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[1] The majority of crustal faults host earthquakes when the ratio of average background
shear stress �b to effective normal stress �eff is �b/�eff � 0.6. In contrast, mature
plate-boundary faults like the San Andreas Fault (SAF) operate at �b/�eff � 0.2.
Dynamic weakening, the dramatic reduction in frictional resistance at coseismic slip
velocities that is commonly observed in laboratory experiments, provides a leading
explanation for low stress levels on mature faults. Strongly velocity-weakening friction
laws permit rupture propagation on flat faults above a critical stress level
�pulse/�eff � 0.25. Provided that dynamic weakening is not restricted to mature faults,
the higher stress levels on most faults are puzzling. In this work, we present a
self-consistent explanation for the relatively high stress levels on immature faults that is
compatible with low coseismic frictional resistance, from dynamic weakening, for all
faults. We appeal to differences in structural complexity with the premise that geometric
irregularities introduce resistance to slip in addition to frictional resistance. This general
idea is quantified for the special case of self-similar fractal roughness of the fault surface.
Natural faults have roughness characterized by amplitude-to-wavelength ratios ˛ between
10–3 and 10–2. Through a second-order boundary perturbation analysis of quasi-static
frictionless sliding across a band-limited self-similar interface in an ideally elastic solid,
we demonstrate that roughness induces an additional shear resistance to slip, or roughness
drag, given by �drag = 8�3˛2G*�/�min, for G* = G/(1 – �) with shear modulus G and
Poisson’s ratio �, slip �, and minimum roughness wavelength �min. The influence of
roughness drag on fault mechanics is verified through an extensive set of dynamic rupture
simulations of earthquakes on strongly rate-weakening fractal faults with elastic-plastic
off-fault response. The simulations suggest that fault rupture, in the form of self-healing
slip pulses, becomes probable above a background stress level �b � �pulse + �drag. For
the smoothest faults (˛ � 10–3), �drag is negligible compared to frictional resistance, so
that �b � �pulse � 0.25�eff. However, on rougher faults (˛ � 10–2), roughness drag can
exceed frictional resistance. We expect that �drag ultimately departs from the predicted
scaling when roughness-induced stress perturbations activate pervasive off-fault inelastic
deformation, such that background stress saturates at a limit (�b � 0.6�eff) determined
by the finite strength of the off-fault material. We speculate that this strength, and not the
much smaller dynamically weakened frictional strength, determines the stress levels at
which the majority of faults operate.
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1. Introduction
[2] Deviatoric stresses within Earth’s brittle crust are lim-

ited by the strength of faults and are generally thought to
reflect the stress levels at which faults become capable of
hosting earthquakes [Townend and Zoback, 2000]. These
average stress levels are potentially distinct from, and much
smaller than, localized stress concentrations at earthquake
nucleation sites where the ratio of shear to effective nor-
mal stress reaches the level of static friction. Our aim in
this work is to quantify the relationship between overall
stresses on faults, averaged over the full extent of the largest
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ruptures, and details of the dynamic rupture process on geo-
metrically complex faults. Through numerical simulations
and analytical results, we demonstrate that stress levels are
determined not only by frictional resistance but also by an
additional geometric resistance, from irregularities at scales
larger than a typical slip distance, when faults are not per-
fectly planar surfaces. Geometric resistance has received
little attention in the literature, but our analysis suggests
it may be substantially larger than frictional resistance on
many faults.

[3] The classic estimate of the average background shear
stress, �b, on an active fault is the product of a Byerlee
friction coefficient �0.6–0.9 [Byerlee, 1978] and an effec-
tive normal stress, � eff, calculated assuming hydrostatic pore
pressure. Yet many lines of evidence [see Noda et al., 2009,
and references therein] suggest that major plate-boundary
faults, such as the San Andreas Fault (SAF), are exception-
ally weak, in the sense that they host earthquakes at values
of �b/� eff far less than those predicted by Byerlee’s law and
hydrostatic pore pressure. For example, Noda et al. [2009,
Figure 8] show that measurements of the principal stress ori-
entation near the SAF [Townend and Zoback, 2004], together
with basic assumptions about the strength of the surrounding
medium, require � b/� eff < 0.3 on the SAF. That constraint is
consistent with the directly measured value of � b/� eff = 0.21
at the bottom of the San Andreas Fault Observatory at Depth
pilot hole at 2.1 km depth [Hickman and Zoback, 2004].

[4] Several theories have been proposed to explain why
mature faults like the SAF operate at very low � b/� eff levels.
One possibility is a greatly reduced effective normal stress
� eff due to the presence of near-lithostatic pore fluid pres-
sure within fault zones [Byerlee, 1990; Rice, 1992; Faulkner
and Rutter, 2001]. That explanation does not seem likely,
at least for crustal faults, as measurements of pore pressure
within Earth’s crust generally indicate hydrostatic condi-
tions [Townend and Zoback, 2000], even in the SAF itself
[Zoback et al., 2010]. Other theories appeal to anomalously
low frictional resistance, from either frictionally weak clay-
rich materials [Morrow et al., 2000; Carpenter et al., 2011]
or weak fault zone fabrics [Collettini et al., 2009] at seis-
mogenic depths. Weak materials occur within the creeping
section of the SAF and appear to be the most likely expla-
nation for its weakness, but that cannot explain the similarly
low stresses on other seismogenic parts of the SAF. The
leading explanation for the weakness of faults which accom-
modate deformation through earthquakes, rather than creep,
is the coseismic activation of dynamic weakening mecha-
nisms such as thermal pressurization and flash heating [Rice,
2006; Noda et al., 2009] that dramatically reduce frictional
resistance during earthquake slip.

[5] Extreme dynamic weakening at coseismic slip rates
has been widely observed in high-velocity friction experi-
ments [e.g., Tsutsumi and Shimamotom, 1997; Di Toro et
al., 2004; Hirose and Shimamoto, 2005; Beeler et al., 2008;
Goldsby and Tullis, 2011; Di Toro et al., 2011]. Planar
faults governed by strongly rate-weakening friction laws
support self-sustaining slip-pulse ruptures at background
stress levels � b around a critical stress level � pulse � 0.25� eff

[Cochard and Madariaga, 1996; Beeler and Tullis, 1996;
Zheng and Rice, 1998; Lapusta and Rice, 2003; Lykotrafitis
et al., 2006; Noda et al., 2009], even with off-fault plastic-
ity [Dunham et al., 2011a; Gabriel et al., 2013]. Given that

dynamic weakening is so ubiquitous in friction experiments,
and that dynamic weakening permits self-sustaining rupture
at very low background stress levels, one might expect to
find deviatioric stresses in the crust equal to about 0.2 or
0.3 times the effective normal stress. However, this is not
observed. Instead, across many different tectonic regions
around the world, stresses are largely consistent with a criti-
cally stressed crust having ratios of shear to effective normal
stress consistent with Byerlee’s law (� b/� eff � 0.6–0.9) [see
Townend and Zoback, 2000, and references therein].

