ADDITIVE DERIVATIONS OF SOME OPERATOR ALGEBRAS

BY
Peter Šemrl ${ }^{1}$

1. Introduction

All algebras and vector spaces in this note will be over \mathbf{F} where \mathbf{F} is either the real field or the complex field. Let \mathscr{A} be an algebra and \mathscr{A}_{1} any subalgebra of \mathscr{A}. An additive (linear) mapping $D: \mathscr{A}_{1} \rightarrow \mathscr{A}$ is called an additive (linear) derivation if

$$
\begin{equation*}
D(a b)=a D(b)+D(a) b \tag{1}
\end{equation*}
$$

holds for all pairs $a, b \in \mathscr{A}_{1}$. Let X be a normed linear space. By $\mathscr{B}(X)$ we mean algebra of bounded linear operators on X. We denote by $\mathscr{F}(X)$ the subalgebra of bounded finite rank operators. We shall call a subalgebra \mathscr{A} of $\mathscr{B}(X)$ standard provided \mathscr{A} contains $\mathscr{F}(X)$.

This research is motivated by the well-known results in [2], [3].
Theorem 1.1. Let X be a normed space and let \mathscr{A} be a standard operator algebra on X. Then every linear derivation $D: \mathscr{A} \rightarrow \mathscr{B}(X)$ is of the form

$$
D(A)=A T-T A
$$

for some $T \in \mathscr{B}(X)$.
Theorem 1.2. Let \mathscr{A} be a semi-simple Banach algebra. Let D: $\mathscr{A} \rightarrow \mathscr{A}$ be an additive derivation. Then \mathscr{A} contains a central idempotent e such that e \mathscr{A} and $(1-e) \mathscr{A}$ are closed under $D,\left.D\right|_{(1-e) \mathscr{A}}$ is continuous and e \mathscr{A} is finite dimensional.

Using these two results one can easily see that every additive derivation D : $\mathscr{B}(X) \rightarrow \mathscr{B}(X)$, where X is an infinite dimensional Banach space, is inner. In this note we shall give a complete description of all additive derivations on

[^0]$\mathscr{B}(X)$ in the case that X is finite dimensional. In particular we shall see that in this case there exists an additive derivation $D: \mathscr{B}(X) \rightarrow \mathscr{B}(X)$ which is not inner. Assuming that X is an infinite dimensional Hilbert space we will succeed to prove an analogue of Theorem 1.1 for additive derivations.

We shall need some facts about additive derivations $f: \mathbf{F} \rightarrow \mathbf{F}$ where \mathbf{F} is either \mathbf{R} or \mathbf{C}. Every such derivation vanishes at every algebraic number. On the other hand, if $t \in \mathbf{F}$ is transcendental then there is an additive derivation $f: \mathbf{F} \rightarrow \mathbf{F}$ which does not vanish at t [4]. It follows that a non-trivial additive derivation $f: \mathbf{F} \rightarrow \mathbf{F}$ is not continuous. It is well known that a noncontinuous additive function $f: \mathbf{F} \rightarrow \mathbf{F}$ is unbounded on an arbitrary neighborhood of zero [1].

2. Additive Derivations of Standard Operator Algebras

We shall begin this section by proving a lemma which will be needed in the sequel.

Lemma 2.1. Let X be a normed space and let $D: \mathscr{B}(X) \rightarrow \mathscr{B}(X)$ be an additive derivation. Then there exists an additive derivation $f: \mathbf{F} \rightarrow \mathbf{F}$ such that

$$
\begin{equation*}
D(t I)=f(t) I \tag{2}
\end{equation*}
$$

holds for all $t \in \mathbf{F}$.
Proof. For an arbitrary operator $A \in \mathscr{B}(X)$ and for an arbitrary number t we have

$$
D(t A)=D((t I) A)=t D(A)+D(t I) A
$$

On the other hand,

$$
D(t A)=D(A(t I))=A D(t I)+t D(A)
$$

Comparing the two expressions, so obtained, for $D(t A)$ we arrive at

$$
D(t I) A=A D(t I)
$$

Thus, the operator $D(t I)$ commutes with an arbitrary operator $A \in \mathscr{B}(X)$. It follows that $D(t I) \in \mathbf{F} I$. It is easy to see that the mapping $f: \mathbf{F} \rightarrow \mathbf{F}$ defined by (2) is an additive derivation.

The proof of this lemma implies that an additive derivation $D: \mathscr{B}(X) \rightarrow$ $\mathscr{B}(X)$ is linear derivation if and only if f is a trivial derivation.

