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Abstract: Lung cancer represents the second most common malignancy worldwide and lymph node
(LN) involvement serves as a crucial prognostic factor for tailoring treatment approaches. Invasive
methods, such as mediastinoscopy and endobronchial ultrasound-guided transbronchial needle
aspiration (EBUS-TBNA), are employed for preoperative LN staging. Among the preoperative
non-invasive diagnostic methods, computed tomography (CT) and, recently, positron emission
tomography (PET)/CT with fluorine-18-fludeoxyglucose ([18F]FDG) are routinely recommended
by several guidelines; however, they can both miss pathologically proven LN metastases, with an
incidence up to 26% for patients staged with [18F]FDG PET/CT. These undetected metastases, known
as occult LN metastases (OLMs), are usually cases of micro-metastasis or small LN metastasis (shortest
radius below 10 mm). Hence, it is crucial to find novel approaches to increase their discovery rate.
Radiomics is an emerging field that seeks to uncover and quantify the concealed information present
in biomedical images by utilising machine or deep learning approaches. The extracted features
can be integrated into predictive models, as numerous reports have emphasised their usefulness
in the staging of lung cancer. However, there is a paucity of studies examining the detection of
OLMs using quantitative features derived from images. Hence, the objective of this review was to
investigate the potential application of PET- and/or CT-derived quantitative radiomic features for the
identification of OLMs.

Keywords: lung cancer; radiomics; deep learning; occult lymph node metastasis; CT; PET/CT; FDG

1. Introduction

Lung cancer is one of the most commonly diagnosed malignancies and a leading
cause of cancer-related deaths worldwide, with an estimated 1.8 million deaths per year [1].
In particular, non-small cell lung cancer (NSCLC) accounts for approximately 85% of all
cases [2]. Among the subtypes of NSCLC, the most prevalent is adenocarcinoma [3].

The standard treatment for early-stage lung cancer patients is surgery, which in-
cludes anatomical resection and systematic nodal dissection. This approach results in a
70% survival rate for patients over 5 years, despite a recurrence rate of 55–75%. More-
over, limited surgery options, such as wedge resection or sublobar resection, are viable for
lung cancer patients without lymph node (LN) metastases, making it possible to preserve
healthy lung tissue and, consequently, spare lung function [4–6]. Conversely, for patients
with potentially resectable mediastinal LN metastases, radical resection is recommended.
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In cases where surgery is not possible, inoperable patients are treated with stereotactic
radiotherapy, which offers a 3-year survival rate close to 60% [7].

LN involvement has been proven to be an important prognostic factor for NSCLC
and plays a role in tailoring its treatment [8]. The International Association for the Study
of Lung Cancer (IASLC) has suggested that the clinical and pathological LN statuses are
closely associated with the 5-year survival rate [9]. Therefore, LN staging is a crucial step
in the early-stage detection of lung cancer.

Currently, mediastinoscopy and endobronchial ultrasound-guided transbronchial
needle aspiration (EBUS-TBNA) are considered the gold standard for preoperative LN
staging, but they are not routinely recommended due to their invasiveness [10–13]. Among
preoperative non-invasive diagnostic methods, computed tomography (CT) is deemed the
standard imaging tool for lung cancer, as it provides detailed information about tumour
location, size, and spread [14]. For CT, the criterion for diagnosing LN involvement is when
the shortest axis of the LN is greater than 10 mm [15]. In recent decades, positron emission
tomography (PET)/CT with fluorine-18-fludeoxyglucose ([18F]FDG) has been extensively
used in the preoperative setting for patients with lung cancer. This imaging approach is
considered a key non-invasive staging method [16] and has shown better performance in
LN staging (estimated sensitivity of 77% and specificity of 86%) compared to CT alone
(55% and 81%, respectively) [17–19]. For PET imaging, the criterion for diagnosing LN in-
volvement is the presence of LN uptake above the intensity of the surrounding background
activity, with or without LN enlargement in co-registered CT imaging.

Unfortunately, in early-stage NSCLC patients, the risk of locoregional recurrence due
to missed detection of occult LN metastases (OLMs) is 26% [7]. OLMs refer to hilar and/or
mediastinal LNs that appear negative in PET and/or CT imaging (clinical N0—cN0) due
to the limited spatial resolution of these modalities [7] but are later identified as metastatic
based on pathological assessment after surgery [20–23]. Typically, OLMs consist of micro-
metastases composed of tumour-cell clusters ranging in size from 0.2 to 2.0 mm, depending
on the size of the metastatic tumour cell [24]. The incidence of OLMs in PET/CT is
estimated to be between 12.6 and 26.7% [20–23], whereas there are no available data for CT
imaging. Inflammatory diseases, such as lymphadenitis or tuberculosis, can also lead to
false-positive findings in both [18F]FDG PET and CT imaging [7], further highlighting the
need to develop novel approaches for increasing the discovery rate of OLMs.

