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A node-based smoothed finite element method (NS-FEM) for solving solid mechanics
problems using a mesh of general polygonal elements was recently proposed. In the
NS-FEM, the system stiffness matrix is computed using the smoothed strains over the
smoothing domains associated with nodes of element mesh, and a number of impor-
tant properties have been found, such as the upper bound property and free from the
volumetric locking. The examination was performed only for two-dimensional (2D) prob-
lems. In this paper, we (1) extend the NS-FEM to three-dimensional (3D) problems using
tetrahedral elements (NS-FEM-T4), (2) reconfirm the upper bound and free from the
volumetric locking properties for 3D problems, and (3) explore further other properties
of NS-FEM for both 2D and 3D problems. In addition, our examinations will be thor-
ough and performed fully using the error norms in both energy and displacement. The
results in this work revealed that NS-FEM possesses two additional interesting properties
that quite similar to the equilibrium FEM model such as: (1) super accuracy and super-
convergence of stress solutions; (2) similar accuracy of displacement solutions compared

to the standard FEM model.

Keywords: Numerical methods; meshfree methods; finite element method (FEM); node-
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1. Introduction

In the development of new numerical methods, Liu et al. have applied and extended
the strain smoothing technique used in the nodal integrated meshfree methods
[Chen et al. (2001); Yoo et al. (2004)] to formulate the linear conforming point
interpolation method (LC-PIM or NS-PIM) [Liu et al. (2005)] and the linearly
conforming radial point interpolation method (LC-RPIM or NS-RPIM) [Liu et al.
(2006)]. Applying the same idea to the finite element method (FEM) settings, a
cell-based smoothed finite element method (SFEM or CS-FEM) [Liu et al. (2007a,
b, 2009b); Nguyen-Xuan et al. (2008a)], an edge-based smoothed finite element
method (ES-FEM) [Liu et al. (2009a)], a face-based smoothed finite element method
(FS-FEM) [Nguyen-Thoi et al. (2009a)], and a node-based smoothed finite element
method (NS-FEM) [Liu et al. (2009c)] have also been formulated.

In the CS-FEM, the domain discretization is still based on quadrilateral elements
as in the FEM; however, the stiffness matrices are calculated based over smoothing
domains (SD) located inside the quadrilateral elements as shown in Fig. 1. When the
number of SD of the elements equals 1, the CS-FEM solution has the same properties
with those of FEM using reduced integration. When SD approaches infinity, the
CS-FEM solution approaches the solution of the standard displacement compatible
FEM model [Liu et al. (2007b)]. In practical computation, using four SD for each
quadrilateral element in the CS-FEM is easy to implement, work well in general
and hence advised for all problems. The numerical solution of CS-FEM (SD = 4)
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Fig. 1. Division of quadrilateral element into the smoothing domains (SDs) in CS-FEM by con-
necting the mid-segment-points of opposite segments of smoothing domains; (a) 1 SD; (b) 2 SDs;
(c) 4 SDs; and (d) 8 SDs.
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is always stable, accurate, much better than that of FEM, and often very close to
the exact solutions. The CS-FEM has been extended for general n-sided polygonal
elements (nSFEM or nCS-FEM) [Dai et al. (2007)], dynamic analyses [Dai and Liu
(2007)], incompressible materials using selective integration [Nguyen-Thoi et al.
(2007); Nguyen-Xuan et al. (2008b)], plate and shell analyses [Cui et al. (2008);
Nguyen-Thanh et al. (2008); Nguyen-Van et al. (2008); Nguyen-Xuan and Nguyen-
Thoi (2009); Nguyen-Xuan and Rabczuk et al. (2008c)], and further extended for
the extended finite element method (XFEM) to solve fracture mechanics problems
in two-dimensional-continuum and plates [Bordas et al. (2009)].

In the ES-FEM [Liu and Nguyen-Thoi et al. (2009a)], the problem domain is
also discretized using triangular elements as in the FEM; however, the stiffness
matrices are calculated based on SD associated with the edges of the triangles. For
triangular elements, the SD Ω(k) associated with the edge k is created by connect-
ing two endpoints of the edge to the centroids of the adjacent elements as shown in
Fig. 2. The numerical results of ES-FEM using examples of static, free and forced
vibration analyses of solids [Liu et al. (2009a)] demonstrated the following excellent
properties: (1) ES-FEM is often found super-convergent and much more accurate
than FEM using triangular elements (FEM-T3) and even more accurate than FEM
using quadrilateral elements (FEM-Q4) with the same sets of nodes; (2) there are
no spurious nonzeros energy modes and hence ES-FEM is both spatial and tempo-
ral stable and works well for vibration analysis; (3) no additional degree of freedom
is used; (4) a novel domain-based selective scheme is proposed leading to a com-
bined ES/NS-FEM model that is immune from volumetric locking and hence works
very well for nearly incompressible materials. The ES-FEM has been developed
for general n-sided polygonal elements (nES-FEM) [Nguyen-Thoi et al. (2009b)],
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Fig. 2. Triangular elements and the smoothing domains Ω(k) (shaded areas) associated with edges

in the ES-FEM-T3.
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2D piezoelectric [Nguyen-Xuan et al. (2009a)], 2D visco-elastoplastic [Nguyen-Thoi
et al. (2009d)], plate [Nguyen-Xuan et al. (2009b)], primal-dual shakedown analyses
[Tran et al. (2009)] and further extended to three-dimensional (3D) problems to give
the so-called face-based smoothed finite element method (FS-FEM) [Nguyen-Thoi
et al. (2009a); Nguyen-Thoi et al. (2009e)].

In the NS-FEM, the domain discretization is also based on elements as in the
FEM; however, the stiffness matrices are calculated based on SD associated with
nodes. The NS-FEM works well for triangular elements, and can be applied eas-
ily to general n-sided polygonal elements [Liu et al. (2009c)] for 2D problems and
tetrahedral elements for 3D problems. For n-sided polygonal elements [Liu et al.
(2009c)], SD Ω(k) associated with the node k is created by connecting sequentially
the mid-edge-point to the central points of the surrounding n-sided polygonal ele-
ments of the node k as shown in Fig. 3. When only linear triangular or tetrahedral
elements are used, the NS-FEM produces the same results as the method proposed
by [Dohrmann et al. (2000)] or to the NS-PIM (or LC-PIM) [Liu et al. (2005)] using
linear interpolation. The NS-FEM [Liu et al. (2009c)] has been found immune nat-
urally from volumetric locking and possesses the upper bound property in strain
energy as presented in Liu and Zhang [2008]. Hence, by combining the NS-FEM
and FEM with a scale factor α ∈ [0, 1], a new method named as the alpha Finite
Element Method (αFEM) [Liu et al. (2008)] is proposed to obtain nearly exact
solutions in strain energy using triangular and tetrahedral elements. The NS-FEM
has been also developed for adaptive analysis [Nguyen-Thoi et al. (2009c)].

