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ADDITIVE ACTIONS ON TORIC VARIETIES

IVAN ARZHANTSEV AND ELENA ROMASKEVICH

(Communicated by Lev Borisov)

Abstract. By an additive action on an algebraic variety X of dimension n
we mean a regular action Gn

a ×X → X with an open orbit of the commutative
unipotent group Gn

a . We prove that if a complete toric variety X admits an
additive action, then it admits an additive action normalized by the acting
torus. Normalized additive actions on a toric variety X are in bijection with
complete collections of Demazure roots of the fan ΣX . Moreover, any two
normalized additive actions on X are isomorphic.

Introduction

Let X be an irreducible algebraic variety of dimension n over an algebraically
closed field K of characteristic zero and let Ga = (K,+) be the additive group of
the field. Consider the commutative unipotent group Gn

a = Ga× . . .×Ga (n times).
By an additive action on X we mean a regular action Gn

a ×X → X with an open
orbit. Equivalently, one may consider algebraic varieties with an additive action as
equivariant embeddings of the vector group (Kn,+).

A systematic study of additive actions was initiated by Hassett and Tschinkel
[19]. They established a remarkable correspondence between additive actions on
the projective space Pn and local (n+ 1)-dimensional commutative associative al-
gebras with unit. This correspondence has allowed the authors to classify additive
actions on Pn for small n. The same technique was used by Sharoiko [23] to prove
that an additive action on a non-degenerate projective quadric is unique. Fur-
ther modification of Hassett-Tschinkel correspondence led to characterization of
additive actions on arbitrary projective hypersurfaces, in particular, on degenerate
projective quadrics [5, 6].

The study of additive actions was originally inspired by problems of arithmetic
geometry. Motivated by Manin’s conjecture, Chambert-Loir and Tschinkel [8] gave
asymptotic formulas for the number of rational points of bounded height on smooth
projective equivariant compactifications of the vector group. More generally, as-
ymptotic formulas for the number of rational points of bounded height on quasi-
projective equivariant embeddings of the vector group are obtained in [9]. Note that
for smooth projective toric varieties Manin’s conjecture was proved by Batyrev and
Tschinkel [7] using another technique.
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1866 IVAN ARZHANTSEV AND ELENA ROMASKEVICH

In [1] all generalized flag varieties G/P admitting an additive action are found.
Here G is a semisimple linear algebraic group and P is a parabolic subgroup. It
turns out that if G/P admits an additive action, then the parabolic subgroup P is
maximal.

Feigin [15] proposed a construction based on the PBW-filtration to degenerate an
arbitrary generalized flag varietyG/P to a variety with an additive action. Recently
Fu-Hwang [17] and Devyatov [14] have proved that if G/P is not isomorphic to the
projective space, then up to isomorphism there is at most one additive action on
G/P . Classification of additive actions on singular del Pezzo surfaces is obtained
by Derenthal and Loughran [13].

The problem of classification of additive actions on toric varieties is raised
in [6, Section 6]. Some instructive examples of such actions are given in [19, Propo-
sition 5.5]. It is natural to divide the problem into two parts. The first one deals
with additive actions on a toric variety X of dimension n normalized by the acting
torus T . In this case an additive action splits into n pairwise commuting Ga-actions
on X normalized by T . It is proved in [12] that Ga-actions on a toric variety X
normalized by T are in bijection with some vectors defined in terms of the fan ΣX

associated with X. We call such vectors Demazure roots of a fan. Cox [10] ob-
served that normalized Ga-actions on a toric variety can be interpreted as certain
Ga-subgroups of automorphisms of the Cox ring R(X) of the variety X. In turn,
such subgroups correspond to homogeneous locally nilpotent derivations of the Cox
ring. In these terms the Demazure root is nothing but the degree of the derivation.

After presenting some background on Ga-actions and Demazure roots (Section 1)
and on toric varieties and Cox rings (Section 2), we prove in Theorem 3.4 that ad-
ditive actions on a toric variety X normalized by the acting torus T are in bijection
with complete collections of Demazure roots of the fan ΣX ; see Definition 3.3 for
a precise definition of a complete collection of Demazure roots. In Theorem 3.6 we
show that any two normalized additive actions on X are isomorphic.

The second part of the problem concerns non-normalized additive actions. The-
orem 4.1 states that if a complete toric variety admits an additive action, then it
admits an additive action normalized by the acting torus.

It is well known that a toric variety is projective if and only if its fan is a normal
fan of a convex polytope. In Section 5 we characterize polytopes corresponding to
projective toric varieties with an additive action.

In the last section we give explicit examples of additive actions on toric varieties
in terms of their Cox rings and formulate several open problems.