Currently, the identification of OLMs in lung cancer relies on clinical and radiological
features, including lesion location (central vs. peripheral site), histology (adenocarcinoma
vs. others) [25–27], and gender (male vs. female). Additionally, the metabolic tumour vol-
ume (MTV), total lesion glycolysis (TLG), maximum standardised uptake value (SUVmax)
of the primary lesion [28], and tumour size derived from CT images have been considered
to improve identification performance. MTV and TLG, which reflect metabolic information
and tumour generation status, have long been regarded as good independent predictors
of OLMs [29,30]. Moreover, an SUVmax for the primary tumour higher than 4–6 and a
tumour size larger than 3 cm have been found to be associated with OLMs with an odds
ratio ranging between 2.2 and 4.18 [27,31–36]. Therefore, the integration of CT and PET
data holds promise for enhancing prediction performance for OLMs.

However, the variability in the reported cut-off values and the limited reproducibility
of the abovementioned studies emphasise the need for the development of new models,
thereby paving the way for novel approaches.

In recent years, it has become widely acknowledged that the information obtained
from medical images using the naked eye is a limited representation and that a signifi-
cant amount of valuable data remain concealed within the images [37]. Radiomics is a
non-invasive approach typically applied to radiological images that makes it possible to
capture and quantitatively describe several characteristics of a region of interest (ROI),
including its morphology, intensity, and texture. These characteristics, either alone or in
combination with other clinical or histopathological parameters, can serve as predictors
for various clinical endpoints [37–40]. Traditional radiomic features based on standardised
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mathematical formulations are referred to as ”handcrafted” features. Additionally, thou-
sands of ”deep” features can be extracted using deep learning models, which do not rely
on an explicit mathematical formulation of the characteristic of interest. Numerous reports
have highlighted the utility of handcrafted and deep features for the diagnosis, staging,
and prognosis of lung cancer [41–47].

At present, there is a paucity of radiomic studies specifically focusing on the iden-
tification of OLMs in the setting of NSCLC, with the majority of studies based on CT
radiomics [7,48]. A recent study used the texture parameters of [18F]FDG PET images
combined with metabolic parameters (e.g., MTV) and serological data (e.g., carcinoembry-
onic antigen - CEA) to develop a radiomic nomogram that demonstrated good prediction
results [3].

The aim of our study was to conduct a systematic review of the literature, providing
an overview of the potential application, in terms of additional value over morphologi-
cal and functional imaging alone, of PET and/or CT radiomic analysis in the detection
of OLMs.

2. Materials and Methods

The systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines by P.G., F.M., A.B.
and L.E. The authors conducted a search to identify prospective or retrospective studies
that utilised radiomic analysis of CT and/or PET images for assessing OLMs. The most
relevant databases and Web sources were searched using the following query: “(“lung
adenocarcinoma” OR “lung cancer”) AND (“radiomics” OR “radiomic” OR “deep learn-
ing”) AND (“PET” OR “CT” OR “PET/CT”) AND (“occult lymph node metastasis” OR
“OLM”)”. Only original articles in English published before October 2022 were considered.

After removing duplicates and excluding papers not relevant to the topic and review
articles, the titles and abstracts of the retrieved records were carefully examined. The
studies were selected based on the following criteria: (a) PET or CT data were used for
radiomic analysis and (b) PET or CT examination had to be performed at the time of initial
staging. The references cited in the selected articles were also screened to identify additional
relevant studies.

To assess the quality of reporting in the radiomic studies, we computed the ra-
diomic quality score (RQS) metric proposed by Lambin and colleagues [37]. The RQS
ranges from 0 to a maximum of 36 points (100%) and evaluates 16 aspects related to
(a) protocol quality and stability in image segmentation, (b) feature selection and val-
idation, (c) biological/clinical validation and utility, (d) the model performance index,
(e) the level of evidence, and (f) open science and data. To ensure a robust calculation of the
RQS, two of the authors computed it independently and any discrepancies were resolved
through discussion.