However, in the original paper of NS-FEM [Liu et al. (2009c)], the properties of
the method have not yet been fully exploited. We just considered the upper bound
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Fig. 3. n-sided polygonal elements and the smoothing domains Ω(k) (shaded areas) associated
with node k.
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property in the strain energy and natural immunization from the volumetric locking
of the NS-FEM without studying the error and convergence rate of method. In
addition, the numerical examples were only applied for 2D problems. In this paper,
we therefore further research the additional properties of NS-FEM using triangular
elements (NS-FEM-T3) for 2D problems and tetrahedral elements (NS-FEM-T4) for
3D problems by considering fully the error norms in both energy and displacement.
The results in this work revealed that NS-FEM possesses two additional interesting
properties that quite similar to the equilibrium FEM model [Fraeijs De Veubeke
(2001)] such as: (1) super accuracy and super-convergence of stress solutions; (2)
similar accuracy of displacement solutions compared to the standard FEM model.

2. Briefing on the NS-FEM

2.1. Briefing on the finite element method (FEM) [Bathe (1996);
Liu and Quek (2003); Zienkiewicz and Taylor (2000)]

The discrete equations of the FEM are generated from the Galerkin weakform and
the integration is performed on the basis of element as follows∫

Ω

(∇sδu)T D(∇su)dΩ −
∫

Ω

δuTbdΩ −
∫

Γt

δuT t̄dΓ = 0, (1)

where b is the vector of external body forces, D is a symmetric positive definite
(SPD) matrix of material constants, t̄ is the prescribed traction vector on the natu-
ral boundary Γt, u is trial functions, δu is test functions, and ∇su is the symmetric
gradient of the displacement field.

The problem domain Ω is now discretized into Ne of nonoverlapping and nongap
elements such that Ω =

⋃Ne

i=1 Ωe
i and Ωe

i ∩ Ωe
j = ∅, i �= j. The FEM then uses the

following trial and test functions

uh(x) =
Nn∑
I=1

NI(x)dI ; δuh(x) =
Nn∑
I=1

NI(x)δdI , (2)

where Nn is the total number of the nodes of the problem domain; dI is the nodal
displacement vector of Ith node, and NI(x) is the shape function matrix at Ith
node.

By substituting the approximations, uh and δuh, into the weakform and invok-
ing the arbitrariness of virtual nodal displacements, Eq. (1) yields the standard
discretized algebraic system of equations:

KFEMd = f , (3)

where KFEM is the global stiffness matrix, f is the force vector, that are assembled
with entries of

KFEM
IJ =

∫
Ω

BT
I DBJdΩ =

Ne∑
i=1

∫
Ωe

i

BT
I DBJdΩ, (4)
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fI =
∫

Ω

NT
I (x)bdΩ +

∫
Γt

NT
I (x)̄tdΓ, (5)

with the compatible strain–displacement matrix defined as

BI(x) = ∇sNI(x). (6)

Using the triangular/tetrahedral elements with the linear shape functions, the com-
patible strain–displacement matrix BI(x) contains only constant entries. Equa-
tion (4) then becomes

KFEM
IJ =

Ne∑
i=1

BT
I DBJSe

i , (7)

where Se
i ≡ Ae

i =
∫
Ωe

i
dΩ is the area of the triangular element, or Se

i ≡ V e
i =

∫
Ωe

i
dΩ

is the volume of the tetrahedral element.

2.2. The NS-FEM based on triangular elements (NS-FEM-T3) for

2D problems

The NS-FEM for 2D problems works for polygonal elements of arbitrary sides
[Liu et al. (2009c)]. Here we brief only the formulation for triangular element
(NS-FEM-T3).

Similar to the FEM, the NS-FEM also uses a mesh of elements. When three-
node triangular elements are used, the shape functions used in the NS-FEM-T3 are
also identical to those in the FEM-T3, and hence the displacement field in the NS-
FEM-T3 is also ensured to be continuous on the whole problem domain. However,
being different from the FEM-T3 which performs the integration required in Eq. (1)
on the elements, NS-FEM-T3 performs the integration based on the nodes, and
strain smoothing technique [Chen et al. (2001)] is used. In such a nodal integration
process, the problem domain Ω is divided into Nn SD Ω(k) associated with nodes
k such that Ω =

∑Nn

k=1 Ω(k) and Ω(i) ∩ Ω(j) = ∅, i �= j. For triangular elements,
the SD Ω(k) associated with the node k is created by connecting sequentially the
mid-edge-points to the centroids of the surrounding triangular elements of the node
k as shown in Fig. 4. As a result, each triangular element will be subdivided into
three quadrilateral sub-domains and each quadrilateral sub-domain is attached with
the nearest field node. The SD Ω(k) associated with the node k is then created by
combination of each nearest quadrilateral sub-domain of all elements surrounding
the node k.

Using the node-based smoothing operation to smooth the compatible strain
εh = ∇suh on the SD Ω(k) associated with node k, the strain in Eq. (1) now
becomes the smoothed strain ε̄k on Ω(k):

ε̄k =
∫

Ω(k)
εh(x)Φk(x)dΩ =

∫
Ω(k)

∇suh(x)Φk(x)dΩ, (8)
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Fig. 4. Triangular elements and smoothing domains Ω(k) (shaded area) associated with the nodes
in the NS-FEM-T3.

where Φk(x) is a given smoothing function that satisfies at least unity property∫
Ω(k)

Φk(x)dΩ = 1. (9)

Using the following constant smoothing function

Φk(x) =

{
1/A(k) x ∈ Ω(k),

0 x /∈ Ω(k),
(10)

where A(k) =
∫
Ω(k) dΩ is the area of the SD Ω(k).