1. Ga-actions and Demazure roots

Consider an irreducible affine variety X with an effective action of an algebraic
torus T . Let M be the character lattice of T and N be the lattice of one-parameter
subgroups of T . Let A = K[X] be the algebra of regular functions on X. It is
well known that there is a bijection between faithful T -actions on X and effective
M -gradings on A. In fact, the algebra A is graded by a semigroup of lattice points
in a convex polyhedral cone ω ⊆ MQ = M ⊗Z Q. We have

A =
⊕

m∈ωM

Amχm,
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ADDITIVE ACTIONS ON TORIC VARIETIES 1867

where ωM = ω ∩ M and χm is the character of the torus T corresponding to a
point m.

A derivation ∂ of an algebra A is said to be locally nilpotent (LND) if for ev-
ery f ∈ A there exists k ∈ N such that ∂k(f) = 0. For any LND ∂ on A the
map ϕ∂ : Ga ×A → A, ϕ∂(s, f) = exp(s∂)(f), defines a structure of a rational Ga-
algebra on A. This induces a regular action Ga × X → X, where X = SpecA.
In fact, any regular Ga-action on X arises this way; see [16, Section 1.5]. A
derivation ∂ on A is said to be homogeneous if it respects the M -grading. If
f, h ∈ A\ ker ∂ are homogeneous, then ∂(fh) = f∂(h) + ∂(f)h is homogeneous too
and deg ∂(f)− deg f = deg ∂(h)− deg h. So any homogeneous derivation ∂ has
a well-defined degree given as deg ∂ = deg ∂(f) − deg f for any homogeneous
f ∈ A\ ker ∂. It is easy to see that an LND on A is homogeneous if and only
if the corresponding Ga-action is normalized by the torus T in the automorphism
group Aut(X); cf. [16, Section 3.7].

Let X be an affine toric variety, i.e., a normal affine variety with an action of a
torus T with an open orbit. In this case

A =
⊕

m∈ωM

Kχm = K[ωM ]

is the semigroup algebra. Recall that for a given cone ω ⊂ MQ, its dual cone is
defined by

σ = {p ∈ NQ | 〈p, v〉 � 0 ∀v ∈ ω},
where 〈, 〉 is the pairing between dual spaces NQ and MQ. Let σ(1) be the set of
rays of a cone σ and pρ be the primitive lattice vector on a ray ρ. For ρ ∈ σ(1) we
set

Rρ := {e ∈ M | 〈pρ, e〉 = −1 and 〈pρ′ , e〉 � 0 ∀ ρ′ ∈ σ(1), ρ′ �= ρ}.
One easily checks that the set Rρ is infinite for each ρ ∈ σ(1). The elements of the
set R :=

⊔
ρ
Rρ are called the Demazure roots of the cone σ. Let e ∈ Rρ. Then ρ

is called the distinguished ray of the root e. One can define the homogeneous LND
on the algebra A by the rule

∂e(χ
m) = 〈pρ,m〉χm+e.

In fact, every homogeneous LND on A has a form α∂e for some α ∈ K, e ∈ R; see
[21, Theorem 2.7]. In other words, Ga-actions on X normalized by the acting torus
are in bijection with Demazure roots of the cone σ.

Example 1.1. Consider X = Kn with the standard action of the torus (K×)n.
It is a toric variety with the cone σ = Qn

�0 having rays ρi = 〈pi〉Q�0
with p1 =

(1, 0, . . . , 0), . . . , pn = (0, . . . , 0, 1). The dual cone ω is Qn
�0 as well. In this case we

have
Rρi

= {(c1, . . . , ci−1,−1, ci+1, . . . , cn) | cj ∈ Z�0},

� � � � �

�

�

�

�

�

�
Rρ1

Rρ2

MQ = Q2
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1868 IVAN ARZHANTSEV AND ELENA ROMASKEVICH

where cj = 〈pj , e〉. Denote x1 = χ(1,0,...,0), . . . , xn = χ(0,...,0,1). Then K[X] =
K[x1, . . . , xn]. It is easy to see that the homogeneous LND corresponding to the
root e = (c1, . . . , cn) ∈ Rρi

is

(∗) ∂e = xc1
1 . . . x

ci−1

i−1 x
ci+1

i+1 . . . xcn
n

∂

∂xi
.

This LND gives rise to the Ga-action

xi 
→ xi + sxc1
1 . . . x

ci−1

i−1 x
ci+1

i+1 . . . xcn
n , xj 
→ xj , j �= i, s ∈ Ga.

2. Toric varieties and Cox rings

We keep the notation of Section 1. Let X be a toric variety of dimension n with
an acting torus T and Σ be the corresponding fan of convex polyhedral cones in
NQ; see [18] or [11] for details.

Let Σ(1) be the set of rays of the fan Σ and pρ be the primitive lattice vector on
a ray ρ. For ρ ∈ Σ(1) we consider the set Rρ of all vectors e ∈ M such that

(1) 〈pρ, e〉 = −1 and 〈pρ′ , e〉 � 0 ∀ ρ′ ∈ Σ(1), ρ′ �= ρ;

(2) if σ is a cone of Σ and 〈v, e〉 = 0 for all v ∈ σ, then the cone generated by σ
and ρ is in Σ as well.