3. Results

A total of 63 studies were screened for eligibility and 5 of them met the inclusion
criteria for our review and were selected for further analysis (Figure 1). Among the five
studies, four were based on handcrafted radiomic features, while the remaining study
considered only deep features.

3.1. Study Populations

All studies were based on human subjects, with an average sample size of 354 patients
(range: 228–492). The clinical characteristics of the selected articles are listed in Table 1. In
all cases, the ground-truth assessment of the OLMs was undertaken via histopathological
analysis. Qiao et al. [49] and Ouyang et al. [50] included only patients with lung adeno-
carcinoma, while Wang et al. [3] considered patients affected by either adenocarcinoma or
squamous cell cancer.
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Table 1. Clinical characteristics of the selected studies. SD: standard deviation; M: male; F: female; R: retrospective; [18F]FDG: [18F]fluorodeoxyglucose;
ADC: adenocarcinoma; SCC: squamous cell carcinoma; LLL: left lower lobe; LUL: left upper lobe; RLL: right lower lobe; RML: right middle lobe; RUL: right upper
lobe; T: tumour; N: node; cT: clinical tumour stage; pN: pathological nodal stage; N/A: not available. The number of patients involved as a validation cohort is
reported in the brackets.

Authors [Ref.] Year Number of
Patients

Mean Age ± SD
(Testing Set)

Gender
(M:F)

Smoker/
Non-

Smoker
Design Imaging

Modality
Reference
Standard Histology Tumour

Location
Clinical T

Stage

Mean T
Diameter * ±

SD (mm)

OLMs (%)/
Non-OLMs (%)

Pathological
N Status

Zhong et al. [48] 2018 492 61.4 ± 9.7 173:319 363/129 R Unenhanced
CT Histology ADC

Upper = 270
Middle and
lower = 222

cT1-3 32.7 ± 15.2 78 (16)/414(84) N/A

Zhang et al. [7] 2021 160
(84) N/A 106:138 71/173 R

Contrast-
enhanced

CT
Histology ADC

Upper = 137
Middle and
lower = 107

cT1-2 30.4 ± 9.3 55(23)/189(77) N/A

Wang et al. [3] 2021 236
(134) 62.95 ± 9.4 205:165 N/A R [18F]FDG

PET/CT Histology ADC

LLL = 57
LUL = 95
RLL = 85
RML = 27
RUL = 106

N/A 28.23 ± 10.26 98(26)/272(74)
pN0 = 272
pN1 = 46
pN2 = 52

Qiao et al. [49] 2022 159
(69) N/A 113:115 97/131 R [18F]FDG

PET/CT Histology ADC
SCC

LLL = 43
LUL = 55
RLL = 51
RML = 11
RUL = 68

N/A 32.0
[2.3–4.4] † 85(37)/143(63) N/A

Ouyang et al. [50] 2022 376
(58) N/A 193:241 104/330 R [18F]FDG

PET/CT Histology ADC

LLL = 66
LUL = 113
RLL = 91
RML = 34
RUL = 130

N/A 23.31 ± 10.36 91(21)/343(79) pN0 = 343

* In cases with separate data for training and validation sets, we reported the data related to patients with OLMs included in the training set; † median tumour long diameter
(interquartile range).
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3.2. The Workflow of Radiomic Analysis

Despite the diversity found in the literature, radiomic studies generally follow a
conceptually straightforward workflow consisting of a series of well-defined, conventional
steps (Figure 2).
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ones (bottom).

Machine learning-based radiomic studies that rely on handcrafted radiomic features
typically involve the following key steps: image acquisition, feature extraction, feature
selection, model development, and, ultimately, model validation.

In contrast, deep learning-based radiomic studies typically have a streamlined work-
flow that includes fewer steps, such as image acquisition, image pre-processing, neural
network training, and model validation. In this case, the segmentation step is not necessary
and both feature extraction and selection are embedded within the process of training the
artificial neural network.

In this review, we present and compare the five selected original papers in relation
to the aforementioned workflow. A comprehensive summary of the methodologies and
results from these studies can be found in Table 2.
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Table 2. Summary of methodologies and results of the selected articles. SENS: sensitivity; SPEC = specificity; PPV: positive predictive value; NPV: negative
predictive value; RQS: radiomic quality score; ACC: accuracy; AUC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and
selection operator; CNN: convolutional neural network; ICC: intraclass correlation coefficient; OLM: occult lymph node metastasis; SVM: support vector machine;
CT: computed tomography; PET: positron emission tomography.