Substituting Eqs. (2) and (10) into Eq. (8), the smoothed strain on the SD
Ω(k) associated with node k can be written in the following matrix form of nodal
displacements

ε̄k =
∑

I∈N
(k)
n

B̄I(xk)dI , (11)

where N
(k)
n is the number of nodes that are directly connected to node k and B̄I(xk)

is termed as the smoothed strain–displacement matrix on the SD Ω(k). As presented
in the original paper of NS-FEM [Liu et al. (2009c)], there are two ways to compute
the matrix B̄I(xk). In the first general way, the integration along the boundary of SD
and the values of shape functions are directly used, which works for general n-sided
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polygonal elements including linear triangular elements. In the second particular
way, the smoothed strain–displacement matrix is the area-weighted average of the
compatible strain–displacement matrices of elements associated with the computed
node, which works only for linear triangular elements. In this paper, we use the
second simple way only for three-node triangular elements as follows

B̄I(xk) =
1

A(k)

N(k)
e∑

j=1

1
3
A(j)

e Be
j , (12)

where N
(k)
e is the number of elements around node k; A

(j)
e is the area of the jth

triangular element around node k; A(k) is the area of the SD Ω(k) associated with
node k and computed using

A(k) =
∫

Ω(k)
dΩ =

1
3

N(k)
e∑

j=1

A(j)
e . (13)

In Eq. (12), matrix Be
j =

∑
I∈Se

j
BI is the compatible strain–displacement

matrix for the jth triangular element around the node k. It is assembled from
the compatible strain–displacement matrices BI(x) of nodes by Eq. (6) in the set
Se

j which contains three nodes of the jth triangular element.
The stiffness matrix K̄ of the system is then assembled by a similar process as

in the FEM

K̄IJ =
Nn∑
k=1

K̄(k)
IJ , (14)

where K̄(k)
IJ is the stiffness matrix associated with node k and is calculated by

K̄(k)
IJ =

∫
Ω(k)

B̄T
I DB̄JdΩ = B̄T

I DB̄JA(k). (15)

2.3. The NS-FEM based on tetrahedral elements (NS-FEM-T4)

for 3D problems

The above formulation is quite straightforward to extend for 3D problems using
four-node tetrahedral elements (T4) [Liu et al. (2009c)]. The smoothed strain–
displacement matrix B̄I(xk) for the NS-FEM-T4 is assembled using

B̄I(xk) =
1

V (k)

N(k)
e∑

j=1

1
4
V (j)

e Be
j , (16)

where V
(j)
e is the volume of the jth tetrahedral element around the node k; V (k) is

the volume of the SD Ω(k) associated with node k, and is computed using

V (k) =
∫

Ω(k)
dΩ =

1
4

N(k)
e∑

j=1

V (j)
e . (17)
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In Eq. (16), matrix Be
j =

∑
I∈Se

j
BI is the compatible strain–displacement

matrix for the jth tetrahedral element around the node k. It is assembled from
the compatible strain–displacement matrices BI(x) of nodes by Eq. (6) in the set
Se

j which contains four nodes of the jth tetrahedral element.
With such the formulation, only the area/volume and the usual compatible

strain–displacement matrices Be
j of triangular/tetrahedral elements are needed to

calculate the system stiffness matrix for the NS-FEM-T3/NS-FEM-T4. The formu-
lation is simple, but works only for triangular/tetrahedral types of elements that
use linear interpolation.

2.4. A brief of properties of the NS-FEM

The following properties of the NS-FEM were presented by Liu et al. [2009c]. In
this paper, we only remind the main points.

Property 1. The NS-FEM can be derived straightforwardly from the modified
Hellinger-Reissner variational principle, with the smoothed strain vector ε̄k and
displacements uh(x) as independent field variables, to give the stiffness matrix asso-
ciated with nodes K̄(k)

IJ in the form of Eqs. (14) and (15). The method is therefore
variationally consistent.

Property 2. The strain energy E(d) obtained from the NS-FEM solution has the
following relationship with the exact strain energy:

E(d) ≥ Eexact(d0), (18)

where d is the numerical solution of the NS-FEM, and d0 is the exact displacement
sampled using the exact displacement field u0.

Property 3. The NS-FEM possesses only “legal” zero energy modes that represents
the rigid motions, and there exists no spurious zero energy mode.

Property 4. The NS-FEM is immune naturally from the volumetric locking.

3. Error Norms in Displacement and Energy

In the original paper of NS-FEM [Liu et al. (2009c)], the properties of the method
have not yet been fully exploited. In [Liu et al. [2009c], we just considered the upper
bound property in the strain energy and natural immunization from the volumetric
locking of the NS-FEM without studying the error and convergence rate of method.
In addition, the numerical examples were only applied for 2D problems. In next
section, we (1) extend the NS-FEM to 3D problems using tetrahedral elements
(NS-FEM-T4), (2) reconfirm the upper bound and free from the volumetric locking
properties for 3D problems, and (3) explore further other properties of NS-FEM for
both 2D and 3D problems by considering fully the error norms in both energy and
displacement.
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To demonstrate clearly the properties of the NS-FEM, we will compare the
results of NS-FEM with those of some existing methods. For 2D problems, the
results of the NS-FEM using three-node triangular elements (NS-FEM-T3) will be
compared with those of the standard FEM using quadrilateral elements (FEM-Q4),
triangular elements (FEM-T3), and the edge-based smoothed FEM using three-
node triangular elements (ES-FEM-T3) [Liu et al. (2009a)]. The results of the NS-
FEM using tetrahedral elements (NS-FEM-T4) will be compared with those of the
standard displacement FEM using four-node tetrahedral elements (FEM-T4), eight-
node hexahedral elements (FEM-H8), and the face-based smoothed FEM using
four-node tetrahedral elements (FS-FEM-T4) [Nguyen-Thoi et al. (2009a)].

3.1. Displacement norm

Let �u be the numerical solution for displacement obtained using any numerical
method. For example, for the FEM, �u = uh, for the S-FEM models (NS-FEM,
ES-FEM, and FS-FEM), �u = ū, then the displacement norm used in this paper is
defined as

ed =
(∫

Ω

(u − �u)T (u − �u) dΩ
)1/2

=

(
Ne∑
i=1

∫
Ωe

i

(u − �u)T (u− �u) dΩ

)1/2

, (19)

where u is the exact or analytical solution for the displacement.

3.2. Energy norm

Let �
ε be the numerical solution for strains obtained using any numerical method.

For example, for the FEM, �
ε = εh, for the S-FEM models (NS-FEM, ES-FEM, and

FS-FEM), �
ε = ε̄, then the energy norm is defined by

ee =
[∫

Ω

1
2
(ε − �

ε)TD(ε − �
ε)
]1/2

=

[
Ne∑
i=1

∫
Ωe

i

1
2
(ε − �

ε)TD(ε − �
ε)

]1/2

, (20)

where ε is the exact or analytical solution for the strain.
In order to evaluate the integrals in Eqs. (19) and (20) accurately, the mapping

procedure using Gauss integration rule is performed on each element Ωe
i . In each

element, a proper number of Gauss points depending on the order of the integrand
will be used. For example in Eq. (20), when a quadrilateral mesh of FEM-Q4 ele-
ments are used, and if the analytical strain ε is of order of 2 leading to a fourth-order
integrand, a set of 3 × 3 Gauss points are then used for each element.