[6] Additional evidence supporting fault operation at
stress levels compatible with Byerlee’s law comes from the
observed range of dip angles of seismically active normal
and thrust faults. Many of these faults are not optimally
oriented in the present-day stress regime and have been reac-
tivated. By assuming that faulting occurs at constant � b/� eff

and that off-fault material strength is limited by a constant
internal friction coefficient, Sibson [1985] placed bounds on
the range of dip angles permitting fault reactivation. In par-
ticular, he showed there exists a lock-up angle beyond which
faults become so severely misoriented that no slip can occur
on them. Because the lock-up angle depends on the criti-
cal �b/� eff for rupture, measurements of lock-up angle can
be used to estimate that � b/� eff. This has been done using
compilations of dip angles of seismically active dip-slip
faults [Sibson, 1994; Sibson and Xie, 1998; Collettini and
Sibson, 2001], revealing a general agreement with Byerlee-
level ratios of shear to effective normal stress.

[7] In light of the above discussion, our challenge is to
reconcile the relatively high stress levels observed on all
but the most mature plate-boundary faults with the ubiq-
uitous occurrence of dynamic weakening at coseismic slip
rates, which ought to permit faulting at much lower stress
levels. The simplest explanation is that dynamic weak-
ening is unique to mature faults having well-developed
ultracataclastic fault cores that permit the extreme strain
localization required for concentrated shear heating and acti-
vation of thermal weakening mechanisms [Rice, 2006]. This
is certainly a possibility that cannot be dismissed, and it
could be tested by measurements of shear-zone width and
heat production. But we see an alternative explanation, in
which coseismic frictional resistance is extremely low on
all faults.

[8] Our basic premise is that the elevated � b on most
faults arises from an additional shear resistance to slip,
beyond frictional resistance, offered by complex fault geom-
etry. There are many forms of geometric complexity, ranging
from roughness of a single fault surface to compound failure,
in a single event, of multiple fault segments or strands linked
by damaged rock in step-overs. Slip in such systems, unlike
slip on an infinitely long planar fault, cannot be accomodated
without straining the material directly adjacent to geomet-
ric irregularities. Associated with those strains are restoring
stresses, some of which oppose the overall sense of slip.
These stresses are ultimately bounded by the finite strength
of the rock, with further deformation involving inelastic
processes and energy dissipation during plastic flow.

[9] In the remainder of this work, we study this addi-
tional geometric resistance for the specific case of band-
limited self-similar fractal faults having roughness at all
scales above a minimum roughness wavelength. We term
this additional resistance “roughness drag” and quantify its

3643



FANG AND DUNHAM: ROUGHNESS DRAG AND FAULT STRESS LEVELS

importance through both analytical solutions and dynamic
rupture simulations.

1.1. Field and Laboratory Measurements
of Fault Roughness

[10] We begin by reviewing field and laboratory measure-
ments of fault roughness and then discuss how it affects fault
mechanics. Anderson [1951] recognized that natural fault
surfaces are not planar but irregular at all scales. Early mea-
surements by Brown and Scholz [1985], Power and Tullis
[1988, 1991, 1995], and Lee and Bruhn [1996] concluded
that natural fault surfaces are self-similar fractals, in the
sense that root-mean-square (RMS) height fluctuations are
proportional to profile length.

[11] To be more precise, consider a one-dimensional fault
profile y = h(x) having zero mean. The RMS roughness
contribution from wavenumbers k between kmin and kmax is

hRMS(kmin, kmax) =

s
1
�

Z kmax

kmin

Ph(k)dk, (1)

where Ph(k) is the power spectral density of h(x). Self-
similar faults have

Ph(k) = (2�)3˛2|k|–3, (2)

in which ˛ is the amplitude-to-wavelength ratio, which con-
trols the severity of deviations from planarity. Roughness
is dominated by the longest wavelengths, and if we take
kmin = 2� /L and kmax ! 1, then hRMS = ˛L. Additional
mathematical details are given by Dunham et al. [2011b].

[12] Roughness in the slip-parallel direction (the direction
of interest in this study) is characterized by ˛ � 10–3 to 10–2

[Power and Tullis, 1991]. Some studies indicate that rough-
ness decreases with cumulative slip as faults mature before
ultimately leveling off [Sagy and Brodsky, 2009; Brodsky et
al., 2011]. Candela et al. [2012] speculate that the terminal
roughness level reflects a balance between wear processes
acting to smooth the fault and roughening processes. The
latter could include the tendency for dynamic ruptures to
branch away from their current propagation direction at high
speeds [Poliakov et al., 2002; Rice et al., 2005].

[13] Many recent studies [Renard et al., 2006; Sagy et
al., 2007; Sagy and Brodsky, 2009; Candela et al., 2009,
2011, 2012; Brodsky et al., 2011; Bistacchi et al., 2011] have
provided high resolution measurements of fault roughness,
using a variety of techniques including analysis of surface
traces at the largest scales, over nine orders of magnitude
in length. Measurements using a single technique or instru-
ment, which are necessarily limited in bandwidth, suggest
that fault surfaces are more likely to be self-affine rather
than self-similar, with a Hurst exponent H � 0.8 in the slip-
parallel direction. However, as pointed out by Shi and Day
[2013], the data set as a whole is well fitted by a single self-
similar power spectral density function (for which H = 1).
We concur and therefore focus our discussion and analysis
on self-similar faults.