Authors Segmentation Feature Extraction Methods Results SENS *
(%)

SPEC *
(%)

PPV *
(%)

NPV *
(%)

ACC *
(%) RQS

Zhong et al.,
2018 [48]

Manual segmentation of
primary tumour using CT

300 radiomic features
(first-order and
texture features)

Wavelet-based filtering

Feature reduction based on inter-reader reproducibility
(assessed through the ICC)

SVM classifier to derive a radiomic score
Multivariate logistic regression to predict mediastinal LN
metastasis from clinical features versus the radiomic score

Radiomic signature
showed better predictive
results compared to the

clinical histopathological
model (cross-validated

SVM AUC = 0.97)

94.8 § 92 § N/A N/A N/A 36%

Zhang et al.,
2021 [7]

Manual segmentation of
primary tumour using CT and
multiple reader segmentations

for 30 patients

851 radiomic features
(shape, first-order, and

texture features)
Wavelet-based filtering

Feature reduction based on inter-reader reproducibility
(assessed through the ICC)

LASSO for radiomic feature selection and to derive a
radiomic score

Logistic regression with backward stepwise selection to
integrate clinical features and radiomic score

Creation of a nomogram
incorporating clinical and

radiomic features
(C-index = 0.81 in the

validation cohort)

76.5 ‡ 64.3 ‡ 36.6 ‡ 91.0 ‡ N/A 42%

Wang et al.,
2021 [3]

Manual segmentation of the
primary tumour in PET images

and double reader
segmentations for 60 patients

107 radiomic features
(shape, first-order, and

texture features)

Feature reduction based on inter- and intra-reader
reproducibility (assessed through the ICC)

LASSO for radiomic feature selection and to derive a
radiomic score

Logistic regression with backward stepwise selection to
integrate clinical features and radiomic score

Creation of a nomogram
incorporating clinical and

radiomic features
(C-index = 0.77 in the

validation cohort)

N/A N/A N/A N/A N/A 39%

Qiao et al.,
2022 [49]

Tumour segmentation in both
CT and PET images using both

manual and semi-automatic
methods

1316 radiomic features
(shape, first-order, and

texture features)
Local binary pattern,

Laplacian of Gaussian, and
wavelet-based filtering

Feature selection using LASSO and extremely
randomised trees

Multivariate logistic regression to derive a radiomic score
Logistic regression with backward stepwise selection to

integrate clinical features and radiomic score

Creation of a
PET/CT-based

nomogram including
clinical and

radiomic features
(AUC = 0.88 on the

test set)

72.9 ♦ 87 ♦ 76.8 ♦ 84.5 ♦ 81.8 ♦ 39%

Ouyang et al.,
2022 [50]

Segmentations were not
performed; axial, coronal, and
transversal 2D slices were used

Deep-features of the CNN Development of a CNN model (Inception v3) to predict
OLM from PET, CT, and PET and CT images

The model based on both
PET and CT imaging

achieved the best
performances

(AUC = 0.87 in the
prospective test set)

87.5 ♦ 80 ♦ N/A N/A 81 ♦ 13% †

* In cases with separate data for training and validation sets, we reported the data related to patients with OLMs included in the training set; § values referring to total radiomic signature;
‡ values referring to radiomic score; ♦ values referring to the performance of the predictive model combining PET + CT; † estimation performed using the RQS 2.0 metric, which is
currently under development for use with deep learning studies specifically (https://www.radiomics.world/rqs2/dl accessed on 14 April 2023).

https://www.radiomics.world/rqs2/dl
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3.2.1. Imaging Acquisition Protocol

Two out of the five studies (i.e., those by Zhong et al. [48] and Zhang et al. [7])
performed the radiomic analysis exclusively with CT imaging. On the other hand, the
studies by Qiao et al. [49] and Ouyang et al. [50] considered both CT and PET data. However,
there were differences in the imaging protocols used: Zhong et al. [48] analysed unenhanced
chest CT scans acquired with a 1 mm slice thickness with 64–128 multidetector computed
tomography (MDCT) scanners, while Zhang et al. [7] resorted to the venous phase of
contrast-enhanced CT imaging acquired with a 5 mm slice thickness with a 64-MDCT
scanner. Qiao et al. [49] and Ouyang et al. [50] acquired the CT imaging with hybrid
PET/CT systems and slice thicknesses of 3.75 mm and 5 mm, respectively.