3.3. Recovery strain fields for smoothed FEM models (S-FEM)

In the S-FEM models (NS-FEM, ES-FEM, and FS-FEM), the strain obtained within
an element is piecewise constants and discontinuous at the boundaries of smoothing
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domains located inside elements. Therefore, it is necessary to create a continuous
strain field within each element for easy evaluation of the integrals in Eq. (20). In
this paper, we construct a “recovery” strain field denoted as ε̄R by combining the
strain values ε̄ at the nodes of the element and shape functions of the standard
FEM. Such a recovery strain field ε̄R is not only continuous inside the element, but
also on the whole problem domain, and will be used as the final numerical strain
field for the S-FEM models, and in the error estimation by Eq. (20).

For the S-FEM models using triangular, quadrilateral, and tetrahedral elements,
ε̄R is obtained for each element using

ε̄R =
ne

n∑
j=1

Nj(x)ε̄(xj), (21)

where ne
n is the number of the nodes of each element, ε̄(xj) is the strain at the

nodes xj of the element obtained using the S-FEM models; and Nj(x) is the matrix
of shape functions of the corresponding elements used in the standard FEM. Specif-
ically, for the triangular elements, the three-node linear shape function is used. For
tetrahedral elements, the four-node linear shape function is used. For the quadri-
lateral elements, the bilinear shape function is used.

3.4. Evaluation of strains at nodes in the S-FEM models

In the numerical implementation of the S-FEM models, except the NS-FEM which
produces directly the strain values at nodes, the strains at the node j will be the
(area-weighted) averaged value of the “raw” strains of the SD Ω(k) around node j,
and are computed numerically by

ε̄(xj) = 1
Ans

j

nj
s∑

k=1

ε̄kA(k), for ES-FEM-T3,

ε̄(xj) = 1
V ns

j

nj
s∑

k=1

ε̄kV (k), for FS-FEM-T4,

(22)

where nj
s is the number of SD Ω(k) around node j; Ans

j =
∑nj

s

k=1 A(k) and

V ns
j =

∑nj
s

k=1 V (k) are, respectively, the total area and volume of all SD Ω(k) around
the node j; ε̄k is the smoothing strain of the SD Ω(k); and A(k) and V (k) are,
respectively, the area and volume of the SD Ω(k). Figure 5 shows, for example,
used to compute strain of the nodes in the ES-FEM-T3 using three-node triangular
elements.

3.5. Recovery strain/stress fields for FEM models

For FEM models, the compatible strains in the elements are already continuous,
Eq. (20) hence can be evaluated directly without using a recovery strain field. In
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: centroids of triangles: field nodes

The smoothing domains used to calculate 
strain at the node j in the ES-FEM-T3

j

Fig. 5. Smoothing domains used to compute strain of the nodes in the ES-FEM-T3 using three-
node triangular elements.

addition, using such compatible strains in Eq. (20), the theoretical convergence rates
of the standard FEM can be illustrated clearly in figures and are the good bases to
evaluate the accuracy and efficiency of others compared numerical methods. Specif-
ically, for the standard lower-order elements such as FEM-T3, FEM-Q4, FEM-T4,
and FEM-H8, the theoretical convergence rates of displacement norm and energy
norm are, respectively, 2 and 1.

In this paper, in addition to using the compatible strain for the standard FEM,
we also use the recovery strain εh

R for the FEM models (FEM-T3-Re, FEM-Q4-Re,
FEM-T4-Re, and FEM-H8-Re) to be able to conduct “fairest” possible comparisons
between the S-FEM and FEM models. It is because the recovery strain solutions
are much more accurate for FEM models, and have the supper-convergence prop-
erty [Zienkiewicz and Zhu (1992a, b)]. The recovery strain solution εh

R is obtained
using

εh
R =

ne
n∑

j=1

Nj(x)εh(xj). (23)

It is clear that Eq. (23) is exactly the same as Eq. (21), except that εh(xj) is the
strain at the nodes xj of the element obtained using the FEM model. For triangular
and tetrahedral elements (FEM-T3-Re and FEM-T4-Re), the strain εh(xj) at the
node xj is the area-weighted average of the strains of elements surrounding the node
xj [Zienkiewicz and Zhu (1992a, b)]. For the quadrilateral and hexahedral elements
(FEM-Q4-Re, FEM-H8-Re), the strain εh(xj) at the node xj is computed by the
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following three-step procedure [Felippa (2009)]:

(1) Evaluate the strains at the Gauss points in the element.
(2) Extrapolate the strains at Gauss points to the nodes of the element.
(3) Average the strains computed for the same field node from the adjacent ele-

ments.

3.6. Characteristic length

To evaluate the convergence rates of the displacement and energy norms, it is neces-
sary to define the “characteristic length” of the sides of the elements. In this paper,
because the elements used in a mesh are different in dimensions and of irregular
shape, the average length h of sides of elements is considered to be the characteristic
length. For the quadrilateral elements, h is evaluated by

h =
√

AΩ

Ne
, (24)

where AΩ is the area of the whole problem domain. For the triangular elements, h

is evaluated by

h =
√

2AΩ

Ne
. (25)

For the tetrahedral elements, h is evaluated by

h = 3

√
6VΩ

Ne
, (26)

and for the hexahedral elements (just used for FEM-H8), h is evaluated by

h = 3

√
VΩ

Ne
, (27)

where VΩ is the volume of the whole problem domain.

4. Numerical Examples

4.1. A rectangular cantilever loaded at the end

A rectangular cantilever with a length L and height D is studied as a benchmark
problem here. The cantilever is subjected to a parabolic traction at the free end
as shown in Fig. 6. The beam is assumed to have a unit thickness so that plane
stress condition is valid. The analytical solution is available and can be found in a
textbook [Timoshenko and Goodier (1970)].

ux =
Py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]

uy = − P

6EI

[
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

] (28)
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D
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L

x

Fig. 6. Cantilever loaded at the end.

where the moment of inertia I for a beam with rectangular cross section and unit
thickness is given by I = D3

12 .
The stresses corresponding to the displacements Eq. (28) are

σxx(x, y) =
P (L − x)y

I
; σyy(x, y) = 0; τxy(x, y) = − P

2I

(
D2

4
− y2

)
(29)

The related parameters are taken as E = 3.0 × 107 N/m2, ν = 0.3, D = 12 m,
L = 48 m and P = 1000 N. The domain of the beam is discretized into two types of
meshes using two different elements: three-node triangular and four-node quadrilat-
eral elements are shown in Fig. 7. The exact strain energy of the problem is known
as 4.4747Nm.