Note that (1) implies (2) if Σ is a fan with convex support. This is the case if
X is affine or complete.

The elements of the set R :=
⊔
ρ
Rρ are called the Demazure roots of the fan Σ;

cf. [12, Définition 4] and [22, Section 3.4]. Again elements e ∈ R are in bijection
with Ga-actions on X normalized by the acting torus; see [12, Théoreme 3] and
[22, Proposition 3.14]. If X is affine, the Ga-action given by a Demazure root e
coincides with the action corresponding to the locally nilpotent derivation ∂e of the
algebra K[X] as defined in Section 1. Let us denote by He the image in Aut(X) of
the group Ga under this action. Thus He is a one-parameter unipotent subgroup
normalized by T in Aut(X).

We recall basic facts from toric geometry. There is a bijection between cones
σ ∈ Σ and T -orbits Oσ on X such that σ1 ⊆ σ2 if and only if Oσ2

⊆ Oσ1
. Here

dimOσ = n−dim〈σ〉. Moreover, each cone σ ∈ Σ defines an open affine T -invariant
subset Uσ on X such that Oσ is the unique closed T -orbit on Uσ and σ1 ⊆ σ2 if
and only if Uσ1

⊆ Uσ2
.

Let ρe be the distinguished ray corresponding to a root e, pe be the primitive
lattice vector on ρe, and Re be the one-parameter subgroup of T corresponding to
pe. Denote by XHe the set of He-fixed points on X.

Our aim is to describe the action of He on X.

Proposition 1. For every point x ∈ X \ XHe the orbit Hex meets exactly two
T -orbits O1 and O2 on X, where dimO1 = dimO2 +1. The intersection O2 ∩Hex
consists of a single point, while

O1 ∩Hex = Rey for any y ∈ O1 ∩Hex.

Proof. It follows from the proof of [22, Proposition 3.14] that the affine charts Uσ,
where σ ∈ Σ is a cone containing ρe, are He-invariant, and the complement of their
union is contained in XHe . This reduces the proof to the case X is affine. Then
the assertion is proved in [3, Proposition 2.1]. �
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ADDITIVE ACTIONS ON TORIC VARIETIES 1869

A pair of T -orbits (O1,O2) on X is said to be He-connected if Hex ⊆ O1∪O2 for
some x ∈ X \XHe . By Proposition 1, O2 ⊆ O1 for such a pair (up to permutation)
and dimO1 = dimO2 + 1. Since the torus normalizes the subgroup He, any point
of O1 ∪ O2 can actually serve as the point x.

Lemma 2.1. A pair of T -orbits (Oσ1
,Oσ2

) is He-connected if and only if e|σ2
≤ 0

and σ1 is a facet of σ2 given by the equation 〈v, e〉 = 0.

Proof. The proof again reduces to the affine case, where the assertion is
[3, Lemma 2.2]. �

Now we recall basic ingredients of the Cox construction; see [2, Chapter 1] for
more details. Let X be a normal variety with free finitely generated divisor class
group Cl(X) and only constant invertible regular functions. Denote by WDiv(X)
the group of Weil divisors on X and fix a subgroup K ⊆ WDiv(X) which maps
onto Cl(X) isomorphically. The Cox ring of the variety X is defined as

R(X) =
⊕
D∈K

H0(X,D),

whereH0(X,D) = {f ∈ K(X)× | div(f)+D � 0}∪{0} and multiplication on homo-
geneous components coincides with multiplication in the field of rational functions
K(X) and extends to R(X) by linearity. It is easy to see that up to isomorphism
the graded ring R(X) does not depend on the choice of the subgroup K.

Example 2.2. It is proved in [10] that if X is toric, then R(X) is a polynomial
algebra K[x1, . . . , xm], where the variables xi correspond to T -invariant prime di-
visors Di on X or, equivalently, to the rays ρi of the fan ΣX . The Cl(X)-grading
on R(X) is given by deg(xi) = [Di].

Suppose that the Cox ring R(X) is finitely generated. Then X := SpecR(X) is a
normal affine variety with an action of the torus HX := SpecK[Cl(X)]. There is an

openHX -invariant subset X̂ ⊆ X such that the complement X\X̂ is of codimension

at least two in X, there exists a good quotient pX : X̂ → X̂//HX , and the quotient

space X̂//HX is isomorphic to X; see [2, Construction 1.6.3.1]. So we have the
following diagram:

X̂
i−−−−→ X = SpecR(X)⏐⏐�//HX

X

If X is toric, then X is isomorphic to Km, and X \ X̂ is a union of some coordinate
planes in Km of codimension at least two [10].

By [2, Theorem 4.2.3.2], any Ga-action on a varietyX can be lifted to a Ga-action
on the variety X commuting with the action of the torus HX .