Suppose now that a Banach space X is finite dimensional. We are going to obtain the general form of additive derivations on $\mathscr{B}(X)$, that is, on the algebra of all $n \times n$ matrices.

Let D be an additive derivation on the algebra of all $n \times n$ matrices. Lemma 2.1 implies the existence of an additive derivation f on \mathbf{F} such that $D(t I)=f(t) I$ holds for all $t \in \mathbf{F}$. A simple calculation shows that a mapping E on the algebra of all $n \times n$ matrices defined by

$$
E\left(\left(a_{i j}\right)\right)=D\left(\left(a_{i j}\right)\right)-\left(f\left(a_{i j}\right)\right)
$$

is a linear derivation. Thus, E is an inner derivation. We have obtained the following result.

Theorem 2.2. \quad A mapping D defined on the algebra of all $n \times n$ matrices is an additive derivation if and only if there exists an additive derivation $f: \mathbf{F} \rightarrow \mathbf{F}$ and an $n \times n$ matrix $\left(b_{i j}\right)$ such that

$$
D\left(\left(a_{i j}\right)\right)=\left(a_{i j}\right)\left(b_{i j}\right)-\left(b_{i j}\right)\left(a_{i j}\right)+\left(f\left(a_{i j}\right)\right)
$$

Putting $\left(a_{i j}\right)=t I$ in the above relation one can see that the additive derivation f in the previous theorem is uniquely determined. Thus, if the relations

$$
\begin{aligned}
& D\left(\left(a_{i j}\right)\right)=\left(a_{i j}\right)\left(b_{i j}\right)-\left(b_{i j}\right)\left(a_{i j}\right)+\left(f\left(a_{i j}\right)\right) \\
& D\left(\left(a_{i j}\right)\right)=\left(a_{i j}\right)\left(c_{i j}\right)-\left(c_{i j}\right)\left(a_{i j}\right)+\left(g\left(a_{i j}\right)\right)
\end{aligned}
$$

hold for all $\left(a_{i j}\right) \in \mathscr{B}(X)$, then we have $f=g$ and $\left(b_{i j}\right)=\left(c_{i j}\right)+t I$ for some $t \in \mathbf{F}$.

Now, we are ready to prove our main theorem.
Theorem 2.3. Let X be an infinite dimensional Hilbert space. Then every additive derivation $D: \mathscr{F}(X) \rightarrow \mathscr{B}(X)$ is of the form

$$
D(A)=A T-T A
$$

for some $T \in \mathscr{B}(X)$.
Proof. Suppose that A is a normal finite rank operator. Then we can find a complete orthonormal set

$$
\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{x_{\alpha} ; \alpha \in J\right\}
$$

such that $\operatorname{Im} A$ is spanned by $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Let us choose a pair $\beta, \gamma \in$ $\{1,2, \ldots, m\} \cup J$. We extend the set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ to the countable set

$$
\left\{x_{n} ; n \in \mathbf{N}\right\} \subset\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{x_{\alpha} ; \alpha \in J\right\}
$$

such that $x_{\beta}, x_{\gamma} \in\left\{x_{n} ; n \in \mathbf{N}\right\}$ is valid. Let us denote the orthogonal complement of the subspace spanned by $\left\{x_{n} ; n \in \mathbf{N}\right\}$ by Y. For an arbitrary $n \in \mathbf{N}$ we define orthogonal projections P_{n}, R_{n} by

$$
\begin{gathered}
P_{n} x_{k}=x_{k} \text { for } k \leq n \quad \text { and } \quad R_{n} x_{n}=x_{n}, \\
P_{n} x_{k}=0 \text { for } k>n \quad \text { and } \quad R_{n} x_{k}=0 \text { for } k \neq n \\
\left.P_{n}\right|_{Y}=0 \quad \text { and }\left.\quad R_{n}\right|_{Y}=0 .
\end{gathered}
$$