The numerical results of strain energy are presented in Table 1, and plotted in
Fig. 8 against the degrees of freedom, revealing the convergence of the solution of

(a)

0 5 10 15 20 25 30 35 40 45

-5

0

5

(b)

Fig. 7. Domain discretization of the cantilever using: (a) three-node triangular elements; (b) four-
node quadrilateral elements.
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Table 1. Strain energy (Nm) obtained using different methods for the cantilever
problem using the same set of nodes.

Mesh Mesh Mesh Mesh Mesh Analytical
16 × 4 24 × 6 32 × 8 40 × 10 48 × 12 solution

DOFs 170 350 694 902 1274
FEM-T3 3.7134 4.0973 4.2533 4.3301 4.3731 4.4747
FEM-Q4 4.3362 4.4118 4.4390 4.4518 4.4587 4.4747
NS-FEM-T3 4.9785 4.7031 4.6051 4.5591 4.5338 4.4747
ES-FEM-T3 4.4097 4.4539 4.4654 4.4697 4.4717 4.4747
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Fig. 8. Convergence of the strain energy solution of the NS-FEM-T3 in comparison with other
methods for the cantilever problem using the same set of nodes.

all models used. It can be found that the NS-FEM-T3 gives upper bound solutions
in the strain energy, i.e. the strain energies of the NS-FEM-T3 are always bigger
than the exact one and converge to it with the increase of degrees of freedom. In
contrast, the FEM-Q4 and FEM-T3 produce the lower bound solutions in the strain
energy. These results imply that we now have a very simple procedure to determine
upper and lower bounds in strain energy of the exact solution, by using the NS-FEM
together the FEM using the same meshes.

Table 2 and Fig. 9 compare the solution error in displacement norm obtained
using the NS-FEM-T3, together with those of the FEM-T3, FEM-Q4, and ES-FEM-
T3. It is seen that the ES-FEM-T3 stands out clearly. The error of displacement
norm of the ES-FEM-T3 is the smallest among all the compared models. When
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Table 2. Error in displacement norm obtained using different methods for the
cantilever problem using the same set of nodes.

Mesh Mesh Mesh Mesh Mesh
16 × 4 24 × 6 32 × 8 40 × 10 48 × 12

h (m) 4.0 2.0 1.5 1.2 1.0
FEM-T3 1.78 e-02 8.80 e-03 5.16 e-03 3.36 e-03 2.36 e-03
FEM-Q4 2.97 e-03 1.35 e-03 7.63 e-04 4.90 e-04 3.41 e-04
NS-FEM-T3 1.23 e-02 5.60 e-03 3.20 e-03 2.07 e-03 1.45 e-03
ES-FEM-T3 1.32 e-03 3.74 e-04 1.47 e-04 6.94 e-05 3.68 e-05
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Fig. 9. Error in displacement norm for the NS-FEM solution in comparison with that of other
methods for the cantilever problem using the same set of nodes.

the finest mesh (h = 1 m) is used, the error of the ES-FEM-T3 is about 1/5 of the
FEM-T3 and 3/4 of the FEM-Q4. The error of the NS-FEM-T3 is about 3/5 of the
FEM-T3. In terms of convergence rate, the super-convergence is observed for the
ES-FEM-T3 with a rate of 3.3 that is even much higher than the theoretical value of
2.0 for linear displacement models based on the weak formulation. The convergence
rates of others methods, except the FEM-T3, are approximated to the theoretical
value of 2.0 for linear displacement models.

Table 3 and Fig. 10 compare the results of energy norm of the NS-FEM-T3,
together with those of the FEM and ES-FEM-T3. It is seen that the NS-FEM-
T3 stands out clearly. When the finest mesh (h = 1m) is used, the error of the
NS-FEM-T3 solution is about 1/8 of the FEM-T3, 1/3 of the FEM-Q4 and even
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Table 3. Error in energy norm obtained using different methods for the cantilever
problem using the same set of nodes.

Mesh Mesh Mesh Mesh Mesh
16 × 4 24 × 6 32 × 8 40 × 10 48 × 12

h (m) 4.0 2.0 1.5 1.2 1.0
FEM-T3 8.77 e-01 6.16 e-01 4.71 e-01 3.80 e-01 3.18 e-01
FEM-Q4 3.71 e-01 2.49 e-01 1.88 e-01 1.50 e-01 1.25 e-01
NS-FEM-T3 1.44 e-01 9.45 e-02 6.71 e-02 5.06 e-02 3.99 e-02
ES-FEM-T3 2.96 e-01 1.58 e-01 1.02 e-01 7.28 e-02 5.53 e-02
FEM-T3-Re 5.76 e-01 3.04 e-01 1.87 e-01 1.28 e-01 9.34 e-02
FEM-Q4-Re 2.06 e-01 1.14 e-01 7.49 e-02 5.38 e-02 4.10 e-02
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Fig. 10. Error in energy norm for the NS-FEM solution in comparison with those of other methods
for the cantilever problem using the same set of nodes.

better than the FEM-Q4-Re. In terms of convergence rate, all the S-FEM models
performed much better than the standard FEM models, and all significantly above
1.0 that is the theoretical value of the weak formulation. This shows that the S-
FEM models are super-convergent. NS-FEM-T3 has a rate of 1.2: a quite strong
super-convergence.

From this example, we also note that the NS-FEM-T3 possesses three interesting
properties similar to those of an equilibrium FEM model [Almeida Pereira (2008);
Debongnie et al. (1995); Fraeijs De Veubeke (2001)]: (1) the strain energy is an
upper bound of the exact solution; (2) the stress solutions are ultra-accurate and
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super-convergent; and (3) the displacement solutions are not so significantly more
accurate but are still better than that of FEM-T3.