1.2. Effects of Roughness on Fault Mechanics
[14] Several studies have examined how deviations from

planarity influence fault mechanics. Slip on rough faults
perturbs the stress field in the vicinity of the fault, most
substantially over an off-fault distance proportional to the

wavelength of roughness considered. These stress changes
were first quantified using a linearized boundary perturba-
tion analysis of quasi-static slip on frictionless sinusoidal
faults by Saucier et al. [1992]. Those authors pointed out
that the near-fault stress field has a rather complex pattern
that can differ significantly from the regional stress field.
They suggested nonplanarity as a possible explanation for
the unexpected orientations of the principal stresses near the
SAF at the Cajon Pass borehole. That sinusoidal fault analy-
sis was subsequently extended to sliding at constant friction
coefficient by Chester and Chester [2000], who also applied
Mohr-Coulomb failure analysis to predict the locations and
extent of regions in which the stress perturbations are likely
to cause inelastic deformation and secondary faulting off the
main fault.

[15] Dunham et al. [2011b] extended this boundary per-
turbation approach to fractal faults, finding that RMS stress
perturbations,��RMS, on band-limited self-similar faults are
dominated by the shortest roughness wavelengths:

��RMS = 2�2˛G*�/�min, (3)

for G* = G/(1 – �), with shear modulus G and Poisson’s
ratio �, slip �, and minimum roughness wavelength �min.
The stress perturbations are simply the product of strains
�˛�/�min and the elastic modulus. As equation (3) shows,
these stress perturbations are an O(˛) effect.

[16] When these O(˛) stress perturbations are projected
onto the nonplanar fault, an O(˛2) additional resistance to
slip appears. The effect, which must be invariant to flipping
the profile y = h(x) ! y = –h(x), is necessarily O(˛2);
the O(˛) traction perturbations introduce no net resistance
once averaged over the zero-mean fault profile. A simi-
lar resistance arises during the sliding of glaciers and ice
sheets over rough beds [Nye, 1969, 1970]. Dieterich and
Smith [2009] were the first to recognize the importance of
this effect for faulting; they called it the back stress, though
in this study we adopt the more specific term “roughness
drag,” denoted as � drag. Using a two-dimensional static, lin-
ear elastic boundary element model with constant friction
coefficient, Dieterich and Smith [2009] found that rough-
ness reduces fault slip below that occurring on planar faults.
They proposed that the otherwise ever-growing roughness-
induced stress perturbations are instead relaxed via brit-
tle failure processes (off-fault seismicity and secondary
faulting) within the off-fault material. They also showed
that the proposed rates of stress relaxation with distance
from faults follow a power law that is consistent with the
observed decay rate of background seismicity with distance
from faults.

[17] The first part of our present study is a rigorous deriva-
tion of the roughness drag effect. This is done within the
simplifying assumptions of quasi-static, ideally elastic off-
fault response and frictionless sliding; the latter only serves
to highlight that this resistance is entirely distinct from
frictional resistance. We confirm the scaling arguments of
Dieterich and Smith [2009] that �drag � ˛2G*�/�min and
obtain a precise expression for � drag with the proper dimen-
sionless prefactor. Given that the amplitude-to-wavelength
ratio ˛ varies over an order of magnitude in nature and that
�drag / ˛2, we expect substantial differences in � drag for
faults of varying degrees of structural maturity or roughness.
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This leads us to propose the following self-consistent expla-
nation of why mature and immature faults operate at dis-
tinctly different background stress levels. We assume that
dynamic weakening occurs on all faults, so that frictional
resistance and heat production during earthquakes is low
for both mature and immature faults. We hypothesize that
the background stress level, � b, required for rough faults
to host earthquakes is approximately equal to the combined
resistance from friction and geometric irregularities: � b �
�pulse +�drag. This implies two extreme scenarios. For smooth
faults, �drag � �pulse so that �b � �pulse � 0.25� eff. For
rough faults, the much larger � drag raises �b to a level sub-
stantially higher than � pulse. We expect that the finite strength
of the off-fault material ultimately bounds � b to a value
determined by the internal friction of the material. In that
case, we expect � b/� eff to be in the range of 0.6 to 0.9, con-
sistent with Byerlee’s law, but with the important distinction
that this value has little or no relation to the friction coeffi-
cient on the fault itself and should certainly not be identified
as the static friction coefficient. We support this idea using
simulations of dynamic ruptures on rough faults.

2. Roughness Drag
[18] In this section, we quantify the additional resistance

to sliding from self-similar roughness of a fault surface.
We restrict attention to roughness at scales larger than slip
in a single event, with shorter wavelength roughness (i.e.,
down to asperity contact or grain scales) contributing to
the frictional resistance. We assume two-dimensional plane
strain deformation, ideally elastic off-fault response, and
frictionless sliding along an infinitely long fault. We employ
the boundary perturbation technique used by Saucier et al.
[1992], Chester and Chester [2000], and Dunham et al.
[2011b], but we extend it to second order in the small
parameter ˛. The analysis yields the O(˛) and O(˛2) per-
turbations in displacement and stress fields about a given
solution for a planar fault. This unperturbed solution is sim-
ply constant slip �, in the x direction, across a planar fault
y = 0 between two half-spaces having uniform stresses
� 0

ij . Neglecting friction dramatically simplifies the analy-
sis and facilitates greater insight into the physical nature of
roughness drag.

[19] Roughness induces tractions T(x) in the x direction
that oppose the sense of slip. We define the roughness drag
as the expectation value of those tractions, in excess of the
shear traction in the unperturbed solution:

�drag = E[T(x) – �0
xy], (4)

where E[�] denotes expectation value or ensemble average
over a population of rough faults and � 0

xy is the background
shear stress in the unperturbed problem. Because we assume
frictionless sliding, � 0

xy = 0 in our analysis, though for sliding
at constant friction coefficient f, � 0

xy = f (–� 0
yy) is the frictional

resistance. We find

�drag = 8�3˛2G*�/�min. (5)

A detailed derivation, including a precise definition of T(x),
is given in Appendix A.

[20] Taking G* = 40 GPa yields

�drag � 10 MPa
� ˛

10–3

�2
�
�

�min

�
. (6)

Comparing to the RMS stress perturbations��RMS given by
equation (3), we see that � drag = 4�˛��RMS. We expect these
expressions to become inaccurate when any of the model
assumptions, specifically ideally elastic off-fault response or
no fault opening, are violated.

[21] If we consider roughness wavelengths down to the
scale of slip (�/�min ! 1) and take � eff � 100 MPa as
representative of conditions at seismogenic depths, our esti-
mate of �drag in equation (6) suggests that � drag/� eff � 0.1 for
˛ � 10–3, and that it increases to substantially higher values
for rougher faults with larger ˛.