If X is toric and a Ga-action is normalized by the acting torus T , then the lifted
Ga-action on Km is normalized by the diagonal torus (K×)m. Conversely, if X is
either affine or complete, any Ga-action on Km normalized by the torus (K×)m

and commuting with the subtorus HX induces a Ga-action on X. This shows that
Ga-actions on X normalized by T are in bijection with locally nilpotent derivations
of the Cox ring K[x1, . . . , xm] that are homogeneous with respect to the standard
grading by the lattice Zm and have degree zero with respect to the Cl(X)-grading.
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1870 IVAN ARZHANTSEV AND ELENA ROMASKEVICH

3. Normalized additive actions

Let X be an irreducible algebraic variety of dimension n. Consider a commuta-
tive unipotent algebraic group Gn

a = Ga × . . .×Ga (n times).

Definition 3.1. An additive action on a variety X is a regular action Gn
a ×X → X

with an open orbit.

Let X be a normal variety admitting an additive action. Then X contains an
open Gn

a -orbitW isomorphic to the affine space Kn. By [4, Lemma 1], any invertible
function on X is constant and the divisor class group Cl(X) is freely generated by
classes [D1], . . . , [Dl] of the prime divisors such that X \ W = D1 ∪ . . . ∪ Dl. In
particular, the Cox ring R(X) introduced in Section 2 is well defined for such a
variety X.

Now we assume that X is toric and an additive action Gn
a×X → X is normalized

by the acting torus T . Then the group Gn
a is a direct product of n subgroups

Ga each normalized by T . They correspond to pairwise commuting homogeneous
locally nilpotent derivations on the Cox ring K[x1, . . . , xm] having degree zero with
respect to the Cl(X)-grading. In turn, such derivations up to scalar are in bijection
with Demazure roots of the fan ΣX .

Consider a set of homogeneous derivations ∂e of the polynomial algebra
K[x1, . . . , xm] corresponding to some Demazure roots e of the fan ΣX .

Lemma 3.2. Derivations ∂e and ∂e′ commute if and only if either ρe = ρe′ or
〈pe, e′〉 = 〈pe′ , e〉 = 0.

Proof. We have ∂e∂e′ = ∂e′∂e if and only if ∂e∂e′(xj) = ∂e′∂e(xj) for all j = 1, . . . , n.
Now the lemma follows from a direct computation with formula (∗). �
Definition 3.3. A set e1, . . . , en of Demazure roots of a fan Σ of dimension n is
called a complete collection if 〈pi, ej〉 = −δij for all 1 ≤ i, j ≤ n.

In this case, the vectors p1, . . . , pn form a basis of the lattice N , and −e1, . . . ,−en
is the dual basis of the dual lattice M .

The following result may be considered as a combinatorial description of nor-
malized additive actions on toric varieties.

Theorem 3.4. Let X be a toric variety. Then additive actions on X normalized
by the acting torus T are in bijection with complete collections of Demazure roots
of the fan ΣX .

Proof. As we have seen, a normalized additive action on X determines n pairwise
commuting homogeneous locally nilpotent derivations of the Cox ringK[x1, . . . , xm].
They have the form ∂e for some Demazure roots e.

Lemma 3.5. Homogeneous locally nilpotent derivations ∂1, . . . , ∂n of the Cox ring
K[x1, . . . , xm] corresponding to Demazure roots e1, . . . , en define a normalized ad-
ditive action on X if and only if e1, . . . , en form a complete collection.

Proof. Assume first that the derivations ∂1, . . . , ∂n give rise to the additive actions
Gn

a ×X → X. If some ei and ej with i �= j correspond to the same ray of the fan
ΣX , then the Gn

a -action changes at most n−1 coordinates of the ring K[x1, . . . , xm],
and any Gn

a -orbit on X cannot be n-dimensional. Then Lemma 3.2 implies that
〈pi, ej〉 = 0 for i �= j. By definition, we have 〈pi, ei〉 = −1, and thus e1, . . . , en
form a complete collection.
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Conversely, if e1, . . . , en is a complete collection, then the corresponding ho-
mogeneous locally nilpotent derivations commute. They define a Gn

a -action on
K[x1, . . . , xm], and hence on Km. This action descends to X. We have to show
that the Gn

a -action on X has an open orbit. For this purpose it suffices to check
that the group Gn

a ×HX acts on Km with an open orbit.
By construction, the group Gn

a changes exactly n of the coordinates x1, . . . , xm,
while the weights of the remaining m − n coordinates with respect to the Cl(X)-
grading form a basis of the lattice of characters of the torus HX . This shows that
the stabilizer of the point (1, . . . , 1) ∈ Km in the group Gn

a ×HX is trivial. Since
dim(Gn

a × HX) = n + m − n = m, we conclude that the (Gn
a × HX)-orbit of the

point (1, . . . , 1) is open in Km. �

This completes the proof of Theorem 3.4. �

Corollary 1. A toric variety X admits a normalized additive action if and only if
there is a complete collection of Demazure roots of the fan ΣX .

