
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 1

Additive Fast Fourier Transforms over Finite Fields
Shuhong Gao and Todd Mateer

Abstract—We present new additive Fast Fourier Transform
(FFT) algorithms based on Taylor expansion over finite fields of
characteristic two. Our algorithms improve previous approaches
by Wang and Zhu (1988), Cantor (1989), and von zur Gathen
and Gerhard (1996).

Index Terms—Fast Fourier Transform, FFT, Taylor expansion,
multiplication, convolution, Reed-Solomon Codes

I. INTRODUCTION

D ISCRETE Fourier transforms of length n correspond
to evaluation of polynomials at n distinct points. Fast

Fourier transforms (FFT) were discovered by Cooley and
Tukey in 1965 [1] and they have since become an important
tool in science and engineering. These traditional FFTs are
possible when the n points are n-th roots of unity (and so form
a cyclic multiplicative group of order n) where n is a power
of 2 or a product of small primes (see [2]). They are based
on the factorization of the polynomial xn − 1, corresponding
to the subgroup structure of the multiplicative group of order
n. We will refer to these transforms as multiplicative FFTs
throughout this paper.

Unfortunately, multiplicative FFTs do not usually support
problems of size n when n is not a product of small primes, or
when the underlying fields do not have the desired n-th roots
of unity. This is the case for Fourier transforms over finite
fields, related to encoding and decoding of Reed-Solomon
codes [3], [4], [5]. When n is a power of two, a finite field F2k

does not support multiplicative FFTs of length n since there
are no primitive n-th roots of unity in any field of characteristic
two. When n is a power of 3, F2k must have a value for k as
big as 2n/3 to contain an nth root of unity, so the field size
has to be exponential in n.

Additive FFTs over finite fields were invented in the late
1980s. These algorithms are based on the factorization of
xn − x and can be used to evaluate a polynomial at each
of the powers of a primitive (n−1)-st root of unity as well as
the zero element. Wang and Zhu [6] first showed in 1988 how
to compute the FFT based on this factorization for the case
where n = 16. In 1989, Cantor [7] independently proposed
the same algorithm but showed how to get a special basis that
allows the FFT to be efficiently computed for any n = pm

where p is the characteristic of the underlying finite field and
m is a power of p. In particular, Cantor gives an algorithm

The first author was partially supported by National Science Foundation
under grants DMS-0302549 and CCF-0830481 and National Security Agency
under grant H98230-08-1-0030.

Shuhong Gao is with the Department of Mathematical Sciences, Clemson
University, Clemson, SC, 29634-0975 USA e-mail: sgao@clemson.edu.

Todd Mateer is with the Mathematics Division, Howard Community
College, 10901 Little Patuxent Parkway, Columbia, MD 21044 USA email:
tmateer@howardcc.edu.

Manuscript received XXXX; revised XXXXX.

for computing FFT of length n = 2m over F2m when m
is a power of 2, using at most 1

2n log2(n) multiplications
and 1

2n log1.585
2 (n) + n log2(n) additions. In 1996, von zur

Gathen and Gerhard [9] generalized Cantor’s approach and
presented an additive FFT of length n = 2m for any m, using
O(n log2(n)) multiplications and O(n log2(n)) additions.

In this paper, we present two new algorithms for computing
additive FFTs over finite fields of characteristic two. The
concept of the Taylor expansion learned in a typical calculus
course can be generalized as discussed in [8]. We first present
an algorithm for computing one such Taylor expansion that
plays a central role in our FFT algorithms. For n = 2m

where m is arbitrary, we provide an algorithm that requires
fewer operations than the von zur Gathen-Gerhard algorithm
(specifically, at most 1

2n log2(n) additions but only 2n log(n)
multiplications). For n = 2m and m is a power of 2, we then
present an algorithm that requires fewer operations than the
Wang-Zhu-Cantor algorithm (specifically, at most 1

2n log(n)
multiplications but only 1

2n log(n) log log(n) + n log2(n) ad-
ditions).

We mention some related work before proceeding. One
application of FFT algorithms is the efficient multiplica-
tion of two polynomials with coefficients over a field F. If
f(x), g(x) ∈ F[x] and the sum of the degrees of f(x) and g(x)
is less than n, then one can use an FFT algorithm to efficiently
evaluate f(x) and g(x) at each of the points of a subspace of F
of size n, pointwise multiply the evaluations, and then use an
inverse FFT algorithm to interpolate the evaluations into the
product polynomial. In the case of polynomials with complex
number coefficients, the multiplicative FFT is used for this
operation while for finite field polynomials, the additive FFT
would be used instead. In either case, the polynomial multipli-
cation requires roughly three times the number of operations
of the FFT algorithm. In [9], [10], a technique is described
that allows polynomials over F2 to be multiplied using this
technique by mapping them to F2m and back. If the new
additive FFT algorithm is used, then the product of two binary
polynomials can often be computed in fewer operations than
Schönhage’s algorithm. Further analysis comparing the two
multiplication algorithms can be found in [11].

