrm{ml})$, and was analyzed by NMR spectroscopy.
${ }^{31}$ P NMR (162 MHz) $\delta(\mathrm{ppm}) 40.5$ ($\mathbf{3 p}, 31 \%$), 38.4/37.8 (3b/3b' in the ratio of 90:10, 66%)

Reaction of $R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6 a}$ to 2 p catalyzed by $\mathrm{K}_{2} \mathbf{C O}_{3}$

After 48 h , the suspension (0.1 ml) was dissolved in chloroform (0.5 ml), and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}) \delta(\mathrm{ppm}) 41.4\left(R_{\mathrm{P}} \mathbf{- 3} \mathbf{p}, 15 \%\right), 35.7 / 36.9\left(R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6} \mathbf{a} / R_{\mathrm{P}} S_{\mathrm{C}}-\mathbf{6 a}\right.$ in the ratio of $87: 13,82$ \%).

Reaction of $\left(R_{\mathrm{P}} R_{\mathrm{C}}\right)-6$ a to $\mathbf{5 b}$ at $80^{\circ} \mathrm{C}$ in neat state

$\left(R_{\mathrm{P}} R_{\mathrm{C}}\right)$-6a $(0.050 \mathrm{~g}, 0.129 \mathrm{mmol})$ and o-anisaldehyde $\mathbf{5 b}(0.046 \mathrm{~g}, 0.306 \mathrm{mmol})$ were heated at $80^{\circ} \mathrm{C}$ in neat state for 24 h . The tardy substance (ca .10 mg) was dissolved in chloroform (0.5 ml), and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 35.7\left(R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6 a}, 99 \%\right)$.

Reaction of $R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6 a}$ to $\mathbf{5 b}$ catalyzed by $\mathrm{K}_{2} \mathbf{C O}_{3}$

After 24 h , the suspension $(0.1 \mathrm{ml})$ was dissolved in chloroform $(0.5 \mathrm{ml})$, and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}) \delta(\mathrm{ppm}) 35.7 / 36.7\left(R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6 b} / R_{\mathrm{P}} S_{\mathrm{C}}-\mathbf{6 b}\right.$, in the ratio of $\left.24: 76,29 \%\right), 36.0 / 36.2$ ($R_{\mathrm{P}} R_{\mathrm{C}}-\mathbf{6} \mathbf{a} / R_{\mathrm{P}} S_{\mathrm{C}}-\mathbf{6 a}$, in the ratio of 59:41, 57%), 18.7 (O-phosphorylated product, 14%).

Reaction of $3 p$ to $2 r$ catalyzed by $\mathrm{K}_{2} \mathrm{CO}_{3}$

After 24 h , the suspension (0.1 ml) was dissolved in chloroform (0.5 ml), and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 41.2$ (3r, 10%), 40.5 (3p, 90%)

Reaction of 3p to $2 r$ catalyzed by KOH

After 24 h , the suspension (0.1 ml) was dissolved in chloroform (0.5 ml), and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 41.2$ (3r, 13 \%), 40.5 (3p, 74%)

Reaction of 3p to 5b catalyzed by $\mathrm{K}_{2} \mathrm{CO}_{3}$

After 24 h , the suspension (0.1 ml) was dissolved in chloroform $(0.5 \mathrm{ml})$, and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 18.3$ (4 $\mathbf{4 a l d}, 1 \%$), 40.5 ($\left.\mathbf{3 p}, 99 \%\right)$.

Reaction of 3p to 5b catalyzed by $\mathbf{K O H}$

After 13 h , the suspension (0.1 ml) was dissolved in chloroform $(0.5 \mathrm{ml})$, and was analyzed by NMR spectroscopy.
${ }^{31} \mathrm{P}$ NMR (162 MHz) $\delta(\mathrm{ppm}) 18.3$ (4 $\mathbf{4 a l d}, 91 \%$), 40.5 (3p, 5%).

Cross aldehyde exchanging reaction for 6 catalyzed by potassium carbonate

To the solution of optically pure $S_{\mathrm{P}} S_{\mathrm{C}}-\mathbf{6 a}(0.051 \mathrm{~g}, 0.133 \mathrm{mmol})$ and $R_{\mathrm{P}} S_{\mathrm{C}}-\mathbf{6 c}(0.049 \mathrm{~g}, 0.122 \mathrm{mmol})$ in DMSO (1 ml), potassium carbonate $(0.012 \mathrm{~g}, 0.087 \mathrm{mmol})$ were added. The mixture was stirred at room temperature, and the reaction was monitored with ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (ca. 0.1 ml suspension of reaction mixture dissolved in 0.5 ml chloroform). Two groups of adducts $\mathbf{6 a}$ to and $\mathbf{6 c}$ were observed to have eight peaks at $\delta 34.86,34.95,35.06,35.11,35.41,35.54,36.31$ and 36.38 ppm .