The study by Wang et al. [3] instead focused exclusively on PET imaging, which
was acquired in supine position 60 min after an intravenous injection of 3.7 MBq/kg
of [18F]FDG. The PET images were reconstructed with a time-of-flight algorithm and a
voxel size of 4 × 4 × 5 mm. Consistent with the parameters used by Ouyang et al. [50],
Qiao et al. [49] acquired the PET imaging 60 min after the injection of 3.70–5.55 MBq/kg of
[18F]FDG and used a 3D-OSEM reconstruction algorithm with an unknown voxel size.

3.2.2. ROI Segmentation

ROI segmentation is a crucial step in the radiomic workflow as it determines the
specific voxels where handcrafted features will be computed. The process of segmentation
can be carried out manually by expert physicians using various techniques, such as drawing
polygons to define the ROI enclosures on a slice-by-slice basis or employing assisting tools,
such as 2D or 3D adaptive brushes [51]. Alternatively, segmentations can be performed in a
semi-automatic manner, utilising methods such as region-growing [52] or thresholding [53],
although manual correction is often required. Complete automation of segmentation is also
possible by employing architectures such as U-Net [54].

Although manual segmentations are considered the gold standard, they have several
drawbacks. Firstly, depending on the type of segmentation (2D versus 3D), they can
be time-consuming. Secondly, they are vulnerable to both inter-reader and intra-reader
variability, which can introduce inconsistencies in the results if not appropriately addressed
and accounted for.

In the specific context of this review, due to the nature of OLMs being inherently
invisible in imaging, direct segmentation of the lymph node itself is not feasible. Addi-
tionally, the limited volume of lymph nodes poses a challenge for textural quantification
as, from a statistical perspective, the restricted number of voxels within the segmentation
does not allow robust and meaningful characterization of the ROI. As a result, all the
studies segmented or analysed the primary tumour site instead. In the four studies based
on handcrafted radiomic features [3,7,48,49], segmentations were performed manually
and, in one case, integrated with semi-automatic methods. Specifically, in the studies
conducted by Zhong [48], Zhang [7], and Wang et al. [3], multiple segmentations were also
obtained by a second independent expert clinician. Multiple segmentations allowed the
implementation of a preliminary feature reduction step based on the feature variability
across readers, effectively discharging features that were unstable because highly sensitive
to small segmentation differences.

Conversely, in the study conducted by Ouyang [50], which exclusively explored deep
features, the segmentation of the region of interest (ROI) was not required and only square
cropping around the chest area was performed.

3.2.3. Feature Extraction

All four studies that used handcrafted radiomic features flanked first-order features,
including statistics descriptors of the ROI, with textural features; namely, the grey-level co-
occurrence matrix (GLCM) [55] and the grey-level run-length matrix (GLRLM) [56]. Three
studies also included morphological features—the grey-level size zone matrix (GLSZM) [57]
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and the neighbouring grey-tone difference matrix (NGTDM) [58] families—while only
two studies included the neighbouring grey-level dependence matrix (NGLDM) [59]. More
details about these feature families can be found in the IBSI manual [60].

Prior to feature extraction, image filtering [61] was also applied to enhance specific
image characteristics. Three studies employed wavelet-based filtering methods, but local
binary pattern and Laplacian of Gaussian filtering were also used.

Different software programs were employed for feature extraction across the studies.
In particular, Mazda [62], PyRadiomics [63], Region Studio (Regiontec Ltd., Shanghai,
China), and the Artificial Intelligence Kit (A.K, version 3.2.0, GE Healthcare) were used.

Ultimately, Ouyang et al. [50] employed a highly efficient deep neural network, In-
ception v3 [64], which was fed with three 2D slices (axial, coronal, and sagittal) cropped
around the primary lesion. The convolutional layers’ weights were pretrained on the Ima-
geNet dataset [65], while only the last classification layers were fine-tuned for the task of
OLM prediction.

3.2.4. Feature Selection and Machine Learning Models

A common challenge in the development of AI models is the presence of a higher
number of features (or predictors) compared to the number of samples (e.g., the subjects
of the study). This imbalance can lead to overfitting, potentially reducing the model’s
performance and hindering its ability to generalise to unseen data. One approach to address
this issue is to reduce the number of features by considering feature inter-correlation,
repeatability, and reproducibility [66].