The additive FFT algorithms can also be used in a simple
Reed-Solomon decoding algorithm proposed independently by
Shiozaki [5] and Gao [4]. These decoding algorithms are
for nonsystematic Reed-Solomon codes. Algorithms for the
systematic case are described in [12] where it is shown that the
simple algorithm is equivalent to traditional decoding methods.

Also, Chen and Yan [13] recently proposed a cyclotomic
FFT over fields of characteristic two and applied them to the
decoding of Reed-Solomon codes [14]. It would interest to
compare the efficiency of our additive FFT to their cyclotomic
FFT for a wide range of problem sizes.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 2

Algorithm 1 : Taylor expansion at xt − x
Input: (f, n, t) where n ≥ 1 and t > 1, and f(x) ∈ F[x] of degree < n.
Output: T(f, n, t), the Taylor expansion of f(x) at xt − x.
Step 0. If n ≤ t then return f(x).
Step 1. Find k such that t2k < n ≤ 2 · t2k.
Step 2. Split f(x) into three blocks as

f(x) = f0(x) + xt2k

(f1(x) + x(t−1)2k

f2(x))
where deg f0 < t2k, deg f1 < t2k − 2k, deg f2 < 2k.
Compute

h := f1 + f2, g0 := f0 + x2k

h, g1 = h+ x(t−1)2k

f2.
Step 3. Apply the algorithm recursively to compute

V1 = T(g0, t2k, t) and V2 = T(g1, n− t2k, t)).
Step 4. Return (V1, V2).

II. TAYLOR EXPANSION

To present our additive FFT algorithms, we need to be able
to compute a generalized Taylor expansion of polynomials; see
[8] for more general expansion. Let F be any field of character-
istic two, t > 1 any integer, and f(x) ∈ F[x] of degree < n.
We want to find polynomials h0(x), h1(x), . . . , hm−1(x) ∈
F[x] such that

f(x) = h0(x)+h1(x) ·(xt−x)+ · · ·+hm−1(x) ·(xt−x)m−1

where m = dn/te and deg hi < t for 0 ≤ i ≤ m− 1. We will
call this expression the Taylor expansion of f(x) at xt − x,
and denote it by

T(f, n, t) = (h0, h1, . . . , hm−1).

To see how to compute such a Taylor expansion, let k be such
that

2k <
n

t
≤ 2k+1.

Write f(x) as f(x) = f0(x) + xt2k

(f1(x) + x(t−1)2k

f2(x))
where

deg f0 < t2k,
deg f1 < min(n− t2k, (t− 1)2k) ≤ (t− 1)2k,
deg f2 < 2k.

Note that f2(x) is zero when n− t2k < (t− 1)2k. Since F
has characteristic two, we have

xt2k

= (xt − x)2
k

+ x2k

,

thus

f(x) = f0(x) + x2k

(f1(x) + f2(x))

+(xt − x)2
k

(f1(x) + f2(x) + x(t−1)2k

f2(x)).

Set h(x) = f1(x) + f2(x), and

g0(x) = f0(x) + x2k

h(x), g1(x) = h(x) + x(t−1)2k

f2(x).

Then
f(x) = g0(x) + g1(x)(xt − x)2

k

.

Since deg f1 < (t− 1)2k and deg f2 < 2k, we have deg h <
(t− 1)2k, so

deg g0 < t2k, deg g1 < n− t2k.

Therefore,

T(f, n, t) = (T(g0, t2k, t),T(g1, n− t2k, t)).

Note that if n = t2k+1, then both g0(x) and g1(x) have size
n/2. Thus, a problem of size n is reduced to two problems of
size n/2. If n is not of the form t2k+1, then g0(x) has size
t2k and g1(x) has size n − t2k ≤ n/2. We can apply this
procedure recursively to g0(x) and g1(x), separately, and in
at most k+ 1 steps all the polynomials will have degrees < t
and we obtain the Taylor expansion of f(x). We summarize
this as Algorithm 1.