Let $P: X \rightarrow X$ be an orthogonal projection satisfying $P x_{k}=x_{k}, k \in \mathbf{N}$, and $\left.P\right|_{Y}=0$. We denote the algebra of all $n \times n$ matrices by M^{n}. We shall need two more definitions. A mapping $\varphi_{n}: M^{n} \rightarrow \mathscr{B}(X)$ is defined as follows:

$$
\varphi_{n}\left(\left(a_{i j}\right)\right)\left(\sum_{k \in \mathbf{N}} t_{k} x_{k}\right)=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} t_{k}\right) x_{i}
$$

and

$$
\left.\varphi_{n}\left(\left(a_{i j}\right)\right)\right|_{Y}=0
$$

We will denote the mapping $\varphi_{n}^{-1}: \operatorname{Im} \varphi_{n} \rightarrow M^{n}$ by ψ_{n}.
It is easy to prove that the mapping $E_{n}: M^{n} \rightarrow M^{n}$ given by

$$
E_{n}\left(\left(a_{i j}\right)\right)=\psi_{n}\left(P_{n} D\left(\varphi_{n}\left(\left(a_{i j}\right)\right)\right) P_{n}\right)
$$

is an additive derivation for all $n \in \mathbf{N}$. So we can find matrices $C^{n}=\left(c_{i j}^{n}\right) \in$ M^{n} and additive derivations $f_{n}: \mathbf{F} \rightarrow \mathbf{F}$ such that

$$
E_{n}\left(\left(a_{i j}\right)\right)=\left(a_{i j}\right)\left(c_{i j}^{n}\right)-\left(c_{i j}^{n}\right)\left(a_{i j}\right)+\left(f_{n}\left(a_{i j}\right)\right)
$$

holds for all $\left(a_{i j}\right) \in M^{n}$. For an arbitrary $\left(a_{i j}\right) \in M^{n}$ we choose $\left(b_{i j}\right) \in M^{n+1}$ in the following way:

$$
b_{i j}= \begin{cases}a_{i j} & \text { if } i \leq n \text { and } j \leq n, \\ 0 & \text { if } i=n+1 \text { or } j=n+1\end{cases}
$$

Comparing

$$
E_{n+1}\left(\left(b_{i j}\right)\right)=\psi_{n+1}\left(P_{n+1} D\left(\varphi_{n+1}\left(\left(b_{i j}\right)\right)\right) P_{n+1}\right)
$$

and

$$
E_{n}\left(\left(a_{i j}\right)\right)=\psi_{n}\left(P_{n} D\left(\varphi_{n}\left(\left(a_{i j}\right)\right)\right) P_{n}\right)
$$

we get $f_{n+1}=f_{n}=f$ for all $n \in \mathbf{N}$. Moreover, the matrices C^{n} can be choosen so that

$$
c_{i j}^{n}=c_{i j}^{k}, \quad \max \{i, j\} \leq \min \{n, k\} .
$$

Thus, we can denote $c_{i j}=c_{i j}^{n}, n \geq i, j$.
For arbitrary numbers $n, k \in \mathbf{N}$ and $i \geq n, k$ we have

$$
P_{i} D\left(R_{n}\right) x_{k}=P_{i} D\left(R_{n}\right) P_{i} x_{k}= \begin{cases}c_{n k} x_{n} & \text { if } k \neq n, \tag{3}\\ -\sum_{\substack{r=1 \\ r \neq n}}^{i} c_{r n} x_{r} & \text { if } k=n .\end{cases}
$$

Since the relation $\lim _{i \rightarrow \infty} P_{i} x=P x$ holds for all $x \in X$ the previous equation implies

$$
P D\left(R_{n}\right) x_{n}=-\sum_{r \neq n} c_{r n} x_{r}
$$

It follows that the set $\left\{\left|c_{r n}\right| ; r \in \mathbf{N}\right\}$ is bounded for all $n \in \mathbf{N}$. Let $M_{n}=$ $\sup \left\{\left|c_{r n}\right| ; r \in \mathbf{N}\right\}$.

Suppose now, that f is not identically equal to zero. Then one can find a sequence $\left(t_{n}\right) \subset \mathbf{F}$ having the properties

$$
\begin{align*}
\left|t_{n}\right| & <2^{-n} \min \left\{1, M_{n}^{-1}\right\} \tag{4}\\
\left|f\left(t_{n}\right)\right| & >n+\left|c_{11}\right|+\left|c_{n n}\right| \tag{5}
\end{align*}
$$

We define $S \in \mathscr{B}(X)$ by $S x_{1}=\sum_{k=1}^{\infty} t_{k} x_{k}, S x_{k}=0$ for $k>1$, and $\left.S\right|_{Y}=0$. Multiplying the relation

$$
D\left(R_{n} S P_{n}\right)=R_{n} S D\left(P_{n}\right)+R_{n} D(S) P_{n}+D\left(R_{n}\right) S P_{n}
$$

by R_{n} from the left side and by P_{n} from the right side we obtain
(6) $\quad R_{n} D(S) P_{n}=R_{n} D\left(R_{n} S P_{n}\right) P_{n}-R_{n} S D\left(P_{n}\right) P_{n}-R_{n} D\left(R_{n}\right) S P_{n}$.