The following theorem shows that a normalized additive action on a toric variety
is essentially unique. Let us say that two additive actions on a variety X are
isomorphic if these actions are conjugate by an automorphism of X.

Theorem 3.6. Any two normalized additive actions on a toric variety are isomor-
phic.

Proof. Define the group Aut(Σ) of automorphisms of a fan Σ as the subgroup of
linear transformations γ of the lattice N preserving the fan Σ. Any linear trans-
formation γ determines the dual transformation γ∗ of the lattice M . We say that
two complete collections of Demazure roots of Σ are equivalent, if one can be sent
to another by an automorphism of Σ.

Let X be a toric variety. Any automorphism of the fan ΣX is induced by an
automorphism of X; see [11, Theorem 3.3.4]. Thus it suffices to prove that every
two complete collections e1, . . . , en and e′1, . . . , e

′
n of Demazure roots of ΣX are

equivalent.
For the primitive vectors defined by our collections, we may assume that p1 =

p′1, . . . , pr = p′r, while pr+1, . . . , pn, p
′
r+1, . . . , p

′
n are pairwise different. Then

p′r+1, . . . , p
′
n are non-positive linear combinations of p1, . . . , pn, and pr+1, . . . , pn

are non-positive linear combinations of p′1, . . . , p
′
n. This implies that, up to renum-

bering, the vector p′j , j > r, has coordinate −1 at pj and zero coordinates at other
ps, s > r.

If there is a ray of the fan ΣX whose primitive vector p′′ is not involved yet,
then p′′ is a non-positive linear combination of both p1, . . . , pn and p′1, . . . , p

′
n. This

shows that p′′ is a non-positive linear combination of p1, . . . , pr.
Consider the automorphism γ of the lattice N which sends the basis p1, . . . , pn

to the basis p′1, . . . , p
′
n. It is easy to see that γ sends p′1, . . . , p

′
n to p1, . . . , pn, and

preserves all the vectors p′′. Thus γ sends one complete collection of Demazure
roots to another.

It remains to check that γ is an automorphism of the fan ΣX . Consider the vector
pj , j > r, and the corresponding Demazure root ej . Then all vectors pi, i �= j, p′i,
i �= j, and p′′ are contained in the hyperplane 〈·, ej〉 = 0. Thus we can decompose
the transformation γ in the composition of transformations γr+1, . . . , γn, where γj
sends pj to p′j and fixes the hyperplane 〈·, ej〉 = 0 pointwise.
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1872 IVAN ARZHANTSEV AND ELENA ROMASKEVICH

It suffices to check that each γj is an automorphism of the fan ΣX . Equivalently,
we have to check that for any cone σ in ΣX containing pj there is a cone in ΣX

generated by the same rays, but with ρj replaced by ρ′j . If the cone σ contains both
pj and p′j , the assertion is clear. If σ does not contain p′j , it is generated by pj and
some cone σ0 contained in the hyperplane 〈·, ej〉 = 0. By the symmetric arguments,
the cone σ0 is contained in the hyperplane 〈·, e′j〉 = 0 as well. Condition (2) from
the definition of a Demazure root of a fan Σ implies that the cone generated by p′j
and σ0 belongs to Σ as well. This completes the proof of Theorem 3.6. �

4. Arbitrary additive actions

Let X be a complete toric variety with an acting torus T . It is well known that
the automorphism group Aut(X) is a linear algebraic group with T as a maximal
torus; see [12], [10]. In particular, Aut(X) contains a maximal unipotent subgroup
U , and all such subgroups are conjugate in Aut(X).

LetG be the product of the semisimple part and the unipotent radical of Aut(X).

Theorem 4.1. Let X be a complete toric variety with an acting torus T . The
following conditions are equivalent:

(1) There exists an additive action on X normalized by the acting torus T .
(2) There exists an additive action on X.
(3) A maximal unipotent subgroup U of the automorphism group Aut(X) acts

on X with an open orbit.
(4) The subgroup G acts on X with an open orbit.

Proof. Clearly, condition (1) implies (2). Since any unipotent subgroup of Aut(X)
is contained in a maximal unipotent subgroup, implication (2) ⇒ (3) holds.

Now we prove implication (3) ⇒ (1). Let a maximal unipotent subgroup U act
on X with an open orbit. Since all maximal unipotent subgroups are conjugate in
Aut(X) and U coincides with the unipotent radical of a Borel subgroup in Aut(X)
[20, Section 21.3], we may assume that U is normalized by T . Then U is gener-
ated by one-parameter subgroups Ue normalized by T and corresponding to some
Demazure roots e.