To see the time complexity of Algorithm 1, we may pad
0’s if necessary and assume that f(x) has exactly t2k+1 coef-
ficients. Then f0(x) has t2k coefficients, f1(x) has (t− 1)2k

coefficients, f2(x) has 2k coefficients, and thus h(x) has
(t − 1)2k coefficients. Then 2k additions in F are needed
to compute h(x), as well as (t − 1)2k additions for g0(x)
and 0 for g1(x). Hence the total number of additions is
2k + (t− 1)2k = t2k. Now both g0(x) and g1(x) have length
t2k, so the reduction for each of g0(x) and g1(x) will need
t2k−1 additions, so the reduction for both needs 2·t2k−1 = t2k

additions. Inductively, we see that, for i from k down to 0,
there are 2k−i reductions from size t2i+1 to size t2i, each of
which costs t2i additions. For each i, the number of additions
is 2k−i · t2i = t2k. Therefore, the total number of additions
used by Algorithm 1 is at most t2k(k + 1), which is{

≤ ndlog2(n/t)e, for any n,
= 1

2ndlog2(n/t)e, when n/t is a power of two. (1)

III. FFT OVER F2m : ARBITRARY m

Let F be any field of characteristic two. Assume that
β1, . . . , βm ∈ F are linearly independent over F2. Let B be
the subspace spanned by βi’s over F2, namely,

B = 〈β1, . . . , βm〉 = {a1β1+· · ·+amβm : a1, . . . , am ∈ F2}.

We order the elements of B as follows. For any 0 ≤ i < 2m,
suppose the binary representation of i is

i = a1 + a2 · 2 + · · ·+ am · 2m−1 = (a1, a2, · · · , am)2,

where each aj = 0 or 1. Then the ith element of B is

B[i] = a1β1 + a2β2 + · · ·+ amβm. (2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 3

Algorithm 2 : Additive FFT of length n = 2m (arbitrary m)
Input: (f,m,B) where m ≥ 1, f(x) ∈ F[x] of degree < n = 2m, and

B = 〈β1, . . . , βm〉, where βi’s are linearly independent over F2.
Output: FFT(f,m,B) = (f(B[0]), f(B[1]), . . . , f(B[n− 1])).
Step 1. If m = 1 then return (f(0), f(β1)).
Step 2. Compute g(x) = f(βmx).
Step 3. Compute the Taylor expansion of g(x) as in (3) and

let g0(x) and g1(x) be as in (4).
Step 4. Compute γi = βi · β−1

m and δi = γ2
i − γi for 1 ≤ i ≤ m− 1.

Let G = 〈γ1, . . . , γm−1〉, and D = 〈δ1, . . . , δm−1〉.
Step 5 Let k = 2m−1. Compute

FFT(g0,m− 1, D) = (u0, u1, . . . , uk−1), and
FFT(g1,m− 1, D) = (v0, v1, . . . , vk−1).

Step 6. For 0 ≤ i < 2m−1, set wi = ui +G[i] · vi and wk+i = wi + vi.
Step 7. Return (w0, w1, . . . , wn−1).

Suppose that we are given a polynomial f(x) of degree less
than n = 2m. We wish to evaluate f(x) at each of the points
in B, called the FFT of f over B, denoted as

FFT(f,m,B) = (f(B[0]), f(B[1]), . . . , f(B[n− 1])).

We show how to reduce such a problem of size n > 1 to two
problems of size k = n/2 = 2m−1. Define

γi = βi · β−1
m , 1 ≤ i ≤ m− 1,

and

G = 〈γ1, . . . , γm−1〉
= {a1γ1 + · · ·+ am−1γm−1 : a1, . . . , am−1 ∈ F2}.

Let g(x) = f(βmx), the “twisted” or weighted polynomial of
f(x). Then evaluating f(x) over B is the same as evaluating
g(x) over B · β−1

m = G ∪ (G+ 1), that is,

FFT(f,m,B) = (FFT(g,m− 1, G),FFT(g,m− 1, G+ 1)),

where G+ 1 = {α+ 1 : α ∈ G}.
We need to show how to compute FFT(g,G) and

FFT(g,G+ 1). Define

δi = γ2
i − γi, 1 ≤ i ≤ m− 1,

and

D = 〈δ1, . . . , δm−1〉
= {a1δ1 + · · ·+ am−1δm−1 : a1, . . . , am−1 ∈ F2}.

Since γ1, . . . , γm−1 and 1 are linearly independent over F2,
the new elements δ1, . . . , δm−1 are linearly independent over
F2, so D is a subspace of F of size k = 2m−1 = n/2. For
each α = a1γ1 + · · ·+ am−1γm−1 ∈ G, let

α∗ = α2 − α = a1δ1 + · · ·+ am−1δm−1 ∈ D.

Then we have

G[i]∗ = D[i], 0 ≤ i < k,

where G[i] and D[i] are the ith elements of G and D, respec-
tively, which are ordered according to the binary representation
of i in a similar fashion as that described above for B.