S3. Crystallographic Information

General

Crystals were mounted in lindemann capillaries under nitrogen. All X-ray crystallographic data were collected on a Bruker SMART CCD 1000 diffractometer with graphite monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$ at $298(2)$ K. A semi-empirical absorption correction was applied to the data. The structure was solved by direct methods using SHELXS-97 and refined against F2 by full-matrix least squares using SHELXL-97. ${ }^{[\mathrm{S} 1]}$ Hydrogen atoms were placed in calculated positions. The absolute configurations were confirmed by evaluation of the Flack parameter. ${ }^{[\mathrm{S} 2]}$

[^0]
S3-1.

(S)-(L)-menthyl
[(R)-1-(4-bromophenyl)-1-hy droxyethyl]phenylphosphina te (3b)
The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-1. Crystallographic Data of 3b

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{PBr}$
Formula weight	479.37
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1)$
$\mathrm{a}(\AA)$	$19.80(2)$
$\mathrm{b}(\AA)$	$5.863(6)$
$\mathrm{c}(\AA)$	$20.83(2)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$101.188(12)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA 3)$	$2372(4)$
Z	4
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.342
$\mu\left(\mathrm{~mm} \mathrm{~m}^{-1}\right)$	1.822
$\mathrm{~F}(000)$	1000
Crystal size (mm)	$0.48 \times 0.30 \times 0.27$
Reflections collected	11609
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$7063[\mathrm{R}(\mathrm{int})=0.0445]$
Data/restraints $/$ parameters	$7063 / 325 / 558$
Goodness-of-fit on F^{2}	1.083
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.1350, \mathrm{wR} 2=0.2983$
R indices (all data $)$	$\mathrm{R} 1=0.1719, \mathrm{wR2} 2=0.3188$
Flack parameter	$0.08(3)$
CCDC number	CCDC 950075

S3-2.

(S)-(L)-menthyl
[(S)-1-(3-nitrophenyl)-1-hydroxyethyl] phenylphosphinate ($\mathbf{3 g}$ ')
The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-2. Crystallographic Data of 3g'

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$
Formula weight	446.48
Wavelength (\AA)	0.71073
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2(1) 2(1) 2(1)$
$\mathrm{a}(\AA)$	$5.8926(18)$
$\mathrm{b}(\AA)$	$18.289(2)$
$\mathrm{c}(\AA)$	22.043
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA \AA)$	$2375.7(8)$
Z	4
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.248
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.150
$\mathrm{~F}(000)$	956
Crystal size (mm)	$0.45 \times 0.40 \times 0.31$
Reflections collected	17624
Unique reflections $\left[\mathrm{R}_{\mathrm{int}}\right]$	$5517[\mathrm{R}(\mathrm{int})=0.0755]$
Data/restraints/parameters	$5517 / 0 / 300$
Goodness-of-fit on F^{2}	1.035
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0614, \mathrm{wR} 2=0.1032$
R indices (all data)	$\mathrm{R} 1=0.1158, \mathrm{wR} 2=0.1242$
Flack parameter	$0.07(13)$
CCDC number	CCDC 950078

S3-3.

(S)-(L)-menthyl
[(R)-1-(4-methoxylphenyl)-1-hydroxyethyl] phenylphosphinate (3i)
The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-3. Crystallographic Data of 3i

Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{P}$
Formula weight	425.46
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1)$
$\mathrm{a}(\AA)$	$12.436(13)$
$\mathrm{b}(\AA)$	$5.7781(7)$
$\mathrm{c}(\AA)$	$15.9687(16)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$92.5340(10)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA 3)$	$1146.3(12)$
Z	2
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.233
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.148
$\mathrm{~F}(000)$	454
Crystal size (mm)	$0.43 \times 0.19 \mathrm{x} 0.12$
Reflections collected	5868
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$3683[\mathrm{R}(\mathrm{int})=0.1238]$
Data/restraints/parameters	$3683 / 37 / 288$
Goodness-of-fit on F^{2}	1.092
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.1367, \mathrm{wR} 2=0.3229$
R indices (all data)	$\mathrm{R} 1=0.1811, \mathrm{wR} 2=0.3557$
Flack parameter	$0.3(4)$
CCDC number	CCDC 950076

S3-4.