All three studies that evaluated multiple segmentations (i.e., those by Zhong [48],
Zhang [7], and Wang [3]) used the intraclass correlation coefficient (ICC) to assess the
inter-reader reproducibility of radiomic features. Wang et al. [3] additionally examined the
intra-reader reproducibility by analysing repeated segmentations performed by the same
reader with a one-week interval. The threshold for considering a feature as reproducible
ranged from 0.75 to 0.90. In addition to or as a replacement of ICC, other feature reduction
methods were used, such as hierarchic clustering analysis, principal component analysis,
the least absolute shrinkage and selection operator (LASSO), extremely randomised trees,
backward selection, and univariate logistic regression.

After the feature selection step, Zhang [7], Wang [3], and Qiao [49] constructed ra-
diomic scores based solely on the radiomic features extracted from the ROI using multivari-
able logistic regression. Subsequently, they integrated the scores with clinical variables to
build nomograms, resulting in improved prediction performance compared to the radiomic
scores alone.

On the other hand, Zhong et al. [48] obtained the radiomic signature using support
vector machines, where the hyperparameters were optimised through a 10-fold cross-
validation procedure. The model with the best hyperparameters was finally evaluated
using a 5-fold stratified cross-validation with 100 repetitions. The performance of the
radiomic signature was then compared to the clinical histopathologic model.

3.2.5. Deep-Learning Models

Deep learning is a discipline that employs artificial neural networks to autonomously
learn feature representations from images. This field of study has brought about revolution-
ary advancements in several domains, demonstrating its capability to surpass human-level
performance in specific tasks [67]. Deep learning architectures offer solutions to current
challenges in image analysis, including image segmentation (e.g., U-Net [54]), feature
extraction (e.g., autoencoders [68]), and classification. These architectures enable compre-
hensive image evaluation and autonomous extraction of relevant information, eliminating
the need for manual delineations.

Convolutional neural networks, such as the residual network [69], EfficientNet [70],
DenseNet [71], and Inception [64], have been widely proposed for image analysis. More
recently, transformer-based models, including vision transformers [72], have attracted
interest due to their ability to capture long-range dependencies and contextual information.
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In our literature review, we identified only one study (by Ouyang and colleagues [50])
that applied deep learning methods for OLM prediction. The authors developed
three distinct deep learning models based on the Inception v3 network, which is designed
to extract relevant features at various scales and resolutions using multiple parallel con-
volutional layers. One model was specifically designed for CT imaging, another for PET
imaging, and a third model for the integration of both imaging modalities. The deep
learning model showed promising predictive performance in identifying patients suitable
for limited resection. However, the authors acknowledged the black box nature of their
model as one of the main limitations, despite the encouraging results.

3.3. Model Results and Additional Value of Radiomics over Clinical Information

For the models based on handcrafted radiomic features (namely, the studies by
Zhang [7], Wang [3], and Qiao [49]), the authors built nomograms to predict OLMs by incor-
porating the radiomic score and clinical variables. These variables included the CT-reported
tumour size, T stage, tumour type, and CEA for Zhang (AUC of 0.81 with the validation
cohort); the CEA and MTV for Wang (concordance index = 0.77 with the validation co-
hort); and the tumour location for Qiao (AUC of 0.88 in the testing set). However, only
Zhang et al. [7] found that tumour size and radiomic score were independent predictors of
OLMs in multivariate analysis.

On the other hand, Zhong et al. [48] obtained the radiomic signature from the SVM
model and then compared it to the clinical histopathologic model (based on age, sex, tumour
location, tumour diameter, and histological subtype). The best SVM model trained to
distinguish OLMs based on the radiomic signature achieved an AUC, accuracy, sensitivity,
and specificity of 0.97, 0.91, 0.95, and 0.92, respectively. The greater effectiveness of the
radiomic signature compared to the clinical histopathologic model was proved using a
multivariable logistic regression model. The radiomic signature alone achieved an accuracy
of 0.81, while the clinical data alone achieved 0.61 accuracy.

The deep learning models used by Ouyang et al. [50] achieved AUCs of 0.79, 0.73, and
0.87 for CT only, PET only, and the combined imaging, respectively, with a prospective
test set. Their results showed that the complex model (i.e., [18F]FDG PET and low-dose
CT concatenated with fully connected and sigmoid layers) provided the best diagnostic
performance in identifying patients with OLMs.

4. Discussion

There is growing evidence supporting the use of stratification tools that combine
clinical parameters, genomic biomarkers, and morphological and functional features to
predict OLMs in lung cancer [73] and potentially optimise healthcare.