3. Rupture Propagation on Rough Faults
3.1. Model Description

[22] The perturbation analysis described in the previous
section suggests that roughness drag plays an important role
in the faulting process, on all but the smoothest faults in
nature. However, that analysis assumes quasi-static, ideally
elastic deformation with frictionless sliding. In this section,
we relax those assumptions in fully dynamic earthquake
rupture simulations. We use a two-dimensional plane strain
model that incorporates strongly rate-weakening friction
on the fault and Drucker-Prager viscoplasticity to account
for inelastic deformation of the off-fault material. Detailed
descriptions of friction, plasticity, and material parameters
can be found in Dunham et al. [2011a, 2011b]; the numerical
method (a high-order finite difference method) is described
in Dunham et al. [2011a] and Kozdon et al. [2011, 2012].

[23] Here we only summarize details that are immedi-
ately relevant to the current study. Fault friction obeys a
rate-and-state law that features the direct effect and evolu-
tion, over a characteristic slip distance, toward a strongly
velocity-weakening steady state. Such laws give rise to self-
healing slip pulses when the background shear stress, � b,
is sufficiently low (specifically around � pulse on a flat fault
in an elastic medium) [Zheng and Rice, 1998]. The sur-
rounding material is described by an elastic-viscoplastic
Drucker-Prager rheology without cohesion, which avoids
pathological growth of stress at geometric irregularities and
prevents fault opening [Dunham et al., 2011b].

[24] Figure 1a illustrates the main features of our model.
The medium is homogeneous and infinite in extent. The fault
is a band-limited self-similar profile y = h(x), generated by
filtering random Gaussian white noise to obtain the desired
power spectral density function given by equation (2). We
restrict roughness wavelengths to those between �min =
30�x and fault profile length L, where �x is the grid
spacing. We choose L = 60 km, �min = 300 m, and �x =
10 m, which is sufficient to demonstrate the importance of
roughness drag on faults with ˛ � 10–2 while retaining
enough computational efficiency to perform over a thousand
simulations for the purpose of ensemble averaging.

[25] The uniform initial stress field, � 0
ij , is specified in

terms of the initial shear and effective normal stresses on
y = 0, �b = –� 0

yx, and � 0 = –� 0
yy, and the angle ‰ between

the maximum compressive principal stress and y = 0. Fault
nonplanarity introduces spatial variability of the local shear
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and normal tractions on the fault, � and � , as well as their
ratio � /� (see Figure 2b). We neglect poroelastic effects.

[26] Ruptures are initiated by applying a localized stress
perturbation at the desired hypocenter location. The simplest
choice would be to randomly assign this location, but we do
not expect that to be representative of natural events. Instead,
nucleation seems most likely at locations with elevated val-
ues of � /� . However, it is well known that earthquakes
nucleate over a finite region, rather than from a single point,
and that region must be larger than a critical nucleation size,
h* [Dieterich, 1992; Rice, 1993; Rubin and Ampuero, 2005;
Fang et al., 2010]. For our model parameters, h* � 102 m.
Therefore, we smooth � /� to remove short-wavelength vari-
ations and select the nucleation location as the site of the
highest smoothed � /� . We shift the profile to place the center
of the nucleation zone at x = 0 (see Figures 2 and 3). With
this procedure, nucleation most often occurs within major

extensional bends at which � /� is high due to the local fault
orientation with respect to the background stress field.

3.2. Simulation Results
[27] In contrast to previous studies of ruptures on non-

planar faults [Dunham et al., 2011b; Shi and Day, 2013],
which restricted attention to a few simulations, we model
over a thousand ruptures with many different realizations of
the random fault geometry. In this way, we can frame our
discussion in terms of the statistical properties of the rup-
ture process, specifically, the probability that rupture length
exceeds a certain distance given values of � b/� 0 and ˛. This
approach is necessitated by the remarkable variability that
emerges from individual realizations of the random geom-
etry (Figure 3). Unlike the situation for planar faults [e.g.,
Zheng and Rice, 1998], there is no unique level of � b at
which self-sustaining rupture first becomes possible.
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Figure 2. (a) Synthetic fault profile with ˛ = 0.01. (b) Initial shear to effective normal stress ratio � /� on
the fault (solid line), obtained by resolving a uniform background stress onto the fault plane. Rupture is
initiated by applying a stress perturbation at the location that has the largest smoothed � /� (dashed line),
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[28] We also point out that the nonplanar geometry pro-
vides a realistic mechanism for rupture arrest. Indeed,
most ruptures in our simulations stop naturally when they
encounter unfavorable stress conditions (typically at com-
pressional bends, where the local � /� is low). Some do reach
the end of the computational domain, but we speculate that
with larger domains, even those ruptures would ultimately
spontaneously arrest.

[29] This pronounced sensitivity to local fault conditions
offers a potential explanation for the difficulty of predicting
the occurrence of individual earthquakes based on a thresh-
old stress level, as in the time-predictable recurrence model
[Shimazaki and Nakata, 1980]. For example, by the early
1990s, stresses in the hypocentral region of the 1966 Mw 6.0
Parkfield, California, earthquake had arguably reached lev-
els commensurate with those in 1966 [Murray and Segall,
2002]. Yet three events (Mw 4.3, 4.6, and 4.7) in 1992–1994,
all close to the 1966 hypocenter, failed to grow into the
expected Mw 6.0 event. Similarly, the 2011 Mw 9.0 Tohoku-
Oki, Japan, earthquake was preceded by 2 days by a Mw 7.3
foreshock only a few tens of kilometers from the hypocenter
of the Mw 9.0 event [Gusman et al., 2013].

[30] Despite the random nature of individual rupture his-
tories on rough faults, we do observe a tendency for rup-
ture lengths to increase at higher background stress levels
(Figure 4). Figure 5 shows probability contour plots of rup-
ture length as a function of background stress level � b/� 0 for
several different amplitude-to-wavelength ratios ˛. Rupture
length is defined as the maximum propagation distance from
the hypocenter in either direction. As expected, ruptures

propagate farther at higher background stresses (larger
�b/� 0) and on smoother faults (smaller ˛). In addition,
roughness increases the variability in rupture extent. For
example, on flat faults, there exists a critical � b/� 0 below
which ruptures immediately arrest and above which ruptures
propagate indefinitely. This approximately corresponds to
the vertical line at � b = �pulse in Figure 5, though the crit-
ical stress level when accounting for off-fault plasticity is
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increases with � b/� 0 for fixed ˛, and rougher faults with larger ˛ require larger � b/� 0 to attain the same
propagation distance.

slightly higher than � pulse [Dunham et al., 2011a; Gabriel et
al., 2013]. There is also some sensitivity of this critical stress
level to the nucleation process: Gabriel et al. [2012] have
demonstrated the possibility of self-sustaining slip pulses at
stress levels below � pulse when rupture growth is initially
forced over some region much larger than the minimum
nucleation length. Such conditions do not arise in our simu-
lations. When faults are rough, there emerges a finite range
of rupture lengths at a given � b/� 0 and ˛, with the level of
variability increasing as ˛ increases. These general points
are also illustrated in Figure 6, which shows the percentage
of ruptures exceeding 20 km as a function of � b/� 0 and ˛.