(S)-(L)-menthyl
[(R)-1-biphenyl-1-hydroxyethyl] phenylphosphinate ($\mathbf{3} \mathbf{j}$)
The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-4. Crystallographic Data of 3j

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}$
Formula weight	475.56
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	C 2
$\mathrm{a}(\AA)$	$24.450(4)$
$\mathrm{b}(\AA)$	$5.8577(7)$
$\mathrm{c}(\AA)$	$20.328(3)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$114.063(17)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA 3)$	$2658.4(7)$
Z	4
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.188
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.132
$\mathrm{~F}(000)$	1020
Reflections collected	8280
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$4237[\mathrm{R}(\mathrm{int})=0.0790]$
Data/restraints/parameters	$4237 / 1 / 312$
Goodness-of-fit on F^{2}	1.027
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0707$, wR2 $=0.1028$
R indices $($ all data $)$	$\mathrm{R} 1=0.1435, \mathrm{wR} 2=0.1390$
Flack parameter	$0.4(2)$
CCDC number	CCDC 950080

S3-5.
(S)-(L)-menthyl
[(R)-(2-hydroxy-4-methyl pentan-2-yl)] phenylphosphinate (3u)
The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-5. Crystallographic Data of 3u

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}$
Formula weight	380.49
Wavelength (\AA)	0.71073
Crystal system	Triclinic
Space group	P 1
$\mathrm{a}(\AA)$	$5.7766(4)$
$\mathrm{b}(\AA)$	$12.2080(12)$
$\mathrm{c}(\AA)$	$16.2225(15)$
$\alpha\left({ }^{\circ}\right)$	$83.552(2)$
$\beta\left({ }^{\circ}\right)$	$82.7850(10)$
$\gamma\left({ }^{\circ}\right)$	$78.7770(10)$
$\mathrm{V}(\AA 3)$	$1108.71(17)$
Z	2
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.140
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.141
$\mathrm{~F}(000)$	416
Crystal size (mm)	$0.32 \times 0.20 \mathrm{x} 0.16$
Reflections collected	6610
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$5141[\mathrm{R}(\mathrm{int})=0.0346]$
Data/restraints/parameters	$5141 / 3 / 483$
Goodness-of-fit on F^{2}	$\mathrm{R} 1=0.0435, \mathrm{wR} 2=0.0898$
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0534, \mathrm{wR} 2=0.0973$
R indices $($ all data $)$	$-0.12(9)$
Flack parameter	CCDC 950077
CCDC number	

S3-6.

Cyclohexyl
[1-hydroxy-1-(4-bromophenyl)ethyl] phenylphosphinate (3db)
The crystal suitable for X-ray

Cl 3

Table S3-6. Crystallographic Data of 3db

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{PBr}$
Formula weight	423.26
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{n}$
$\mathrm{a}(\AA)$	$10.4511(12)$
$\mathrm{b}(\AA)$	$19.5742(6)$
$\mathrm{c}(\AA)$	$11.0005(11)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$117.362(2)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA 3)$	$1998.6(3)$
Z	4
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.400
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	2.152
$\mathrm{~F}(000)$	864
Crystal size (mm)	$0.50 \times 0.20 \times 0.20$
Reflections collected	7242
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$3373[\mathrm{R}(\mathrm{int})=0.0630]$
Data/restraints $/$ parameters	$3373 / 162 / 228$
Goodness-of-fit on F^{2}	1.039
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0889, \mathrm{wR} 2=0.2117$
R indices $($ all data $)$	$\mathrm{R} 1=0.1627, \mathrm{wR} 2=0.2647$
CCDC number	CCDC 950079

S3-7.

tert-Butyl

[1-hydroxy-1-(4-bromophenyl) ethyl]phenylphosphinate (3eb) The crystal suitable for X-ray diffraction was obtained from recrystallization with DCM and methanol.