4.2. Infinite plate with a circular hole

Figure 11 represents a plate with a central circular hole of radius a = 1m, subjected
to a unidirectional tensile load of 1.0N/m at infinity in the x-direction. Due to
its symmetry, only the upper right quadrant of the plate is modeled. Figure 12
gives the discretization of the domain using three-node triangular and four-node
quadrilateral elements. Plane strain condition is considered and E = 1.0×103 N/m2,
ν = 0.3. Symmetric conditions are imposed on the left and bottom edges, and the
inner boundary of the hole is traction free. The exact stresses for this problem are

σ=1

a

σ=1

θ

5

5

y(m)
N/m2

r(m)

x(m)O

2N/m

y(m)

x(m)

m

m

Fig. 11. Infinite plate with a circular hole subjected to unidirectional tension and its quarter model
with symmetric conditions imposed on the left and bottom edges.
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Fig. 12. Domain discretization of the infinite plate with a circular hole using (a) three-node trian-
gular elements; (b) four-node quadrilateral elements.
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[Timoshenko and Goodier (1970)]

σ11 = 1 − a2

r2

[
3
2

cos 2θ + cos 4θ

]
+

3a4

2r4
cos 4θ,

σ22 = −a2

r2

[
1
2

cos 2θ − cos 4θ

]
− 3a4

2r4
cos 4θ,

τ12 = −a2

r2

[
1
2

sin 2θ + sin 4θ

]
+

3a4

2r4
sin 4θ,

(30)

where (r, θ) are the polar coordinates and θ is measured counterclockwise from the
positive x-axis. Traction boundary conditions are imposed on the right (x = 5m)
and top (y = 5m) edges based on the exact solution Eq. (30). The displacement
components corresponding to the stresses are

u1 =
a

8µ

[
r

a
(κ + 1) cos θ + 2

a

r
((1 + κ) cos θ + cos 3θ) − 2

a3

r3
cos 3θ

]
,

u2 =
a

8µ

[
r

a
(κ − 3) sin θ + 2

a

r
((1 − κ) sin θ + sin 3θ) − 2

a3

r3
sin 3θ

]
,

(31)

where µ = E/(2(1 + ν)), κ is defined in terms of Poisson’s ratio by κ = 3 − 4ν

for plane strain cases. The exact strain energy of the problem is known as
1.1817× 10−2 Nm.

The numerical results of strain energy have been presented in Table 4 and plotted
in Fig. 13 against the degrees of freedom, revealing the convergence of the solution
of all models used. It again shows the upper bound property in the strain energy
of the NS-FEM-T3, together with the lower bound property of the FEM-Q4 and
FEM-T3.

Table 5 and Fig. 14 compare the results of displacement norm of the NS-FEM-
T3 with those of the FEM and ES-FEM-T3. It is again seen that the ES-FEM-T3
stands out clearly. The error of displacement norm of the ES-FEM-T3 is the smallest
among all the compared models. When the finest mesh (h = 0.1969m) is used, the
error of the ES-FEM-T3 is about 1/5 of the FEM-T3, 3/4 of the FEM-Q4. The
NS-FEM-T3 performed better than the FEM-T3, but only by a small margin. In

Table 4. Strain energy (×10−2 Nm) using different methods for the infinite
plate with a circular hole using the same set of nodes.

Mesh Mesh Mesh Mesh Analytical
12 × 12 16 × 16 20 × 20 24 × 24 solution

DOFs 338 578 882 1250
FEM-T3 1.1762 1.1786 1.1797 1.1803 1.1817
FEM-Q4 1.1794 1.1805 1.1810 1.1812 1.1817
NS-FEM-T3 1.1848 1.1834 1.1827 1.1824 1.1817
ES-FEM-T3 1.1804 1.1811 1.1814 1.1815 1.1817
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Fig. 13. Convergence of the strain energy solution of the NS-FEM-T3 in comparison with other
methods for the infinite plate with a circular hole using the same distribution of nodes.

Table 5. Error in displacement norm obtained using different methods for the
infinite plate with a circular hole using the same set of nodes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
8 × 8 12 × 12 16 × 16 20 × 20 24 × 24

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
FEM-T3 2.80 e-04 1.42 e-04 8.45 e-05 5.61 e-05 4.01 e-05
FEM-Q4 1.08 e-04 4.46 e-05 2.40 e-05 1.50 e-05 1.03 e-05
NS-FEM-T3 3.87 e-04 1.69 e-04 8.95 e-05 5.49 e-05 3.70 e-05
ES-FEM-T3 8.03 e-05 2.95 e-05 1.63 e-05 1.06 e-05 7.46 e-06

terms of convergence rate, except the FEM-T3, other models have a numerical rate
slightly larger than the theoretical value of 2.0.

Table 6 and Fig. 15 compare the results of energy norm of the NS-FEM-T3 with
those of the FEM and ES-FEM-T3. It is again seen that the NS-FEM-T3 stands out
clearly. When the finest mesh (h = 0.1969m) is used, the error of the NS-FEM-T3
is about 1/9 of the FEM-T3, 1/5 of the FEM-Q4, 1/3.5 of the FEM-T3-Re, and
even 1/2 of the FEM-Q4-Re. In terms of convergence rate, all the S-FEM models
performed much better than the FEM models, and all close to 2.0 and significantly
above 1.0 that is the theoretical value of the weak formulation. This again shows
that the S-FEM models are super-convergent. The NS-FEM-T3 stands out clearly
with a rate of 1.97: a very strong super-convergence.

In overall, it is again seen that NS-FEM models possess four interesting prop-
erties of an equilibrium FEM model [Almeida Pereira (2008); Debongnie et al.
(1995); Fraeijs De Veubeke (2001)]: (1) the strain energy is an upper bound of the
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Fig. 14. Error in displacement norm for NS-FEM-T3 in comparison with those of other methods

for the infinite plate with a circular hole using the same set of nodes.

Table 6. Error in energy norm obtained using different methods for the infinite
plate with a circular hole using the same set of nodes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
8 × 8 12 × 12 16 × 16 20 × 20 24 × 24

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969
FEM-T3 9.95 e-03 6.89 e-03 5.20 e-03 4.17 e-03 3.48 e-03
FEM-Q4 6.09 e-03 3.86 e-03 2.79 e-03 2.18 e-03 1.79 e-03
NS-FEM-T3 3.08 e-03 1.50 e-03 8.52 e-04 5.39 e-04 3.68 e-04
ES-FEM-T3 5.27 e-03 2.69 e-03 1.59 e-03 1.04 e-03 7.29 e-04
FEM-T3-Re 7.78 e-03 4.39 e-03 2.72 e-03 1.82 e-03 1.31 e-03
FEM-Q4-Re 5.22 e-03 2.72 e-03 1.61 e-03 1.05 e-03 7.41 e-04

exact solution; (2) it is immune naturally from the volumetric locking [Liu et al.
(2009c)]; (3) the stress solutions are ultra-accurate and super-convergent; and (4)
the displacement solutions are at the same level as those of FEM-T3 using the same
distribution of nodes.