[31] The results illustrated in Figures 5 and 6 lend quali-
tative support to our hypothesis that even if dynamic weak-
ening acts on all faults, structurally complex faults require
higher �b levels to host earthquakes because of roughness
drag. To quantitatively assess the role of roughness drag, we
determine � b/� 0 levels at which 50%, 60%, 70%, and 80%
of ruptures exceed 20 km extent (Figure 7). We also plot
background stress levels predicted by our analysis, assum-
ing �b � �pulse + �drag, with average fault slip values chosen
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Figure 6. Probabilities of rupture to reach an extent of
20 km (in either direction) from the hypocenter as a function
of background stress level � b. Rougher faults require larger
�b to reach the same extent.

between 2 and 5 m to encompass the range emerging in our
simulations. The overall trend of the simulation results falls
within the range of stress levels suggested by the perturba-
tion analysis. We note that even with the restricted range of
roughness wavelengths included in the model (down to only
�min/� � 100), the background stress level on the roughest
faults (˛ = 10–2) is about 1.5 times larger than on a flat fault.

4. Discussion
[32] Our numerical results indicate that, at least for the

range of roughness wavelengths studied, the stress level at
which faults host moderate to large earthquakes is the sum
of �pulse and �drag. As discussed in section 1, this potentially
provides a self-consistent explanation for the difference in
the observed background stress levels on mature and imma-
ture faults. However, for the range of roughness wavelengths
captured in our simulations, � b is only increased to an
intermediate level of about 0.4� 0 (Figure 7). To rigorously
quantify the importance of roughness drag requires simu-
lations capable of resolving roughness wavelengths down

3 4 5 6 7 8 9 10 11
x 10−3

0.27

0.286

0.302

0.317

0.333

0.349

0.365

0.381

0.397

0.413

0.429
50%

60%

70%

80%

Δ = 2m

Δ = 3m
Δ = 4m

Δ = 5m

τpulse/σ0

λmin = 300m

Figure 7. Background stress levels � b required for 50%,
60%, 70%, and 80% of ruptures to propagate beyond 20 km
in at least one direction. Solid lines are predictions using the
theoretical expression for roughness drag in equation (5).
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Figure 8. Background stress level � b/� 0 as a function of
�/�min according to the hypothesis that � b/� 0 = (�pulse +
�drag)/� 0, with roughness drag given by equation (5) (solid
lines). The shaded area covers the parameter space investi-
gated in the current study. The onset of pervasive off-fault
plasticity is expected to saturate � b/� 0 at a level deter-
mined by the internal friction coefficient of the surrounding
material (shown schematically with dashed lines).

to the scale of slip. That would mean increasing the num-
ber of grid points resolving the domain by over an order of
magnitude in each direction; such simulations are presently
beyond our computational capabilities but are targets for
future work.

[33] Nonetheless, we offer the following speculation. By
combining our theoretical expression for roughness drag
(equations 5 and 6) with our hypothesis that the critical
stress level is � b � �pulse + �drag, we obtain a prediction
of �b as a function of �/�min. This is shown in Figure 8
for several values of ˛ (solid lines). The shaded region
indicates the approximate range of �/�min covered by our
current simulations, for which �/�min � 0.01. Our predic-
tion will break down as �/�min ! 1 due to the occurrence
of pervasive off-fault yielding, and we expect that � b/� 0 will
ultimately saturate at a level determined by the finite strength
of the off-fault material. For a fractured rock mass obeying
a Drucker-Prager or Mohr-Coulomb type failure criterion,
we expect this level to be around the internal friction coef-
ficient of the material. We have indicated this schematically
in Figure 8 with dashed lines. Our analysis also suggests
that for very rough faults (˛ � 10–2), it is only necessary
to include roughness wavelengths down to �100 m to begin
to approach the expected saturation level � b � 0.6� 0. This
is within reach of current computations, but is beyond the
scope of this initial study.

[34] Figure 8 also shows that roughness drag is likely to be
the dominant resistance mechanism on all but the smoothest
faults. Only for ˛ � 10–3 does roughness drag remain neg-
ligible compared to frictional resistance in the �/�min ! 1
limit. Thus, only the most structurally mature faults are
expected to operate at the very low background stress levels
predicted by studies of dynamic weakening on planar faults
[Noda et al., 2009], even when dynamic weakening occurs
on all faults.

[35] Our results have interesting implications for geome-
chanics. The Coulomb failure criterion with Byerlee friction
coefficients is the standard rule of thumb in predicting
whether or not nonoptimally oriented faults can be reacti-
vated in the present-day stress regime [e.g., Sibson, 1985;
Jaeger et al., 2007]. Such methods are widely applied in the

energy and mining industry and perform remarkably well in
practice [e.g., Hennings et al., 2012]. It is tempting to iden-
tify the ratio of shear to effective normal stress governing
fault operation with a “friction coefficient,” as is routinely
done within the literature. Yet our study suggests that this
interpretation is incorrect. The actual frictional resistance to
slip can be dramatically lower than predicted by Byerlee’s
law (or even zero), and faults are still expected to become
capable of hosting earthquakes only when � b � 0.6� 0 due
to the additional resistance to slip arising from geometric
irregularities.

[36] Furthermore, although this study has focused on
rupture dynamics on a single continuous self-similar fault
surface in two dimensions, we expect our ideas carry over
to three-dimensional fault networks characterized by other
types of geometric complexity, for example, en echelon
fault segments. In that case, we expect that the background
stress level required for through-going rupture would be
determined by the material strength of the step-over regions
between the individual segments rather than the frictional
strength of the segments themselves.