Suppose the Taylor expansion of g(x) at x2 − x is

g(x) =
k−1∑
i=0

(gi0 + gi1x) · (x2 − x)i (3)

where gij ∈ F. Let

g0(x) =
k−1∑
i=0

gi0 · xi, and g1(x) =
k−1∑
i=0

gi1 · xi. (4)

For any α ∈ G and b ∈ F2, since (α + b)2 − (α + b) = α∗,
we have,

g(α+ b) =
(
g0(α∗) + α · g1(α∗)

)
+ bg1(α∗). (5)

Hence the FFT of g(x) can be obtained from those of g0(x)
and g1(x) as follows. Let the FFT of g0(x) and g1(x) over D
be

FFT(g0,m− 1, D) = (u0, u1, . . . , uk−1),

FFT(g1,m− 1, D) = (v0, v1, . . . , vk−1),

where ui = g0(D[i]) and vi = g1(D[i]), 0 ≤ i < k. Then the
equation (5) implies that

FFT(g,m− 1, G) = (w0, w1, . . . , wk−1),

where wi = ui +G[i] · vi for 0 ≤ i < k, and

FFT(g,m−1, G+1) = FFT(g,m−1, G)+FFT(g1,m−1, D).

Applying this reduction step repeatedly, we obtain a fast
algorithm for computing additive FFT. This is summarized in
Algorithm 2.

Let us compute the cost of this algorithm. In computing
the basis elements in G and D in Step 4, the number of
multiplications is 2(m − 1) + 2(m − 2) + · · · + 2 · 1 =
m(m − 1) = O(log2

2(n)), and the number of additions is
(m−1)+(m−2)+· · ·+1 = m(m−1)/2 = O(log2

2(n)). Also,
in Step 2, we need to compute the powers βi

m, 2 ≤ i ≤ n− 1,
for which the total number of multiplications is at most
(2m−2)+(2m−1−2)+· · ·+(22−2) < 2·2m = 2n. This part
can be precomputed or computed as needed. In either case, the
cost is negligible.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 4

Next, we will consider the number of operations required by
the other steps. Step 1 is used to end the recursion and costs 1
multiplication and 1 addition. Step 2 costs n−1 multiplications
(besides computing powers of βm). By letting t = 2 in (1),
Step 3 costs 1

2 ·n · log2(n)− 1
2 ·n additions. The cost of Step 5

is the number of operations needed to compute an additive
FFT of size n/2. The cost of Step 6 is n multiplications
and n additions. Step 7 costs no operations. Let M(n) and
A(n) denote the numbers of multiplications and additions,
respectively, used by the algorithm for input of length n. Then
M(2) = 1, A(2) = 1, and, for any n = 2m > 2, the reduction
implies that

M(n) = 2 ·M
(n

2

)
+ 2n− 1,

A(n) = 2 ·A
(n

2

)
+

1
2
· n · log2(n) +

1
2
· n.

By induction, we have

M(n) = 2 · n · log2(n)− 2n+ 1,

A(n) =
1
4
· n · (log2(n))2 +

3
4
· n · log2(n)− 1

2
· n.

The new algorithm significantly reduces the number of mul-
tiplications compared to the Θ(n · (log2(n))2) multiplications
required in [9]. The number of additions is slightly reduced
compared to [9].

IV. FFT OVER F2m : m A POWER OF TWO

Suppose F contains a subfield of 2m elements where m is
a power of 2. Let n = 2m and f ∈ F[x] of degree less than
n. In this section, we present a faster algorithm to compute
the FFT of f over F2m . Our strategy is to reduce a problem
of size n to 2

√
n problems each of size

√
n, and apply the

technique recursively. Our algorithm makes use of a special
basis introduced by Cantor [7]. Choose any any element βm ∈
F2m that has trace 1 in F2. Then define

βi−1 = β2
i + βi, 1 ≤ i < m. (6)

Particularly, β1 = 1. Also, β1, . . . , βm form a linear basis for
F2m over F2. See the appendix for proof of these facts and
others used below.

Let us enumerate the n = 2m elements of F2m as follows.
For 0 ≤ i < n = 2m, write i in binary form, i.e.,

i = i1 + i2 · 2 + · · ·+ im · 2m−1 = (i1, i2, · · · , im)2,

where each ij = 0 or 1. Then the ith element of F2m is

$i = i1 · β1 + i2 · β2 + · · ·+ im · βm. (7)

It is useful to observe that $i2k+j = $i2k + $j whenever
j < 2k.

For each 1 ≤ k ≤ m, let us define the subspace Wk of F2m

to be all linear combinations of β1, β2, . . . , βk over F2, that
is,

Wk = 〈β1, β2, . . . , βk〉 = {$i : 0 ≤ i < 2k}.

For example, W1 = {0, 1} = {$0, $1}. These subspaces
form a strictly ascending chain of subspaces:

W1 ⊂W2 ⊂W3 ⊂W4 ⊂ · · · ⊂Wm = F2m . (8)

Denote the vanishing polynomial of Wk by sk(x), that is,

sk(x) =
∏

a∈Wk

(x− a).