The relation $P_{n}^{2}=P_{n}$ implies $D\left(P_{n}\right)=P_{n} D\left(P_{n}\right)+D\left(P_{n}\right) P_{n}$. Multiplying from both sides by P_{n} we get $P_{n} D\left(P_{n}\right) P_{n}=0$. Since $S=S P_{n}$ it follows that

$$
\begin{equation*}
R_{n} S D\left(P_{n}\right) P_{n}=0 \tag{7}
\end{equation*}
$$

The relation $R_{n} D\left(R_{n} S P_{n}\right) P_{n} x_{1}=f\left(t_{n}\right) x_{n}+t_{n}\left(c_{11}-c_{n n}\right) x_{n}$ yields

$$
\left\|R_{n} D\left(R_{n} S P_{n}\right) P_{n} x_{1}\right\| \geq\left|f\left(t_{n}\right)\right|-\left|t_{n}\right|\left(\left|c_{11}\right|+\left|c_{n n}\right|\right)
$$

which gives us together with (5) that

$$
\begin{equation*}
\left\|R_{n} D\left(R_{n} S P_{n}\right) P_{n} x_{1}\right\|>n \tag{8}
\end{equation*}
$$

holds for all positive integers n. Finally we have

$$
R_{n} D\left(R_{n}\right) S P_{n} x_{1}=R_{n} D\left(R_{n}\right) S x_{1}=\sum_{k=1}^{\infty} t_{k} R_{n} D\left(R_{n}\right) x_{k}
$$

Using (3) we get

$$
R_{n} D\left(R_{n}\right) S P_{n} x_{1}=\left(\sum_{k \neq n} t_{k} c_{n k}\right) x_{n}
$$

This implies together with (4) the following inequalities

$$
\begin{equation*}
\left\|R_{n} D\left(R_{n}\right) S P_{n} x_{1}\right\|<1 \tag{9}
\end{equation*}
$$

Using (6), (7), (8) and (9) we see that

$$
\left\|R_{n} D(S) P_{n} x_{1}\right\| \geq n-1
$$

is valid for all $n \in \mathbf{N}$ which is contradiction. Thus, we have $f(t)=0$ for all $t \in \mathbf{F}$. As a consequence we have $P_{\beta} D(t A) P_{\gamma}=t P_{\beta} D(A) P_{\gamma}$ for all $t \in \mathbf{F}$. It follows that $D(t A)=t D(A)$ holds.

For an arbitrary finite rank operator A we have
$D(t A)=D\left((t / 2)\left(A+A^{*}\right)+(t / 2)\left(A-A^{*}\right)\right)=(t / 2) D(2 A)=t D(A)$.
Using Theorem 1.1 we complete the proof.
Corollary 2.4. Let \mathscr{A} be a standard operator algebra on an infinite dimensional Hilbert space X. Then every additive derivation $D: \mathscr{A} \rightarrow \mathscr{B}(X)$ is of the form $D(A)=A T-T A$ for some $T \in \mathscr{B}(X)$.

Proof. By Theorem 2.3 there exists $T \in \mathscr{B}(X)$ such that $D(A)=A T-$ $T A$ holds for all $A \in \mathscr{F}(X)$. Now, let $A \in \mathscr{A}$ be arbitrary. Then for every $B \in \mathscr{F}(X)$ we have
$B D(A)=D(B A)-D(B) A=B A T-T B A-B T A+T B A=B(A T-T A)$.
Accordingly, $D(A)-(A T-T A)$ annihilates $\mathscr{F}(X)$, and, therefore, $D(A)$ $=A T-T A$.

References

1. J. Aczél, Lectures on functional equations and their applications, Academic Press, New York, 1966.
2. P.R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal., vol. 12 (1973), pp. 275-289.
3. B.E. Johnson and A.M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math., vol. 90 (1968), pp. 1067-1073.
4. P. Samuel and O. Zariski, Commutative algebra, Van Nostrand, New York, 1958.
E.K. University of Ljubljana

Luubljana, Yugoslavia

[^0]: Received February 9, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47B47; Secondary 47D25.
 ${ }^{1}$ This work was supported by the Research Council of Slovenia.