5. Conclusions
[37] Motivated by observations that mature and immature

faults host earthquakes at distinctly different levels of back-
ground shear stress, we investigated how geometric com-
plexity of the fault affects the stress levels at which faults
operate. This was done in the idealization of self-similar
fractal fault surfaces characterized in terms of the amplitude-
to-wavelength ratio of roughness, ˛. Natural faults have
values of ˛ ranging from 10–3 to 10–2, depending on the
degree of structural maturity. Through an O(˛2) boundary
perturbation analysis, we identified an additional resistance
to slip from fault roughness that acts in addition to the fric-
tional resistance. Estimates of this roughness drag, � drag,
suggest that it is the dominant source of resistance in earth-
quakes on all but the smoothest naturally occurring faults.
This is particularly true if faults undergo the extreme coseis-
mic weakening that is ubiquitous in high-velocity rock
friction experiments. We derived an explicit expression for
�drag and tested its validity with dynamic rupture simula-
tions employing strongly rate-weakening fault friction and
off-fault plasticity. The predicted expressions for overall
resistance were found to be generally consistent with the
background stress level that permits the occurrence of mod-
erate to large earthquakes on rough faults. Further, higher
resolution simulations of ruptures on faults having rough-
ness wavelengths approaching the scale of slip are required
to fully test our ideas. Nonetheless, the simultaneous exis-
tence of dynamic weakening and roughness drag provides
a self-consistent understanding of crustal stress levels, fault
reactivation theory, negligible heat production from earth-
quakes, and the extremely low-stress operation of major
plate-boundary faults.

Appendix A: Boundary Perturbation Analysis of
Roughness-Induced Shear Resistance

[38] In this Appendix, we calculate the perturbations in
displacement and stress arising from fault roughness dur-
ing quasi-static frictionless sliding. Then, for the specific
case of band-limited self-similar roughness, we derive an
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expression for the roughness-induced shear resistance or
roughness drag. The analysis employs the boundary pertur-
bation technique used by Chester and Chester [2000] and
Dunham et al. [2011b]. Like those authors, we focus on
two-dimensional, static, plane strain deformation in an infi-
nite elastic medium. A similar calculation was performed for
glacier sliding by Nye [1969, 1970].

[39] Assuming small deviations from planarity, the fault
profile y = h(x) and slope m(x) = h0(x) can be written as
h(x) = � Qh(x) and m(x) = � Qm(x) for some dimensionless, pos-
itive scalar �. For a self-similar fault, we can identify the
amplitude-to-wavelength ratio ˛ as �. Assuming that � � 1,
we seek a series solution for the displacement and stress
fields, ui(x, y) and �ij(x, y), respectively, in powers of �:

ui(x, y) = u(0)
i (x, y) + �u(1)

i (x, y) + �2u(2)
i (x, y) + O(�3), (A1)

�ij(x, y) = � (0)
ij (x, y) + �� (1)

ij (x, y) + �2�
(2)
ij (x, y) + O(�3). (A2)

The zeroth-order terms correspond to the solution for a pla-
nar fault. For notational convenience, we write the first- and
second-order terms as

Oui(x, y) = �u(1)
i (x, y), O�ij(x, y) = �� (1)

ij (x, y), (A3)

Lui(x, y) = �2u(2)
i (x, y), L�ij(x, y) = �2�

(2)
ij (x, y). (A4)

[40] Given a boundary value problem involving inter-
face conditions applied on the nonplanar fault y = h(x),
the boundary perturbation approach provides a method to
successively calculate the O(�), O(�2), etc., terms in the
expansions (A1) and (A2). The specific problem we address
is that of frictionless slip. In the absence of roughness (i.e.,
for the unperturbed, or flat fault, problem), there is constant
slip � in the x direction with a uniform stress state � 0

ij in the
medium. Because the fault is frictionless, � 0

yx = 0. We have
neglected friction for two reasons. First, this assumption dra-
matically simplifies the following analysis; second, dynamic
weakening experiments suggest there is very little frictional
resistance during coseismic slip. The principal stresses in the
unperturbed problem are thus parallel and perpendicular to
y = 0, and we define the differential stress as

�D = �0
xx – �0

yy. (A5)

[41] Nonplanarity of the fault perturbs the stress field in
the vicinity of the fault and also generates fluctuations in slip
along the fault and in tractions opposing slip. After obtain-
ing general expressions for the first- and second-order field
perturbations caused by arbitrary deviations from planarity,
we focus on the special case of a self-similar fault described
by the power-law power spectral density (2). We express
the expectation value of various quantities (like tractions
opposing slip) as wavenumber integrals involving the power
spectral density function, which can then be evaluated to
obtain expressions for roughness drag and other quantities.

A1. General Solution for Elastic Half-Spaces Coupled
Across a Planar Interface

[42] The general principle of the boundary perturbation
approach is to replace fault interface conditions applied on
a nonplanar fault with more complicated, approximate inter-
face conditions applied on the unperturbed surface y =
0. A new boundary value problem for an effectively flat

interface is thus obtained. This is done in subsequent
sections, and here we begin by first deriving a general solu-
tion to the static equilibrium equations for two half-spaces
separated by a planar interface y = 0. The solution is written
in a way that permits application of arbitrary interface condi-
tions. The equilibrium equations, assuming isotropic linear
elasticity, are

2(1 – �)ux,xx + (1 – 2�)ux,yy + uy,xy = 0, (A6)
(1 – 2�)uy,xx + 2(1 – �)uy,yy + ux,xy = 0, (A7)

in which commas denote partial derivatives (e.g., uy,x =
@uy/@x). The equations are solved by Fourier transforming
along the x direction, defining Ui(k, y) =

R1
–1 ui(x, y)e–ikxdx.