In particular, s1(x) = x(x− 1) = x2 +x. By Lemma 1 in the
appendix, sk(x) is a 2-linearized polynomial, and

sk+1(x) = s2k(x)− sk(x), k ≥ 1.

Furthermore, sk(x) = x2k

+ x whenever k is a power of 2.
Also, if k is a power of 2 and i2k < n = 2m then

($i2k)2
k

+$i2k = $i. (9)

Now we are ready to describe the reduction step of our
algorithm. Let k be any power of two with 1 < 2k ≤ m. Let
t = 2k and T = t2 = 22k ≤ n. Our reduction is based on the
following factorization

xt2 − x− c =
∏

b∈Wk

(xt − x− a− b) (10)

where a, c ∈ F such that at + a = c. This follows from the
identities

xt + x =
∏

b∈Wk

(x− b), and

xt2 − x− c = (xt − x− a)t + (xt − x− a).

Let f(x) be any polynomial in F[x] of degree < T . We want
to compute the values of f(x) at the roots of xT − x− c. We
first compute the Taylor expansion of f(x) at xt − x to get

f(x) = g0(x)+g1(x)(xt−x)+· · ·+gt−1(x)(xt−x)t−1 (11)

where gi(x) ∈ F[x] has degree < t. Then, for any ω ∈ F, we
have

f(x) ≡ g0(x)+g1(x)ω+· · ·+gt−1(x)ωt−1 (mod xt − x− ω).

Suppose

gi(x) =
t−1∑
j=0

gijx
j , 0 ≤ i ≤ t− 1,

where gij ∈ F. Define

hj(x) =
t−1∑
i=0

gijx
i, 0 ≤ j ≤ t− 1.

Then

g0(x) + g1(x) · ω + · · ·+ gt−1(x) · ωt−1

= h0(ω) + h1(ω) · x+ · · ·+ ht−1(ω) · xt−1.

Hence f(x) mod x2k − x− ω, ω ∈ a+Wk, can be obtained
by computing the additive FFT of the t polynomials hj(x) over
a + Wk. Since k is a power of 2, we have sk(x) = x2k

+ x
and the vanishing polynomial of a+Wk is

sk(x−a) = sk(x)−sk(a) = x2k

−x−(a2k

−a) = x2k

−x−c.

Hence evaluating hj(x) over a + Wk is equivalent to
hj(x) mod x2k − x− c.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 5

Algorithm 3 : FFT of length n = 2m (m a power of 2)
Input: (f, n, s) where s = 0 initially and f(x) ∈ F[x] of degree < n,
Output: FFT(f, n, s) = (f($sn), f($sn+1), . . . , f($sn+n−1)),

the FFT of f(x) over $s +Wm

Step 1. If n = 2 then return (f($2s), f($2s+1)).
Step 2. Let t be such that t2 = n. Compute the Taylor expansion of f(x)

at xt − x to get a matrix G as in (12).
Step 3. Column FFT of G: for 1 ≤ j ≤ t, let hj be the j-column of G,

compute FFT(hj , t, st), a column vector denoted by Cj ,
update the j-th column of G by Cj .

Step 4. Row FFT of G: for 1 ≤ i ≤ t, let gi be the i-th row of G,
compute FFT(gi, t, sn+ (i− 1)t), a row vector denoted by Ri.

Step 5. Return (R1, R2, . . . , Rt).

The Taylor expansion (11) of f can be represented by the
following matrix

G =

g0 0 g0 1 · · · g0 t−1

g1 0 g1 1 · · · g1 t−1

...
...

. . .
...

gt−1 0 gt−1 1 · · · gt−1 t−1

 . (12)

Then gi corresponds to the i-th row and hj(x) corresponds
to the j-th column of G. Hence our reduction amounts to the
following: for each column, perform an FFT over x2k −x−c,
and then, for 0 ≤ j ≤ t − 1, compute the FFT of the i-th
row over xt−x− a−$i. This means that our reduction uses
one Taylor expansion and reduces a problem of size t2 to 2t
problems of size t.

To implement the above reduction, we need to see how the
indices of elements change in term of the representation in
(7). Let c = $s in (10) where s < 2m−2k = n/T . By (9), we
can take a = $st. Thus,

xt2 − x−$s =
∏

b∈Wk

(xt − x−$st − b)

=
t−1∏
i=0

(xt − x−$st+i).

Note that the set of roots of xt2 −x−$s is $st2 +W2k, i.e.,

{$st2+it+j : 0 ≤ i, j < t},

that of xt−x−$st+i is $(st+i)t +Wk = $st2+it +Wk, i.e.,

{$st2+it+j : 0 ≤ j < t},

and that of xt − x−$s is $st +Wk, i.e.,

{$st+j : 0 ≤ j < t}.