Let O be an open U -orbit in X. Being an orbit of a unipotent group, O is
isomorphic to the affine space Kn. Since U is normalized by T , the subset O is a
T -invariant open affine chart on X. It implies that there are coordinates x1, . . . , xn

on O such that the T -action on O is the standard action of T on Kn.
The root subgroups Ue acts on Kn as

xi 
→ xi + sxc1
1 . . . xcn

n , s ∈ K, xj 
→ xj ∀j �= i,

for some i, where the monomial xc1
1 . . . xcn

n does not depend on xi. It corresponds
to a locally nilpotent derivation ∂e given by

∂e(xi) = xc1
1 . . . x̂i . . . x

cn
n , ∂e(xj) = 0 ∀j �= i,

where e = (c1, . . . , cn) is a Demazure root with ci = −1.
Let Ui be a subgroup of the automorphism group of Kn sending xi to xi + c,

c ∈ K, and fixing all xj , j �= i. We claim that the group U contains all the subgroups
Ui, i = 1, . . . , n.

Let us assume the converse. By renumbering we may suppose that for some
r < n precisely the subgroups Uj with j ≤ r are contained in U . By r = 0 we mean
that there are no subgroups Ui in U at all.
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Since the action of U on Kn is transitive, for every i > r there is at least one
subgroup Ue of the form xi 
→ xi + sxc1

1 . . . xcn
n in U . If for all such subgroups the

monomial xc1
1 . . . xcn

n depends at least on one variable xr+1, . . . , xn, the subspace
xr+1 = . . . = xn = 0 in Kn is invariant under U , a contradiction. Thus we have a
subgroup Ue of the form xi 
→ xi + sxc1

1 . . . xcr
r for some i > r.

Consider the subspace spanned by the derivations ∂e over all subgroups Ue

contained in U in the Lie algebra of all derivations of the polynomial algebra
K[x1, . . . , xn]. This subspace may be identified with the tangent algebra of the
group U . In particular, it is closed under the Lie bracket of derivations.

Let ∂j with ∂j(xi) = δij be the derivation corresponding to Uj and ∂e correspond
to the subgroup Ue of the form xi 
→ xi + sxc1

1 . . . xcr
r for some i > r.

It is easy to check that the commutant [∂1, ∂e] is a locally nilpotent derivation
sending xi to c1x

c1−1
1 . . . xcr

r and annihilating all other variables. Taking more
commutants of ∂e with ∂1, . . . , ∂r, we obtain a locally nilpotent derivation, which
sends xi to a non-zero constant and annihilates all other variables. It shows that
the derivation ∂i is contained in the Lie algebra of U . Thus the subgroup Ui is
contained in U , a contradiction with a choice of r.

We conclude that the subgroups Ui, i = 1, . . . , n, are contained in Aut(X) and
generate a commutative unipotent subgroup normalized by T , which acts on O
transitively. Thus implication (3) ⇒ (1) is proved.

Since any maximal unipotent subgroup is contained in G, we have (3) ⇒ (4).
Let us prove implication (4) ⇒ (3). Since X is irreducible, the open G-orbit on

X intersects the open T -orbit X0. Take a point x0 in X0 whose G-orbit is open
in X.

Note that G coincides with the subgroup of Aut(X) generated by all root sub-
groups Ue. By Proposition 1, the intersection of the orbit Ue ·x0 with X0 coincides
with the orbit Re · x0, where Re is a one-parameter subtorus in T represented by
the distinguished vector pe of the Demazure root e. Thus the orbit G · x0 is open
in X if and only if the subtori Re are not contained in a proper subtorus of T or,
equivalently, the vectors pe’s are not contained in a proper subspace of NQ.

Hence we have a set p1, . . . , pn of linearly independent primitive vectors of the
fan ΣX corresponding to some Demazure roots e1, . . . , en. Let U be a maximal
unipotent subgroup of Aut(X) normalized by T . If the root subgroup Uei is con-
tained in the unipotent radical of Aut(X), then Uei is contained in U as well. If
Uei is in the semisimple part of Aut(X) and is not in U , then the opposite root
subgroup U−ei is in U . The hyperplane 〈·, ei〉 = 0 contains all the rays of the
fan ΣX except for ρei and ρ−ei . Thus replacing the vector pi by p−ei in the set
p1, . . . , pn, we again obtain a linearly independent set.

Proceeding this way, we obtain a linearly independent set p1, . . . , pn, where the
vectors pi correspond to some root subgroups in U . Thus U acts on X with an
open orbit, and the proof of implication (4) ⇒ (3) is completed. �

Corollary 2. A toric variety X admits an additive action if and only if there is a
complete collection of Demazure roots of the fan ΣX .

Remark 4.2. As we have seen in the proof, condition (4) of Theorem 4.1 is equivalent
to existence of linearly independent primitive vectors p1, . . . , pn in the fan ΣX

corresponding to some Demazure roots e1, . . . , en. At the same time we know that
condition (1) of Theorem 4.1 means that there is a complete collection of Demazure
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roots of the fan ΣX . It seems to be an interesting problem to prove explicitly
that linearly independent vectors p1, . . . , pn correspond to a complete collection of
Demazure roots.