By solving the resulting ordinary differential equations in
the y direction and discarding solutions that diverge as y !
˙1, the interior displacements can be written in terms of
those on the interface:

U˙x (k, y) = –
˙|k|U˙x (k, 0) + ikU˙y (k, 0)

3 – 4�
ye�|k|y + U˙x (k, 0)e�|k|y,

(A8)

U˙y (k, y) = –
ikU˙x (k, 0)� |k|U˙y (k, 0)

3 – 4�
ye�|k|y + U˙y (k, 0)e�|k|y,

(A9)

in which the superscript˙ designates fields in the upper and
lower half-spaces, respectively, such that Ui(k, y) = U +

i (k, y)
for y > 0 and Ui(k, y) = U –

i (k, y) for y < 0. This notational
convention applies to other fields as well. Fourier transform-
ing Hooke’s law using †ij(k, y) =

R1
–1 �ij(x, y)e–ikxdx, and

substituting the displacement solutions (A8) and (A9) yields
the transformed stress components:

†˙xx (k, y)
2G

=
�

ik
3 – 2�
3 – 4�

U˙x (k, 0)� |k|
2�

3 – 4�
U˙y (k, 0)

�
e�|k|y

+
�
�

ik|k|
3 – 4�

U˙x (k, 0) +
k2

3 – 4�
U˙y (k, 0)

�
ye�|k|y,

(A10)

†˙yy (k, y)
2G

=
�

ik
2� – 1
3 – 4�

U˙x (k, 0)� |k|
2 – 2�
3 – 4�

U˙y (k, 0)
�

e�|k|y

–
�
�

ik|k|
3 – 4�

U˙x (k, 0) +
k2

3 – 4�
U˙y (k, 0)

�
ye�|k|y,

(A11)

†˙xy (k, y)
2G

=
�

|k|
2 – 2�
3 – 4�

U˙x (k, 0) + ik
1 – 2�
3 – 4�

U˙y (k, 0)
�

e�|k|y

+
�

k2

3 – 4�
U˙x (k, 0)˙

ik|k|
3 – 4�

U˙y (k, 0)
�

ye�|k|y,

(A12)

in which G is shear modulus and � is Poisson’s ratio.

A2. Boundary Perturbation Procedure
[43] We next use the boundary perturbation approach to

replace interface conditions on the nonplanar interface y =
h(x) with approximate interface conditions on the plane y =
0. Denote the displacement discontinuity in the tangential
and normal directions (i.e., fault slip and opening) across y =
h(x) as ı(x) and !(x), and the shear and normal stresses on
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the sides of the interface as �˙(x) and �˙(x). Employing
the small angle (i.e., small fault slope) approximation and
dropping O(�3) terms, these can be written as

ı(x) = [1 – m2(x)/2][ux(x, h(x)+) – ux(x, h(x)–)]
+ m(x)[uy(x, h(x)+) – uy(x, h(x)–)], (A13)

!(x) = [1 – m2(x)/2][uy(x, h(x)+) – uy(x, h(x)–)]
– m(x)[ux(x, h(x)+) – ux(x, h(x)–)], (A14)

�˙(x) = [1 – 2m2(x)]�xy(x, h(x)˙)

– m(x)[�xx(x, h(x)˙) – �yy(x, h(x)˙)], (A15)

�˙(x) = –�yy(x, h(x)˙) + 2m(x)�xy(x, h(x)˙)

– m2(x)[�xx(x, h(x)˙) – �yy(x, h(x)˙)]. (A16)

Next, we use a Taylor series expansion to replace a field
g(x, y), evaluated on y = h(x), with

g(x, h(x)) � g(x, 0) + h(x)
@g
@y

(x, 0) +
h2(x)

2
@2g
@y2 (x, 0). (A17)

As before, we have dropped O(�3) terms.
[44] We now combine these two approximations by

using the Taylor expansion (A17) to evaluate all fields in
equations (A13)–(A16) on y = 0 instead of y = h(x).
Then substitute the perturbation expansion, equations (A1)
and (A2), into those expressions and drop O(�3) terms. The
result is

ı(x) = [u(0)
x ](x) + [Oux](x) + [Lux](x)

+ h(x)[u(0)
x,y](x) + h(x)[Oux,y](x)

+ 0.5h2(x)[u(0)
x,yy](x) – 0.5m2(x)[u(0)

x ](x)

+ m(x)[u(0)
y ](x) + m(x)[Ouy](x)

+ h(x)m(x)[u(0)
y,y](x), (A18)

!(x) = [u(0)
y ](x) + [Ouy](x) + [Luy](x)

+ h(x)[u(0)
y,y](x) + h(x)[Ouy,y](x)

+ 0.5h2(x)[u(0)
y,yy](x) – 0.5m2(x)[u(0)

y ](x)

– m(x)[Oux](x) – m(x)[u(0)
x ](x)

– h(x)m(x)[u(0)
x,y](x), (A19)

�˙(x) = � (0)
xy (x, 0˙) + O�xy(x, 0˙) + L�xy(x, 0˙)

+ h(x)� (0)
xy,y(x, 0˙) + h(x) O�xy,y(x, 0˙)

+ 0.5h2(x)� (0)
xy,yy(x, 0˙) – 2m2(x)� (0)

xy (x, 0˙)

– h(x)m(x)[� (0)
xx,y(x, 0˙) – � (0)

yy,y(x, 0˙)]

– m(x)[� (0)
xx (x, 0˙) – � (0)

yy (x, 0˙)]

– m(x)[ O�xx(x, 0˙) – O�yy(x, 0˙)], (A20)

�˙(x) = –� (0)
yy (x, 0˙) – O�yy(x, 0˙) – L�yy(x, 0˙)

– h(x)� (0)
yy,y(x, 0˙) – h(x) O�yy,y(x, 0˙)

+ 2h(x)m(x)� (0)
xy,y(x, 0˙) + 2m(x)� (0)

xy (x, 0˙)

+ 2m(x) O�xy(x, 0˙) – 0.5h2(x)� (0)
yy,yy(x, 0˙)

– m2(x)[� (0)
xx (x, 0˙) – � (0)

yy (x, 0˙)]. (A21)

We have introduced the simplifying notation for jumps in
some field g(x, y) across y = 0:

[g](x) = lim
�!0

[g(x, 	) – g(x, –	)]; (A22)

later, we employ a similar notation in the Fourier domain for
some transformed field G(k, y):

[G](k) = lim
�!0

[G(k, 	) – G(k, –	)]. (A23)

A3. Perturbations From Roughness
[45] Now consider the problem of quasi-static slip on

a frictionless fault with no opening in the fault-normal
direction. The specific interface conditions are no opening,
continuity of traction components of stress, and no friction:

!(x) = 0 (A24)
�+(x) = �–(x) (A25)
�+(x) = �–(x) (A26)

� (x)˙ = 0. (A27)

We further assume that in the absence of fault roughness, the
fault experiences constant slip: ı(x) = �.