Hence our reduction step reduces an FFT over $st2 + W2k

to t FFTs over $st + Wk, which corresponds to FFT on the
columns of G, and an FFT over $st2+it +Wk, FFT of the i-th
row of G, for i = 0, 1, . . . , t − 1 . Note that in the matrix G
above, after computed the row and column FFTs, one should
read off the entries of the final matrix G by rows starting at
the first row. Pseudocode for the new additive FFT is given
in Algorithm 3. In the algorithm, we identify a polynomial of
degree < n with a vector of length n, the FFT of a row vector

is a row vector, and the FFT of a column vector is a column
vector.

Now we estimate the numbers of F-operations used by our
algorithm. Suppose n = 2m with m = 2`. For 0 ≤ i ≤ `,
let A(i) denote the number of additions in F used by the
algorithm for input length 22i

, and similarly M(i) for the
number of multiplications used. Note that i = 0 corresponds
to Step 1 where f(x) is of the form ax+b ∈ F[x]. As $2s+1 =
$2s + 1, we have f($2s+1) = f($2s) + a. Hence f($2s)
and f($2s+1) can be computed using one multiplication and
two additions in F, that is, A(0) = 2 and M(0) = 1. For
each i from ` down to 1, our reduction step involves a Taylor
expansion with input length 22i

at x22i−1

−x. By our argument
in Section II (with n = 22i

and t = 22i−1
), the number of F-

additions used is 22i · 2i−1. Hence we have, for 1 ≤ i ≤ `,

M [i] = 2·22i−1
·M [i−1], A[i] = 2·22i−1

·A[i−1]+22i

·2i−1.

By induction, we see that

M(`) = 22`−1 · 2` =
1
2
· n · log2(n),

A(`) = n · log2(n) +
1
2
· n · log2(n) · log2 log2(n).

So the new algorithm requires the same number of multipli-
cations as the Wang-Zhu-Cantor algorithm, but the number of
additions has been reduced. The new algorithm is said to be
Θ(n · log2(n) · log2 log2(n)).

V. CONCLUDING REMARKS

We presented two new additive FFT algorithms over finite
fields of characteristic two. The first FFT can evaluate poly-
nomials over any additive subspace of size n = 2m where
m is arbitrary. This algorithm improves upon von zur Gathen
and Gerhard’s approach in that the number of multiplications
required is reduced by a log factor while preserving the
number of additions.

When n = 2m and m is a power of 2, we present a
more efficient algorithm for FFT over F2m . The new additive
FFT requires the same number of multiplications and fewer
additions than the Wang-Zhu-Cantor FFT discussed at the be-
ginning of this paper. The actual running time of an algorithm
on a particular computer depends on other factors besides

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 6

the number of arithmetical operations. Therefore, one should
carefully implement both techniques to determine which one
is actually faster on a particular architecture.

The inverse FFT efficiently interpolates a collection of
evaluations of a polynomial back into the polynomial. An
inverse additive FFT can be constructed by performing the
inverse of each operation of an additive FFT algorithm in
reverse order. Each inverse FFT algorithm can be shown to
require the same number of operations as the companion FFT
algorithm.

Finally, all the algorithms in this paper can be implemented
as parallel algorithms (no recursive calls). For FFT of length n,
they need to store only n field elements (for the coefficients),
except that Algorithm 2 may need to store extra elements for
the δ’s if they are precomputed (so no need to compute them
during the execution of the algorithm). This means that our
algorithms are well suitable for hardware implementation.

APPENDIX

In this appendix, we prove a few properties needed by our
algorithms. Some of these properties can be found in Cantor’s
paper [7], but we present them in a simplified fashion that may
be more accessible to the reader. We shall work over a field
F of characteristic two where the identity (x+ y)2 = x2 + y2

is valid. Let φ(x) = x2 + x and

φi+1(x) = φ(φi(x)), i ≥ 1.

Define
si(x) = φi(x) ∈ F[x], i ≥ 1. (13)

Then s1(x) = x2 + x, and

si+1(x) = s2i (x) + si(x), i ≥ 1.

By induction, we have

si(x) =
i∑

k=0

(
i

k

)
x2k

. (14)

Here we used the properties that(
i

k

)
+
(

i

k − 1

)
=
(
i+ 1
k

)
,

(
i

k

)2

≡
(
i

k

)
(mod 2).

To see the number of nonzero terms in si(x), we recall Lucas’
Lemma. Represent i and k in binary form:

i = i1+i2·2+· · ·+im·2m−1, k = k1+k2·2+· · ·+km·2m−1,

where ij , kj ∈ {0, 1}. Then(
i

k

)
≡
(
i1
k1

)
·
(
i2
k2

)
· · ·
(
im
km

)
(mod 2).