The urgent need to develop a more effective method for preoperatively predicting OLMs
has inspired numerous studies, which have resorted to high-throughput image analysis
approaches, such as radiomic approaches, to extract quantitative image-based features that
provide information about the underlying tumour biology and behaviour [37,74].

Several studies have investigated the value of radiomic machine learning or deep learn-
ing approaches in relation to different aspects of NSCLC [42,75–77], but few studies have
focused on the detection of OLMs. These studies are primarily based on CT-radiomics [7,48],
while only 1% of the radiomic studies were performed in the field of nuclear medicine [78].

Prediction models proposed in the last decade [79] were established mainly by
analysing the texture of the primary tumour to predict LN involvement, as LNs are typically
too small to be analysed through image-related approaches or may be occult in preoperative
PET images. The integration of radiomic and clinical data contributed to the development
of classification nomograms for OLMs, which have shown good predictive accuracy in
patients with lung adenocarcinoma.

A common aspect found in the studies analysed in this review was that they all identi-
fied multiple radiomic feature-based signatures derived from the primary tumour. These
signatures demonstrate the potential to predict OLMs better than clinicohistopathological
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features alone and have shown incremental value in the preoperative prediction of patho-
logical LN status, delineating a scenario where radiomics aids decision making. Indeed, the
AUCs for predicting OLMs by using radiomic models ranged from 0.87 to 0.97 compared
to 0.72 to 0.81 for the clinical models.

4.1. Limitations

Despite the promising results, we ought to discuss the limitations that we have identi-
fied in these studies.

4.1.1. Clinical Aspects

The five selected studies only included patients with adenocarcinoma or squamous cell
carcinoma, while other histological types and lesions that exhibited ground-glass density
were not considered. These factors contribute to hindering the application of their results
in clinical routines.

None of the studies stated whether LNs were removed through a complete and
rigorous mediastinal dissection.

Additionally, the study by Ouyang et al. [50] excluded patients with multifocal lung
cancer due to the difficulty of determining which lesion would have caused the occult
lymph node metastases.

4.1.2. Technical Aspects

Image acquisition and reconstruction parameters play a role in the reproducibility of
these studies. For example, voxel size can impact features that depend on voxel volume [80]
and, even if interpolation can be used to harmonise it, the frequency content contained
within the interpolated images might still reflect the original voxel size (e.g., slice thick-
ness of 5 versus 1 mm). He et al. [81] demonstrated that reconstruction slice thickness
and convolution kernel can affect the performance of radiomic signatures in pulmonary
nodules, suggesting that these factors should be considered when collecting patients for
external validations.

Moreover, the variety of the considered feature families, along with the lack of re-
porting regarding specific feature-extraction parameters, renders the studies difficult to
compare and reproduce.

To address these technical issues, one potential approach is to utilise publicly avail-
able protocols for data acquisition and implement data harmonisation methods, such as
ComBat [82]. Additionally, it is crucial to closely adhere to the IBSI recommendations [60]
regarding image pre-processing steps, feature calculation, and reporting.

Regarding deep learning, the application of such models in medicine poses several
challenges that need to be addressed. These include the requirement for large amounts of
data, the high computational costs for training complex models, and the need for result
interpretability. Transfer learning techniques offer a practical solution to mitigate the
requirement for extensive datasets: by leveraging pretrained models and selectively fine-
tuning specific parameters for the task at hand, transfer learning allows the application of
such models in the medical research field, particularly in scenarios where data availability
is limited. Concurrently, saliency maps and activation maps fulfil the need for model
interpretability, providing valuable insights into the inner workings of the model.

4.1.3. Sample Imbalance

Occult lymph node metastases are a challenging setting as, by definition, they elude di-
agnostic criteria. In general, the percentage of OLMs is low compared to the detected cases,
which is considered favourable from a clinical standpoint. However, it is unfavourable
for classification modelling. Class imbalance poses a challenge as most machine learning
algorithms assume an equal number of samples for each class, and this may lead to poor
predictive performance for the minority class, which is usually the one of interest.
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In the selected studies, the percentages of OLMs ranged between 18% and 41%, rais-
ing concerns for model training. However, none of the studies based on handcrafted
features employed class-balancing techniques (e.g., over/undersampling methods, such
as the synthetic minority oversampling technique (SMOTE) [83] or adaptive synthetic
sampling (ADASYN) [84]), only reporting class imbalance as a major limitation. In contrast,
Ouyang et al. [50] did employ oversampling to address this issue, albeit in a non-
conventional manner, applying it to both the minority and majority classes.