Table S3-7. Crystallographic Data of 3eb

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{PBr}$
Formula weight	397.24
Wavelength (\AA)	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{c}$
$\mathrm{a}(\AA)$	$15.6312(13)$
$\mathrm{b}(\AA)$	$5.9562(4)$
$\mathrm{c}(\AA)$	$19.6323(17)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$92.0060(10)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\AA 3)$	$1826.7(3)$
Z	4
Dcalc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.444
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	2.349
$\mathrm{~F}(000)$	816
Crystal size (mm)	$0.50 \times 0.18 \times 0.17$
Reflections collected	8535
Unique reflections $\left[\mathrm{R}_{\text {int }}\right]$	$3197[\mathrm{R}(\mathrm{int})=0.1362]$
Data/restraints/parameters	$3197 / 0 / 213$
Goodness-of-fit on F^{2}	$\mathrm{R} 1=0.1842, \mathrm{wR} 2=0.4463$
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.2615, \mathrm{wR} 2=0.4999$
R indices (all data)	CCDC 950081
CCDC number	

S4. Density Functional Computations for $\mathbf{3 b} / \mathbf{3 b}$ ' and $\mathbf{3 g} / \mathbf{3 g}$,

S4-1. Computational Details

The whole calculations were performed in Gaussian $09^{[53]}$ using the B3LYP density functional. This basis has previously been shown to perform well for silicon and phosphorus compounds. ${ }^{[S 4]}$ The diastereomeric structures derived from chiral carbon of $\mathbf{3 g} / \mathbf{3 g}$, were optimized using the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ full-electron double-zeta polarized basis set for $\mathrm{H}, \mathrm{C}, \mathrm{O}$, and P , and the groups were optimized using tight convergence criteria, fixing irrelevant atoms and increasing calculated steps' length. The diastereomeric structures derived from chiral carbon of $\mathbf{3 b} / \mathbf{3 b}$ ' were optimized using the $6-311 \mathrm{G}$ (2d) triple-zeta doubly polarized basis set for Br. An ultrafine integration grid was applied in combination with tight convergence criteria for SCF and geometry. Structures of $\mathbf{3 g}$, and $\mathbf{3 b}$ were referred from X-ray structures. Subsequent single-point energies were calculated with each polarized basis which had been used to optimization.

S4-2. Optimized Energies

Table S4-1. Density functional calculations of $\mathbf{3 b} / \mathbf{3 b}{ }^{\prime}$, and $\mathbf{3 g} / \mathbf{3 g}{ }^{\prime}$

Compounds	$E_{S p R c-\text { opt }}$	$E_{S p S c-\text { opt }}$	$E_{S p R c-\text { opt }}-E_{S p S c-\text { opt }}$ $(\mathrm{kcal} / \mathrm{mol})$
$\mathbf{3 b} / \mathbf{3 b}$,	-4075.37267009 a.u.	-4075.34996024 a..u.	-14.25
$\mathbf{3 g} / \mathbf{3} \mathbf{g}$,	-1706.07392557 a.u.	-1706.07415733 a.u.	0.15

[S3] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[S4] a) E. P. A. Couzijn, J. C. Slootweg, A. W. Ehlers, K. Lammertsma, J. Am. Chem. Soc. 2010, 132, 18127-18140. b) E. P. A. Couzijn, D. W. F. van den Engel, J. C. Slootweg, F. J. J. de Kanter, A. W. Ehlers, M. Schakel, K. Lammertsma, J. Am. Chem. Soc. 2009, 131, 3741-3751.

S4-3. Optimized Structures:

(S)-(-)-menthyl [(S)-1-(4-bromophenyl)-1-hydroxyethyl]phenylphosphinate (3b')