Note that
(

ij

kj

)
= 0 whenever kj > ij . Hence, in F, we have(

i
k

)
= 1 if and only if kj ≤ ij for all 1 ≤ j ≤ m. Thus, if the

binary representation of i has t 1’s, then si(x) has 2t nonzero
terms. In particular,

si(x) = x2i

+ x if any only if i is a power of 2 .

Next we define a sequence of elements in the algebraic
closure of F2: β1 = 1, and

β2
i+1 + βi+1 = βi, i = 1, 2,

Note that, for each i, the equation x2 + x = βi has two
solutions (in the algebraic closure of F2), so βi+1 has two
choices, either of which will work in our algorithms. For each
i ≥ 0, let i = i1 + i2 · 2 + · · · + im · 2m−1 be its binary
representation, and define

$i = i1 · β1 + i2 · β2 + · · ·+ im · βm. (15)

Note that $i2k+j = $i2k + $j whenever j < 2k. These
properties are summarized as follows.

Lemma 1: (a) sk(βi+k) = βi for all i, k ≥ 1;
(b) si(βi+1) = β1 = 1 for i ≥ 1;
(c) sk+1(x) = sk(x)2 + sk(x) for all k ≥ 1, and the roots

of sk(x) are the F2-linear subspace

Wk = 〈β1, β2, . . . , βk〉 = {$i : 0 ≤ i < 2k};

(d) $2k

i2k +$i2k = $i for any k being a power of two and
i ≥ 1.

We outline the proof. By definition, βi = φ(βi+1) for all i ≥ 1,
thus, by induction, we have

βi = φk(βi+k), for all i, k ≥ 1.

Then part (a) follows, as sk(βi+k) = φk(βi+k), and (b) is just
a special case of (a). Part (c) follows by induction: it’s true
for k = 1; and if it is true for k then∏

a∈Wk+1

(
x− a

)
=

∏
a∈Wk

(
x− a

) ∏
a∈Wk

(
x− (a+ βk+1)

)
= sk(x)sk(x− βk+1)
= sk(x)

(
sk(x)− sk(βk+1)

)
= sk(x)

(
sk(x)− 1) = sk+1(x).

For part (d), suppose $i = i1 · β1 + i2 · β2 + · · · + im · βm.
Then

$i2k = i1 · β1+k + i2 · β2+k + · · ·+ im · βm+k.

So, if k is a power of two, then sk(x) = x2k

+ x, and

$2k

i2k +$i2k = sk($i2k) =
m∑

j=1

ijsk(βj+k) =
m∑

j=1

ijβj = $i.

This completes the proof.
Lemma 2: For each m ≥ 1, the elements β1, β2, . . . , βm

are linearly independent over F2.
It follows by induction on m, as it’s true for m = 1, and
any linear relation among β1, . . . , βm, βm+1 implies a linear
relation among β1, . . . , βm via the map φ.

Next we determine the subfields where the elements βm’s
lie. First consider the case m = 2k. By Lemma 1 (c) , βk is
a root of sm(x) = x2m

+ x. Hence βm ∈ F2m , which implies
that βi ∈ F2m for all i ≤ m. Since m − 1 = 1 + 2 + 22 +
· · ·+ 2k−1, we have

sm−1(x) =
m−1∑
j=0

x2j

.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX 20XX 7

Hence sm−1(βm) is the trace of βm ∈ F2m into F2. By
Lemma 1 (b), sm−1(βm) = β1 = 1, that is, βm has trace
1 in F2. Since m is a power of 2, βm can not be any proper
subfield of F2m (which would imply that βm has trace 0).
Therefore, βm has degree m over F2 whenever m is a power
of two.

Now let i ≥ 1. Suppose 2k−1 < i ≤ m = 2k. Then βi ∈
F2m = F

22k , but not in any proper subfield. In fact, the biggest
subfield of F2m is F

22k−1 . If βi ∈ F
22k−1 , then βj ∈ F

22k−1

for all 1 ≤ j ≤ i, hence Wi is contained in F22k−1 . But the
number of elements in Wi is 2i, which is bigger than 22k−1

.
A contradiction has been reached and we have just proved the
following result:

Lemma 3: If 2k−1 < i ≤ 2k, then βi ∈ F
22k but not in any

smaller field.
In particular, we have β1 = 1 ∈ F2, β2 ∈ F22 , β3, β4 ∈ F222 ,
β5, β6, β7, β8 ∈ F223 , and so on.

Finally, we give an explicit construction for the tower of
subfields:

F2 = F220 ⊂ F221 ⊂ F222 ⊂ · · · ⊂ F
22k ⊂ · · · .