4.3. 3D Lame problem (hollow sphere problem)

The 3D Lame problem consist of a hollow sphere with inner radius a =1m, outer
radius b = 2m and subjected to internal pressure P = 100N/m2, as shown in
Fig. 16. The analytical solution of the benchmark problem is available in polar
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Fig. 15. Error in energy norm for NS-FEM-T3 in comparison with those of other methods for the
infinite plate with a circular hole using the same set of nodes.
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Fig. 16. Hollow sphere problem setting and its one-eighth model discretized using 4-node tetrahe-
dral elements.

coordinate system [Timoshenko and Goodier (1970)]

ur =
Pa3r

E(b3 − a3)

[
(1 − 2ν) + (1 + ν)

b3

2r3

]
,

σr =
Pa3(b3 − r3)
r3(a3 − b3)

; σθ =
Pa3(b3 + 2r3)
2r3(b3 − a3)

,

(32)

where r is the radial distance from the centroid to the point of interest of the sphere.
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As the problem is spherically symmetrical, only one-eighth of the sphere shown
in Fig. 16 is modeled, and the symmetry conditions are imposed on the three cutting
symmetric planes. The material parameters of the problem are E = 103 N/m2 and
v = 0.3.

From Fig. 17, it is observed that all the computed displacements and stresses
of the NS-FEM-T4 agree well with the analytical solutions. Table 7 and Fig. 18
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Fig. 17. (a) Radial displacement v (m); (b) Radial and tangential stresses (N/m2) for the hollow
sphere subjected to inner pressure.
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Table 7. Strain energy (×10−2 Nm) obtained using different methods for
the hollow sphere subjected to inner pressure.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Analytical sol.

DOFs (T4) 1521 2337 3825 5814
DOFs (H8) 1092 2535 3906 6951
FEM-T4 5.9131 5.9986 6.0929 6.1387 6.3060
NS-FEM-T4 6.6227 5.5380 6.4580 6.4219 6.3060
FEM-H8 5.9827 6.1063 6.1668 6.2023 6.3060
FS-FEM-T4 6.0343 6.0955 6.1607 6.1906 6.3060
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Fig. 18. Convergence of the strain energy solution of the NS-FEM-T4 in comparison with other
methods for the hollow sphere subjected to inner pressure.

show the upper bound property in the strain energy of the NS-FEM-T4, while the
FEM-T4 and FEM-H8 give the lower bounds.

Table 8 and Fig. 19 compare the solution error in displacement norm obtained
using the NS-FEM-T4, together with those of the FEM-T4, FEM-H8 and FS-FEM-
T4. It is seen that the FEM-H8, stands out clearly. When the third fine mesh for
both T4 and H8 (h ≈ 0.156) is used, the error of the FEM-H8 is about 1/3 of the
NS-FEM-T4. The NS-FEM-T4 performed better than the FEM-T4, but only by a
small margin. In terms of convergence rate, all the models have a numerical rate of
around the theoretical value of 2.0.

Table 9 and Fig. 20 compare the results of energy norm of the NS-FEM-T4,
together with those of the FEM-T4, FEM-H8, and FS-FEM-T4. It is again seen
that the NS-FEM-T4 stand out clearly. When the third fine mesh for both T4 and
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Table 8. Error in displacement norm obtained using different methods for
the hollow sphere subjected to inner pressure.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

h (T4) 0.2193 0.1878 0.1565 0.1342
h (H8) 0.2535 0.1840 0.1563 0.1267
FEM-T4 4.06 e-03 3.12 e-03 2.07 e-03 1.58 e-03
NS-FEM-T4 3.68 e-03 2.76 e-03 1.88 e-03 1.48 e-03
FEM-H8 2.26 e-03 1.35 e-03 7.92 e-04 5.44 e-04
FS-FEM-T4 3.03 e-03 2.30 e-03 1.50 e-03 1.14 e-03
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Fig. 19. Error in displacement norm for the NS-FEM-T4 solution in comparison with those of
other methods for the hollow sphere subjected to inner pressure.

Table 9. Error in energy norm obtained using different methods for the
hollow sphere subjected to inner pressure.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

h (T4) 0.2193 0.1878 0.1565 0.1342
h (H8) 0.2535 0.1840 0.1563 0.1267
FEM-T4 5.89 e-01 5.13 e-01 4.19 e-01 3.63 e-01
NSFEM-T4 2.09 e-01 1.73 e-01 1.26 e-01 1.08 e-01

FEM-H8 5.51 e-01 4.22 e-01 3.42 e-01 2.85 e-01
FS-FEM-T4 3.75 e-01 3.03 e-01 2.24 e-01 1.86 e-01
FEM-T4-Re 4.20 e-01 3.39 e-01 2.51 e-01 2.08 e-01
FEM-H8-Re 4.90 e-01 3.31 e-01 2.56 e-01 1.98 e-01
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Fig. 20. Error in energy norm for the NS-FEM-T4 solution in comparison with those of other
methods for the hollow sphere subjected to inner pressure.

H8 (h ≈ 0.156) is used, the error of the NS-FEM-T4 is about 2/7 of the FEM-T4,
2/5 of the FEM-H8, 1/2 of the FEM-T4-Re, 1/2 of the FEM-H8-Re, and 3/5 of the
FS-FEM-T4. In terms of convergence rate, the NS-FEM-T4 stands out clearly with
a rate of 1.34, while the rates of both FEM-T4 and FEM-H8 are slightly below the
theoretical value of 1.0.

Figure 21 plots the error in displacement norm against Poisson’s ratio changing
from 0.4 to 0.4999999 by using tetrahedral elements (507 nodes). The results show
that the NS-FEM-T4 is naturally immune from the volumetric locking, while the
FEM-T4 is subjected to the volumetric locking resulting in a drastic accuracy lose
in the numerical solutions.

In overall, it is again seen that the NS-FEM-T4 model also possesses four inter-
esting properties that are similar to an equilibrium FEM model: (1) the strain
energy is an upper bound of the exact solution; (2) it is immune naturally from the
volumetric locking; (3) the stress solutions are ultra-accurate and super-convergent;
and (4) the displacement solutions are at the same level as that of FEM-T4 using
the same mesh.

4.4. 3D cubic cantilever: An analysis about the upper bound

property

Consider a 3D cantilever of cubic shape, subjected to a uniform pressure on its
upper face as shown in Fig. 22. The exact solution of the problem is unknown. By
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Fig. 21. Displacement norm vs. different Poisson’s ratios for the hollow sphere subjected to inner
pressure (507 nodes).
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Fig. 22. A 3D cubic cantilever subjected to a uniform pressure on the top surface, and a mesh
with four-node tetrahedral elements.

incorporating the solutions of hexahedral super-element elements and the procedure
of Richardson’s extrapolation, Almeida Pereira [2008] gave an approximation of the
exact strain energy to be 0.950930. In addition, using standard FEM and a very
fine mesh with 30,204 nodes and 20,675 ten-node tetrahedron elements, another
reference solution of the strain energy is 0.9486. From this reference, the deflection
at point A (1.0, 1.0,−0.5) is 3.3912.
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Table 10. Strain energy obtained using different methods for the 3D cubic cantilever
problem subjected to a uniform pressure.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Reference sol.