P	-0.54324	-0.01694	-0.08907	C	-538	-129919	-059006	C	0.605754	2.194815	-125695	C	2513325	-124496	-037239
C	-3.11397	-294836	-1.7911	H	-522736	-125105	-1.66986	H	1.009713	1.482351	-1.96921	C	3.001457	0.189696	1.484178
H	-220571	-350497	-2.01644	H	-597082	-2.1936	-039274	C	-0.22801	1.742423	-0.22889	H	1.800961	-1.78246	-0.98901
H	-3.05818	-2.00963	-233695	C	4.01393	-1.42082	0.117852	C	-0.74775	2.685812	0.671674	C	3.848992	-1.22554	-0.74798
H	-396442	-351517	-2.17231	H	4.19758	-1.47305	1.196063	H	-139269	2353998	1.481965	H	2.686526	0.75175	2353843
O	-0.41328	-0.70459	-139972	C	-3.22164	-0.14224	-0.13407	C	-0.46955	4.034793	0534615	C	4341813	0227351	1.111251
O	-1.97088	-0.16158	0.630314	H	-297784	-0.05679	-1.19313	H	-0.88475	4.74829	1240976	C	4.758719	-0.051334	0.017404
C	-6.11692	2475265	0.084706	C	-3.99943	1.100635	031118	C	034293	4.473544	-050808	H	4.180104	-1.7605	-1.63371
H	-6.07555	2576172	1.171028	H	4.14994	1.041122	1392412	H	0525597	5535295	-0.64566	H	5.044538	0.832631	1.673516
H	-7.16679	2421196	-0.20581	H	-338658	1.984878	0.125215	C	0.896588	3.546423	-137884	Br	6.61676	-0.49303	-0.47339
H	-5.6963	3382729	-035124	C	-3.87284	-39484	0.419644	H	1579375	3.874993	-2.16102	H	0930742	-2.42336	2.434996
C	-535603	123036	-038404	H	4.92515	4.05528	0.155533	C	0.594259	-0.68288	1249732	H	-0.76592	-2.15438	2.009059
H	-5.18122	1320947	-1.46157	H	-3.80338	-3.86488	1505305	C	0258139	-208838	1.644714	H	0369314	-2.75386	0.790871
C	-6.1618	-0.0603	-0.14799	H	-336353	4.86531	0.119048	O	0.417487	0.152942	2.430186				
H	-639973	-0.13326	0917033	C	-324011	-272804	-026542	H	0.443357	1.086893	2.123148				
H	-7.11247	-0.00745	-0.68379	H	-223695	-2.61346	0.136836	C	2.071335	-0.55848	0.771215				

(S)-(-)-menthyl [(R)-1-(3-nitrophenyl)-1-hydroxyethyl] phenylphosphinate (3g)

P	-0.78855	-1.096	0.603228	C	-3.85867	-294688	-1.44985	C	-121417	3981934	0226159	C	2961856	-1.02354	-0.69051
O	-0.69994	-0.88465	2083783	H	4.12632	-3.1751	-247726	H	-1.40696	4.002445	1306937	C	2316927	-12683	1.622365
O	-0.73674	0259175	-031076	C	-3.47221	292453	-0.2766	H	-057476	4.843763	0.010826	C	4.197091	-0.54454	-0.26043
C	-231454	-198327	0.14969	H	-3.709	2899384	0.798543	C	1.898373	3.62598	0.039858	H	2766869	-1.12291	-1.74939
O	0.496947	-1.82632	-1.6251	C	435975	-3.03645	091573	H	1.928981	3.677526	-1.05445	H	1572509	-152616	2366877
H	0390894	-0.8774	-1.80079	H	-5.01693	-333092	1.728561	H	2914106	3.41547	0390013	C	3.562956	-0.78692	2.026854
C	0.666036	-197383	-0.21426	C	0.926929	2539037	0528616	H	1.626741	4.619213	0.413986	N	5.196625	-0.16077	-1.27211
C	-1.40565	1.491345	0.124705	H	132773	1.578818	0.184821	C	4.79101	3.042859	-1.04812	C	4.52217	-0.41702	1.086897
H	-1.58915	1.401972	1.201185	C	4.70597	-332482	-0.40496	H	-532792	3957665	-0.77531	H	3.785156	-0.69736	3.085383
C	0.620519	-3.47944	0.074079	H	-5.63432	-3.8454	-0.62174	H	-5.4511	2.193127	-0.84352	O	6286716	0.248395	-0.87206
C	-3.16599	-237053	1.195095	C	-2.73402	1.619811	-0.62426	H	4.61152	3.072602	-2.12949	O	4.884594	-0.26899	-245793
H	-2.88241	-2.1388	2216565	H	-336669	0.754466	-039911	C	0.88993	2.491954	2065411	H	5.496146	-0.04018	1371258
C	-2.66752	-227566	-1.17856	H	-252793	1.591107	-1.70332	H	0.496895	3.421248	2.493014	H	1.450558	-396125	-0.45002
H	-2.00348	-1.99795	-1.98905	C	-254694	4.126622	-0.052053	H	1.904376	2360629	2456607	H	0.72325	-3.67538	1.144145
C	-0.46773	2.680421	-0.14097	H	-235533	4.216583	-1.5999	H	0290906	1.656485	2439543	H	-031636	-391374	-0,28083
H	-0.2937	2.697626	-122867	H	-3.04878	5.053244	-021567	C	2002662	-1.38772	0.257434				

S5. Selected ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy of compounds 3 .

Co,

[^0]: [S1] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.
 [S2] H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, 39, 876-881.