Let α0 = 1 and, for each k ≥ 1, αk is defined such that

αk + α−1
k = αk−1. (16)

Then αk has degree 2k over F2, that is, F2[βk] = F
22k , for

all k ≥ 1. A natural basis for F
22k over F2 is then

{αe1
1 α

e2
2 · · ·α

ek

k : ej = 0 or 1, 1 ≤ j ≤ k}.

Under this basis, addition and multiplication are both easy to
implement. Another major advantage of this representation is
that the basis structure corresponds to the subfield structure.

We note that the minimal polynomial of αk can be obtained
as follows. First define two sequences of polynomials ak(x)
and bk(x) recursively as follows:

a0(x) = x, b0(x) = 1,
ak+1(x) = ak(x) · bk(x),
bk+1(x) = a2

k(x) + b2k(x),

for k ≥ 0. Then the minimal polynomial of αk is ak(x)+bk(x)
for k ≥ 0. The proof of these results can be found in the book
[15]; see particularly Theorem 3.10, Theorem 3.20, Corollary
3.22, and Research Problem 3.1.

The defining equation (16) implies that αk−1 is the trace
of αk from F

22k to F
22k−1 . By induction, we see that αk

has trace 1 in F2. So, for any m = 2k, the desired sequence
β1, β2, β3, . . . , βm in the above discussion can be obtained as
follows: First set βm = αk. Then for i from m−1 down to 1,
define βi = β2

i+1 + βi+1. This was the method used to obtain
(6).

REFERENCES

[1] Cooley, James W. and John W. Tukey. “An algorithm for the machine
calculation of complex Fourier series”, Math. Comp. 19 (1965), 297–
301.

[2] Walker, James, S. Fast Fourier Transforms, Studies in Advanced Math-
ematics, CRC-Press, 2nd edition, 1996.

[3] Reed, I. S. and G. Solomon. “Polynomial codes over certain finite fields,”
J. Soc. Indust. Appl. Math. 8 (1960), 300–304.

[4] Gao, Shuhong. “A new algorithm for decoding Reed-Solomon codes”
in “Communications, Information and Network Security”, V. Bhargava,
H. V. Poor, V. Tarokh, and S. Yoon, Eds. Norwell, MA: Kluwer, 2003,
vol. 712, pp. 55-68.

[5] Shiozaki, A. “Decoding of redundant residue polynomial codes using
Euclid’s algorithm,” IEEE Trans. Inf. Theory, vol. 34, no. 5, pp. 1351-
1354, September 1988.

[6] Wang, Yao and Xuelong Zhu. “A fast algorithm for Fourier transform
over finite fields and its VLSI implementation’,’ IEEE Journal on
Selected Areas in Communications, Vol. 6, No. 3, April 1988.

[7] Cantor, David G. “On arithmetical algorithms over finite fields, ” J.
Combinatorial Theory, Series A, 50(2): 285-300, 1989.

[8] Von zur Gathen, Joachim and Jürgen Gerhard. Modern Computer
Algebra. Cambridge University Press, 2003. ISBN: 0 521 82646 2.

[9] Von zur Gathen, Joachim and Jürgen Gerhard. “Arithmetic and factoriza-
tion of polynomials over F2,” In Proceedings of the 1997 International
Symposism on Symbolic and Algebraic Computation ISSAC ’96, Zurich,
Switzerland, ed. Lakshman Y.N., ACM Press. Technical report tr-rsfb-
96-018, University of Paderborn, Germany, 1996, 43 pages, http://www-
math.uni-paderborn.de/ aggathen/Publications/polyfactTR.ps.

[10] Schönhage, Arnold. “Schnelle multiplikation von polynomen über
körpern der charakteristik 2,” Acta Informat. 7 (1976/77), no. 4, 395–
398.

[11] Mateer, Todd D. Fast Fourier Transform Algorithms with Applications.
PhD Dissertation. Available online at http://cr.yp.to/f2mult.html.

[12] Mateer, Todd D. “New algorithms for decoding systematic Reed-
Solomon codes”. In Preparation.

[13] Chen, Ning and Zhiyuan Yan, ”Cyclotomic FFTs with reduced additive
complexities based on a novel common subexpression elimination algo-
rithm,” IEEE Transactions on Signal Processing, vol.57, no.3, pp.1010-
1020, March 2009.

[14] Chen, Ning and Zhiyuan Yan, ”Reduced-complexity Reed-Solomon
decoders based on cyclotomic FFTs,” IEEE Signal Processing Letters,
Vol. 16, No. 4, pp. 279-282, April 2009.

[15] Menezes, Alfred J. (Editor), Ian F. Blake, Xuhong Gao, Ronald C.
Mullin, Scott A. Vanstone and Tomic Yaghoobian. Applications of Fi-
nite Fields, Kluwer Academic Publishers, Boston/ Dordrecht/Lancaster,
1993.