Let u be the Lie algebra of a maximal unipotent subgroup U of Aut(X) normal-
ized by T . Consider the Grassmannian Grass(n, u) of n-dimensional subspaces of
the space u. Commutative Lie subalgebras of dimension n form a closed subvariety
Z in Grass(n, u). The adjoint action of the torus T on u induces an action of T
on Grass(n, u), which leaves invariant the subvariety Z. Points in Z fixed by T are
precisely T -normalized commutative subalgebras in u.

Take any commutative n-dimensional subgroup H in U which acts on X with an
open orbit, and consider the closure of the T -orbit of the point in Z corresponding
to the Lie algebra of H. This closure contains finitely many T -fixed points. If H
is not normalized by T , then there are at least two fixed points in the closure. In
general, not any subgroup corresponding to such points acts on X with an open
orbit; see Examples 6.3 and 6.4 below. We expect that at least one such subgroup
does act with an open orbit on X.

5. Projective toric varieties and polytopes

It is well known that there is a correspondence between convex lattice polytopes
and projective toric varieties. The aim of this section is to characterize polytopes
corresponding to toric varieties that admit an additive action.

We begin with preliminary results; see [11, Chapter 2] and [18, Section 1.5] for
more details. Let M be a lattice of rank n and P be a full dimensional convex
polytope in the space MQ. We say that P is a lattice polytope if all its vertices lie
in M .

A subsemigroup S ⊆ M is called saturated if S coincides with the intersection of
the group ZS and the cone Q≥0S it generates. A lattice polytope P is very ample
if for every vertex v ∈ P , the semigroup SP,v := Z≥0(P ∩M − v) is saturated. It
is known that for every lattice polytope P and every k ≥ n− 1 the polytope kP is
very ample; see [11, Corollary 2.2.19].

Let us consider M as a lattice of characters of a torus T . Let P ⊆ MQ be a very
ample polytope and P ∩M = {m1, . . . ,ms}. We consider a map

T → Ps−1, t 
→ (χm1(t) : . . . : χms(t))

and define a variety XP as the closure of the image of this map in Ps−1. It is known
that XP is a projective toric variety with the acting torus T , and any projective
toric variety appears this way.

Definition 5.1. We say that a very ample polytope P is inscribed in a rectangle
if there is a vertex v0 ∈ P such that

(1) the primitive vectors on the edges of P containing v0 form a basis e1, . . . , en
of the lattice M ;

(2) for every inequality 〈p, x〉 ≤ a on P that corresponds to a facet of P not
passing through v0 we have 〈p, ei〉 ≥ 0 for all i = 1, . . . , n.

The following result was communicated to us by Evgeny Feigin as a conjecture.

Theorem 5.2. Let P be a very ample polytope and XP be the corresponding pro-
jective toric variety. Then XP admits an additive action if and only if the polytope
P is inscribed in a rectangle.
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Figure 1. A polytope P inscribed in a rectangle

Proof. By Corollary 2, a toric variety X admits an additive action if and only if the
fan ΣX admits a complete collection of Demazure roots. By [11, Proposition 3.1.6],
the fan ΣXP

of the toric variety XP corresponding to the polytope P coincides
with the normal fan ΣP of the polytope P . It is straightforward to check that two
conditions of Definition 5.1 are precisely the conditions on −e1, . . . ,−en to be a
complete collection of Demazure roots of the fan ΣP . �

Example 5.3. The segment P = [0, d] in Q1 with d ∈ Z≥1 is a polytope inscribed
in a rectangle, and the variety

XP = {(1 : a : . . . : ad) ; a ∈ K} ⊆ Pd

is a rational normal curve of degree d.

Example 5.4. The polytope

Figure 2. The polytope of a Hirzebruch surface

defines the surface

XP = {(1 : a : a2 : b : ab : a2b : b2 : ab2 : b3) ; a, b ∈ K} ⊆ P8

isomorphic to the Hirzebruch surface.

6. Examples and open problems

We begin this section with explicit formulas for additive actions on toric varieties
in terms of Cox rings.

Example 6.1. The normalized additive action on the projective space Pn is given
by

(x0, x1, . . . , xn) 
→ (x0, x1 + s1x0, . . . , xn + snx0).

The hyperplane x0 = 0 consists of Gn
a -fixed points and thus for n ≥ 2 the number

of Gn
a -orbits on Pn is infinite.
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Example 6.2. The normalized additive action on the product P1× . . .×P1 is given
by

(x1, x2, . . . , x2n−2, x2n) 
→ (x1, x2 + s1x1, . . . , x2n−1, x2n + snx2n−1).

This shows that the number of Gn
a -orbits on P1 × . . .× P1 is 2n.