[46] The zeroth-order, or unperturbed solution, is thus

u(0)
x (x, y) = 0.5�sgn(y), u(0)

y (x, y) = 0, (A28)
� (0)

xx (x, y) = �0
xx, � (0)

yy (x, y) = �0
yy, � (0)

xy (x, y) = 0. (A29)

For this solution, equations (A18)–(A21) simplify to

ı(x) = � + [Oux](x)
+ [Lux](x) + h(x)[Oux,y](x) + m(x)[Ouy](x), (A30)

!(x) = [Ouy](x) – m(x)�
+ [Luy](x) + h(x)[Ouy,y](x) – m(x)[Oux](x), (A31)

�˙(x) = O�xy(x, 0˙) – m(x)�D

+ L�xy(x, 0˙) + h(x) O�xy,y(x, 0˙)

– m(x)[ O�xx(x, 0˙) – O�yy(x, 0˙)], (A32)

�˙(x) = –�0
yy – O�yy(x, 0˙)

– L�yy(x, 0˙) – h(x) O�yy,y(x, 0˙)

+ 2m(x) O�xy(x, 0˙) – m2(x)�D. (A33)

[47] Substituting equations (A30)–(A33) into the inter-
face conditions (A24)–(A27), and dropping O(�2) terms, we
obtain the following conditions for the first-order problem:

[Ouy](x) = m(x)�, (A34)
[ O�xy](x) = 0, (A35)
[ O�yy](x) = 0, (A36)

O�xy(x, 0) = m(x)�D. (A37)

Note that because O�xy is continuous across y = 0
(equation A35), there is no need to use ˙ in equation (A37)
to distinguish between field values on the two sides of y = 0.
We employ this notational simplification in the remainder of
this Appendix.

[48] This problem is solved in the Fourier domain, and we
define the transform of the fault profile and its slope as

H(k) =
Z 1

–1
h(x)e–ikxdx, (A38)

M(k) =
Z 1

–1
m(x)e–ikxdx. (A39)

Note that M(k) = ikH(k).
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[49] Fourier transforming the first-order interface condi-
tions (A34)–(A37) yields

[ OUy](k) = M(k)�, (A40)

[ O†xy](k) = 0, (A41)
[ O†yy](k) = 0, (A42)

O†xy(k, 0) = M(k)�D. (A43)
Combining these with the general elasticity solutions
(A8)–(A12), we obtain the first-order solution in the trans-
form domain. The displacement and stress along the inter-
face are

OU˙x (k, 0) = ˙(1 – �)
�D

G
|k|
ik

H(k) –
1 – 2�

4(1 – �)
|k|
ik

M(k)�, (A44)

OU˙y (k, 0) = –
1 – 2�

2
�D

G
H(k)˙

1
2

M(k)�, (A45)

O†˙xx (k, 0) = ˙2�D
|k|
ik

M(k) –
G

2(1 – �)
|k|M(k)�, (A46)

O†yy(k, 0) = –
G

2(1 – �)
|k|M(k)�, (A47)

O†xy(k, 0) = M(k)�D. (A48)
Inverting the above transforms yields

Ou˙x (x, 0) = ˙(1 – �)
�D

G
H[h(x)] –

1 – 2�
4(1 – �)

H[m(x)]�, (A49)

Ou˙y (x, 0) = –
1 – 2�

2
�D

G
h(x)˙

1
2

m(x)�, (A50)

O�˙xx (x, 0) = ˙2�DH[m(x)] –
G

2(1 – �)
H[m0(x)]�, (A51)

O�yy(x, 0) = –
G

2(1 – �)
H[m0(x)]�, (A52)

O�xy(x, 0) = m(x)�D, (A53)
where the Hilbert transform of a function g(x) is

H[g(x)] =
1
�

Z 1
–1

g(
)
x – 


d
. (A54)

[50] It is possible, at this point, to solve the complete
second-order problem. However, we are only interested in
calculating the roughness drag, and as we demonstrate in the
next section, that task (for frictionless faults) requires only
an expression for L�˙xy (x, 0). That is obtained by substituting
equation (A32) into the frictionless sliding condition (A27):

L�˙xy (x, 0) = –h(x) O�˙xy,y(x, 0)

+ m(x)[ O�˙xx (x, 0) – O�yy(x, 0)]. (A55)

A4. Roughness Drag
[51] We are now poised to calculate the roughness drag,

which is defined in the following way. The traction vec-
tor giving the force per unit area exerted by the top wall
of the fault on the bottom wall is �ij(x, h(x)–)nj(x), where
(nx(x), ny(x)) � (–m(x), 1 – m2(x)/2) is the unit outward nor-
mal to the lower half-space, given to second-order accuracy.
The net force (per unit distance in the z-direction) acting on
the fault segment –L/2 < x < L/2 and opposing motion in the
x direction is

F =
Z L/2

–L/2
T(x)dx, (A56)

T(x) = �xj(x, h(x)–)nj(x)
p

1 + m2(x), (A57)

where
p

1 + m2(x)dx is the differential arc length. Dividing F
by L gives the average shear stress resisting slip, and taking
L!1 gives the expectation value, E[T(x)]. For frictionless
sliding, we define this as the roughness drag, � drag. For the
more general case of sliding at constant friction coefficient f,
the appropriate definition of roughness drag would be

�drag = E[T(x) – �0
xy], (A58)

where � 0
xy = f (–� 0

yy) is the frictional resistance.
[52] To evaluate � drag, we expand T(x) in (A57) to second-

order accuracy:

T(x) = �0
xy + O�xy(x, 0–) – m(x)�0

xx

+ L�xy(x, 0–) + h(x) O�xy,y(x, 0–)
– m(x) O�xx(x, 0–). (A59)

Next, we set � 0
xy = 0, substitute L�xy(x, 0–) from (A55), and

recognize that E[m(x)] = 0. The result is remarkably simple:

�drag = –E[m(x) O�yy(x, 0)]. (A60)

Using (A52) gives

�drag =
G�

2(1 – �)
E[m(x)H[m0(x)]]. (A61)

The expectation value can be rewritten [e.g., Newland, 1993]
in terms of the power spectral density Pm(k) of m(x) as

�drag =
G�

2�(1 – �)

Z 1
0

kPm(k)dk. (A62)

For self-similar faults, Pm(k) = (2�)3˛2|k|–1 and the above
integral diverges unless the upper limit of the wavenumber
integral is bounded. That is equivalent to introducing a min-
imum roughness wavelength, �min, which yields the desired
expression for roughness drag:

�drag = 8�3˛2 G
1 – �

�

�min
. (A63)
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