DOFs (T4) 714 1221 2073 2856 4782
DOFs (H8) 648 1029 1536 2187 3993
FEM-T4 0.8572 0.8818 0.8978 0.9088 0.9190 0.9509
NS-FEM-T4 1.0059 0.9882 0.9808 0.9791 0.9704 0.9509
FEM-H8 0.8999 0.9116 0.9195 0.9251 0.9323 0.9509
FS-FEM-T4 0.8801 0.8989 0.9111 0.9206 0.9274 0.9509
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Fig. 23. Convergence of the strain energy solution of the NS-FEM-T4 in comparison with other
methods of the 3D cubic cantilever problem subjected to a uniform pressure.

Table 10 and Fig. 23 confirm the upper bound property on the strain energy
of the NS-FEM-T4 and the lower bound property of the FEM-T4 and FEM-H8
for this 3D problem. Table 11 and Fig. 24 show the convergence of deflection at
point A (1.0, 1.0,−0.5). The results also show the upper bound property for the
displacement solution of the NS-FEM-T4 and the lower bound property of the
FEM-T4 and FEM-H8.

4.5. A 3D automotive part (rim): An analysis about the upper

bound property

Consider a typical 3D rim used in automotive industry as shown in Fig. 25. The
rim is of inner radius 2m, outer radius 19m and a thickness of 3 m. It is constrained
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Table 11. Deflection at point A (1.0, 1.0,−0.5) obtained using different methods
for the 3D cubic cantilever problem subjected to a uniform pressure.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Reference sol.

DOFs (T4) 714 1221 2073 2856 4782
DOFs (H8) 648 1029 1536 2187 3993
FEM-T4 3.0780 3.1752 3.2341 3.2732 3.3050 3.3912
NS-FEM-T4 3.5912 3.5418 3.4943 3.4818 3.4577 3.3912
FEM-H8 3.2523 3.2875 3.3107 3.3269 3.3474 3.3912
FS-FEM-T4 3.1669 3.2390 3.2800 3.3128 3.3324 3.3912
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Fig. 24. Convergence of the deflection solution at point A(1.0, 1.0,−0.5) of the NS-FEM-T4 in
comparison with other methods of the cubic cantilever subjected to a uniform pressure.

in three dimensions along the inner annulus and a uniform pressure of 40KN/m2

is applied on the outer annulus of 60◦. The material parameters of the problem are
E = 3 × 107 N/m2 and v = 0.3.

Note that for this problem, a discretization using eight-node hexahedral elements
(H8) is impossible due to the complicated geometry of the problem. Therefore,
we just use NS-FEM-T4, FEM-T4, and FS-FEM-T4 using four-node tetrahedral
elements (T4) to compute this problem.

As no analytical solution is available for this problem, a reference solution is
obtained using the FEM-T4 with a very fine mesh including 17,761 nodes (53,283
DOFs) and 82,991 elements.
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Fig. 25. Simplified model of an 3D automotive rim.

Fig. 26. Distribution of von-Mises stress of the 3D automotive rim; (a) NS-FEM-T4 using 18,504
DOFs; (b) FEM-T4 using 53,283 DOFs.

Figure 26 shows the distribution of von-Mises stress using NS-FEM-T4 with
18,504 DOFs compared with that using FEM-T4 with 53,283 DOFs. Although
DOFs of NS-FEM-T4 are much smaller than that of FEM-T4, the color-bar of NS-
FEM-T4 has higher max level than that of FEM-T4. This implied that the stress
distribution of NS-FEM-T4 is sharper and concentrated than that of FEM-T4. This
result again confirms the super accuracy of stress solution of NS-FEM.
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Table 12. Strain energy obtained using different methods for the 3D automotive part
problem (×105 Nm).

Reference solution
Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 using FEM-T4

DOFs (T4) 3777 5412 8607 12,189 18,504 53,283
FEM-T4 1.1654 1.1911 1.2595 1.3076 1.3439 1.4062
NSFEM-T4 1.7316 1.6784 1.6307 1.5873 1.5590 1.4062
FS-FEM-T4 1.2439 1.2647 1.3219 1.3583 1.3855 1.4062

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Degrees of freedom

S
tr

ai
n 

en
er

gy
 (

N
m

)

FEM-T4
NS-FEM-T4
FS-FEM-T4
Reference solution

Fig. 27. Convergence of the strain energy solution of the NS-FEM-T4 in comparison with other
methods of the 3D automotive rim.

Table 12 and Fig. 27 again confirm the upper bound property on the strain
energy of the NS-FEM-T4 and the lower bound property of the FEM-T4 for this
3D problem.

5. Conclusion

Apart from the upper bound property in the strain energy and natural immunization
from the volumetric locking presented in the original paper of NS-FEM [Liu et al.
(2009c)], in this paper, we (1) extend the NS-FEM to 3D problems using tetrahedral
elements (NS-FEM-T4), (2) reconfirm the upper bound and free from the volumetric
locking properties for 3D problems, and (3) explore further other properties of
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NS-FEM for both 2D and 3D problems by considering fully the error norms in both
energy and displacement. The results in the paper show that NS-FEM possesses two
other interesting properties of an equilibrium FEM model such as: (1) ultra-accuracy
and super-convergence of stress solutions; (2) the same accuracy of displacement
solutions as that of the standard FEM using the same mesh.

With first additional property: ultra-accuracy and super-convergence of stress
solutions studied in this paper, NS-FEM now has very promising abilities to further
apply effectively in many applications: (1) NS-FEM can immune naturally from
volumetric locking for nearly incompressible materials and can be applied effectively
to solve the nonlinear problems which require the high accuracy of stress solutions at
nodes; (2) Together with the standard FEM, NS-FEM now can bound the numerical
solutions from both upper and lower bounds; (3) The recovery stress (or strain)
field used in NS-FEM can be used as a representation of exact stress (or strain)
field in the adaptive analysis or error estimations [Nguyen-Thoi et al. (2009c)];
(4) In particular, NS-FEM can use the three-node linear triangular element for
2D problems and four-node linear tetrahedral element for 3D problems which can
be generated automatically for 2D and 3D complicated geometries and (5) The
numerical implementation of NS-FEM is straightforward and much simpler than
that of equilibrium FEM models.
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