While it is advisable to apply class-balancing techniques when necessary, selecting a
specific technique over others is non-trivial due to their respective drawbacks. For example,
oversampling the minority class can lead to overfitting, while undersampling the majority
class may result in the loss of crucial information.

4.1.4. External Validation and Sample Size

Four out of five studies were single-centre retrospective studies with a reported small
sample size, potentially leading to data selection bias. External validation was absent in
these studies, except for the one by Zhang et al. [7]; however, the validation sample size
was modest and the design remained retrospective.

To validate the accuracy of the proposed nomograms before clinical translation, it is
recommended to utilise large datasets with prospectively enrolled patients imaged with
common public acquisition protocols. Another option to consider is the use of data aug-
mentation approaches, which enable the expansion of the dataset by generating synthetic
images. However, common data augmentation techniques, such as image rotation and
scaling, are not commonly employed in radiomics based on handcrafted features: these
techniques are primarily used to assess feature reproducibility [85] rather than to generate
new data. Alternatively, deep learning approaches, such as generative adversarial net-
works [86], can be used to generate synthetic data. Nevertheless, it should be noted that
these approaches often require a substantial amount of data themselves, which may limit
their applicability as data augmentation methods.

Multi-centre studies and external validation datasets are crucial for establishing robust
research results and thereby facilitating the advancement of this research field. Future
studies should also explore the integration of their datasets with publicly available data.
Nevertheless, to the best of our knowledge, there are currently no publicly available datasets
within repositories such as The Cancer Imaging Archive (TCIA) that precisely align with the
research focus of predicting OLMs. Furthermore, none of the reviewed studies adhered to
the principles of findable, accessible, interoperable, and reusable (FAIR) data sharing [87].

4.2. Future Perspectives

Based on our perspective and the findings of this literature review, the initial step
should involve external validation of the nomograms proposed by Qiao [49], Wang [3],
and Zhang [7], as they provide enough information to replicate their studies. Criteria for
publication should prioritise the overall quality of the study (e.g., the RQS) and the level of
evidence, regardless of the validation outcome. Negative validation results could challenge
the proposed models and encourage investigators to delve deeper into confounding factors,
while positive outcomes would bring these models closer to clinical implementation.

Future studies should also explore more holistic models that encompass various
factors, such as demographic information (e.g., gender, age, ethnic origin, geographical
location), personal habits (e.g., smoking, occupational exposure), pre-existent clinical con-
ditions (e.g., diabetes, obesity, chronic obstructive pulmonary disease), genetic features
(e.g., family history, gene expression, genetic alterations), tumour biology (e.g., histopathol-
ogy, immunohistochemistry analysis, marker expression), and radiomics. Prospective
randomised clinical trials, methodological standardisation, data sharing, and software
accessibility are additional important considerations to enhance the applicability and
reusability of published studies [37].
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Furthermore, it is crucial for forthcoming investigations to prioritise the interpretability
of machine learning and deep learning models. Techniques such as feature importance
analysis can provide insights into the outcomes of machine learning models, while methods
such as saliency maps can assist in comprehending the results generated by deep learning
models. Additionally, the utilisation of effective data visualisation approaches can also play a
pivotal role in delivering valuable insights. This concerted effort would considerably advance
the comprehension and applicability of outcomes, particularly within the medical field.

In the setting of OLMs, radiomics faces a unique challenge since the area of interest,
the occult lymph node, either does not appear in the image (in PET) or has limited volume
(in CT). In the future, the utilisation of deep learning techniques has the potential to
facilitate comprehensive imaging evaluation and automate the extraction of information
from both the primary tumour and the lymph node chain, eliminating the need for manual
delineations, given sufficient training data.

4.3. Conclusions

In conclusion, the prediction of OLMs remains an unmet clinical need as it is essential
for planning the appropriate surgical approach, preserving lung function, and enabling ac-
curate prognostication. The existing models exhibit suboptimal performance, underscoring
the urgent requirement to explore and implement novel tools. Radiomics, whether based
on machine learning or deep learning, has the potential to enhance the current models,
resulting in improved accuracy. Therefore, adopting an interdisciplinary approach seems
the most promising strategy for addressing the challenge of predicting OLMs in patients
affected by lung cancer.
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