Example 6.3. By [19, Proposition 3.2], every additive action on P2 has the form

(x0, x1, x2) 
→ (x0, x1 + bs1x0, x2 + as1x1 + s2x0)

with some fixed a, b ∈ K. For a �= 0 and b �= 0 we have one isomorphy class of
non-normalized additive actions. Every such action has three orbits on P2. With
a = 0 it degenerates to a normalized additive action, while with b = 0 it degenerates
to a G2

a-action on P2 with generic one-dimensional orbits, which is not an additive
action.

Example 6.4. Let X be the Hirzebruch surface Fd. Its fan is generated by the
vectors

p1 = (1, 0), p2 = (0, 1), p3 = (−1, d), p4 = (0,−1)

with some d ∈ Z≥1. The Cox ring K[x1, x2, x3, x4] carries a Z2-grading given by

deg(x1) = (1, 0), deg(x2) = (0, 1), deg(x3) = (1, 0), deg(x4) = (d, 1).

Moreover, X is obtained as a geometric quotient of

X̂ = K4 \ ({x1 = x3 = 0} ∪ {x2 = x4 = 0})
by the action of the torus HX = (K×)2, whose action is given by the Z2-grading.

In this case the Demazure roots are (1, 0), (−1, 0) and (k, 1) with 0 ≤ k ≤ d,
and the corresponding homogeneous locally nilpotent derivations are given as

x1
∂

∂x3
, x3

∂

∂x1
, xk

1x2x
d−k
3

∂

∂x4
.

There are two complete collections of Demazure roots, namely (1, 0), (d, 1) and
(−1, 0), (0, 1). They define two normalized additive actions

(x1, x2, x3, x4) 
→ (x1, x2, x3 + s1x1, x4 + s2x
d
1x2)

and
(x1, x2, x3, x4) 
→ (x1 + s1x3, x2, x3, x4 + s2x2x

d
3),

which are rearranged by the automorphism (x1, x2, x3, x4) 
→ (x3, x2, x1, x4).

Applying the results of [12] or [10] we obtain

Aut(X) ∼= K× · PSL(2) � Gd+1
a .

For d = 1 a maximal unipotent subgroup of Aut(X) acts as

(x1, x2, x3, x4) 
→ (x1 + ax3, x2, x3, x4 + bx1x2 + cx2x3).

Every point [a : b] ∈ P2 defines a G2
a-action on F1, which is an additive action if

[a : b] �= [0 : 1]. With [a : b] = [1 : 0] we have a normalized additive action, while
all other points [a : b] define pairwise isomorphic non-normalized additive actions.
Thus there are exactly two isomorphy classes of additive actions on F1. This result
is obtained in [19, Proposition 5.5] by geometric arguments.

In [19, Theorem 6.2], a classification of additive actions on smooth projective
threefolds with Picard group of rank 1 is given. The following result may be con-
sidered as a generalization of this classification to the case of not necessary smooth
varieties of arbitrary dimension in toric setting.
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Proposition 2. Let X be a complete toric variety with rkCl(X) = 1. Then X ad-
mits an additive action if and only if X is a weighted projective space P(1, d1, . . . , dn)
for some positive integers di.

Proof. First assume that X admits a (normalized) additive action. We know that
the group Cl(X) is free and thus Cl(X) ∼= Z. This allows us to assume that the
primitive vectors on the rays of the fan ΣX are

(1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (−a1, . . . ,−an), ai ≥ 0.

Since the fan ΣX is complete we have ai > 0. Putting di = ai we obtain the fan of
the weighted projective space P(1, d1, . . . , dn); see [18, Section 2.2].

Conversely, such a fan possesses a complete collection of Demazure roots, and
thus P(1, d1, . . . , dn) admits an additive action. �

Remark 6.5. In terms of Cox rings, a normalized additive action on P(1, d1, . . . , dn)
is given by

(x0, x1, . . . , xn) 
→ (x0, x1 + s1x
d1
0 , . . . , xn + snx

dn
0 )

and thus the complement of the open Gn
a -orbit on P(1, d1, . . . , dn) consists of Gn

a -
fixed points.

Let us finish this paper with several questions and open problems.

Problem 1. Find all toric varieties which admit a normalized additive action with
finitely many orbits.

It is shown in [19, Section 3] that the projective space Pn with n ≥ 6 admits
infinitely many non-isomorphic additive actions. This rises the following problem.

Problem 2. Describe all additive actions on a given toric variety X. When is the
number of isomorphy classes of such actions on X infinite?

As we have shown in this paper, if a toric variety X of dimension n admits
an additive action, then the Cox ring K[x1, . . . , xm] is Zm−n-graded, the degrees
of x1, . . . , xm−n form a basis of the lattice Zm−n, and deg xm−n+1, . . . , deg xm are
non-positive combinations of these basis vectors. Moreover, if X is either complete
or affine, then these conditions are necessary and sufficient. These observations
motivate the following problem.

Problem 3. Characterize algebraic varieties admitting an additive action in terms
of their Cox rings.
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