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ere are several statistical methods for time-to-event analysis, among which is the Cox proportional hazards model that is
most commonly used. However, when the absolute change in risk, instead of the risk ratio, is of primary interest or when the
proportional hazard assumption for the Cox proportional hazards model is violated, an additive hazard regression model may be
more appropriate. In this paper, we give an overview of this approach and then apply a semiparametric as well as a nonparametric
additive model to a data set from a study of the natural history of human papillomavirus (HPV) in HIV-positive and HIV-negative
women. 
e results from the semiparametric model indicated on average an additional 14 oncogenic HPV infections per 100
woman-years related to CD4 count < 200 relative to HIV-negative women, and those from the nonparametric additive model
showed an additional 40 oncogenic HPV infections per 100 women over 5 years of followup, while the estimated hazard ratio in the
Cox model was 3.82. Although the Cox model can provide a better understanding of the exposure disease association, the additive
model is o
en more useful for public health planning and intervention.

1. Introduction

Time-to-event analysis is commonly used to study the
risk factors associated with the incidence of clinical events
[1]. For example, time-to-disease development, time-to-
hospitalization, time-to-relapse/recurrence, and time-to-
death are each frequently used as endpoints. However, there
are several di�erent models for measuring the relation of
time-to-event data with risk factors, including parametric,
semiparametric, and nonparametric models. In parametric
models, a distribution is assumed for time to event (e.g.,
an exponential, gamma, or Weibull distribution), and it is
further assumed that there is a linear relationship between
the logarithm of time to event and the covariates in the
model.
e strength of association is then estimated using the
maximum likelihood approach. In semiparametric models,
most notably Cox proportional hazard regression models
[2], the hazard function is assumed to be multiplicatively
related to the covariates, with an unspeci�ed baseline hazard
function, and the maximum partial likelihood method is

used to estimate the parameters. In nonparametric models,
most notably theKaplan-Meier approach, no assumptions are
made regarding the relationship between the disease risk and
the covariates. Instead, the survival function for each stratum
of the covariates is estimatedwith empiricalmethods, and the
log-rank test and other nonparametric tests are typically used
to test the e�ects of these covariates.

A well-known but less o
en used method for analyzing
time-to-event data is an additive hazard regression model
[3]. Unlike the proportional hazards model which estimates
hazard ratios, an additive model estimates the di�erence in
hazards: the change in hazard function due to the exposure
of interest or statedmore simply the absolute di�erence in the
instantaneous failure rate per unit of change in the exposure
variable. Based on the estimate of di�erence in hazards, one
can further estimate the change in cumulative incidence:
when the cumulative hazard is small (e.g., rare events), the
change in cumulative hazard approximates the di�erence in
risk of disease due to exposure, that is, the attributable risk
due to exposure. 
erefore, when the attributable risk is of
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primary interest or the proportional hazard assumption is
violated, an additive hazard regression model may be more
appropriate. Since the nonparametric additive model was
originally proposed by Aalen [3], there have been extensive
researches on the topic [4–7]. However, the additive hazard
regression models remain underutilized in public health and
medical research primarily due to lack of familiarity with
the models and lack of knowledge on how to implement
the models using existing so
ware. In this paper, we provide
an example to illustrate the application of two additive
models using existing statistical so
ware (program codes are
provided).


emotivating example of this paper was a study of natu-
ral history of human papillomavirus (HPV) infection among
human-immunode�ciency-virus- (HIV-) positive and HIV-
negative women. 
e prior analysis of this data set used
the Cox proportional hazard model to assess the relation
of incident HPV detection with host immune status as
measured by HIV serostatus and CD4 count [8, 9]. In this
paper, we analyzed an updated version of this same data
set with four years of additional followup, using additive
hazards regression models to estimate the attributable risk of
HPV infection related to changes in immune status and then
contrasted these results with results using the Cox model.

2. Methods

2.1. Data. 
e data were obtained from the Women’s Intera-
gencyHIV Study (WIHS), a large ongoingmulti-institutional
observational study with semiannual clinical follow-up visits
that include collection of exfoliated cervical cells for HPV
DNA testing and Pap tests. 
ere were 3766 women (2791
HIV+, 975 HIV−); two-thirds of whom were enrolled in
1994-95 and the remainder in 2001-02. Details of the study
enrollment andmethods have been previously reported [8, 9].
A
er excluding those women who had HIV seroconversion
during followup, had hysterectomy prior to enrollment in
WIHS, lacked HPV data during followup, or tested positive
for oncogenic HPV at baseline, the number of women
available for the current analysis of the incident detection
of oncogenic HPV was 2386 (1672 HIV+, 714 HIV−). 
e
oncogenicHPV types includedHPV16, 18, 31, 33, 35, 39, 45, 51,
52, 56, 58, 59, and 68. We also studied the incident detection
of any HPV in which more women were excluded because of
being detected positive for any types of HPV at baseline; the
corresponding number of women was 1733 (1116 HIV+, 617
HIV−). 
is data set represents an update from [8, 9] with 8
additional visits (4 additional years of followup).

Time-to-incident detection of HPV was estimated using
midinterval between the last HPV-negative visit and the �rst
HPV-positive visit. Time-to-incident detection of oncogenic
or any HPV was analyzed separately. 
e primary exposure
variable was host immune status characterized by HIV status
and CD4 count: HIV-negative, HIV-positive with a CD4
count greater than 500, CD4 count between 200 and 500, and
CD4 count less than 200. 
e additional covariates included
age (<30, 30–34, 35–39, 40–44, ≥45 years), race (white, black,

Hispanic, other), smoking (never, former, current), and the
number of male sexual partner in past 6 months (0, 1, 2, ≥3).

2.2. Statistical Methods. Two additive hazard models were
considered. 
e �rst model was the semiparametric additive
hazard model

ℎ (� | �) = �0 (�) + ���, (1)

where ℎ(� |�) is the conditional hazard rate of a given subject

with the covariate � = (�1, . . . , ��)�, � is the number of the
covariates, �0(�) is the unknown baseline hazard function,

and � = (�1, . . . , ��)� is the unknown time-independent
coe�cients. In this study, we only considered the time-
independent covariates, all at baseline. More general forms
of the model (1) with time-dependent covariates have been
studied in [4], which showed that the estimates of �0(�) and� are consistent and asymptotically normal. Note that the
model (1) has a similar form to the Cox proportional hazard
regression model: both models have an unspeci�ed baseline
hazard function and time-independent coe�cients, although
the Cox model is de�ned on a multiplicative scale while the
additive hazard model is de�ned on an additive scale. Unlike
theCox proportional hazard regressionmodelwhich requires
numerical iterations in estimating the regression parameters,
the previously mentioned semiparametric additive hazard
regression model has closed form solution for estimating
the regression parameters. We are able to estimate the
absolute change in risk instead of relative change in risk
with the model (1). 
e SAS code in [10] was used to �t
the model, which produces the estimate for �, its standard
error, and variance-covariance matrix. 
e � values were
calculated under normal assumption. Additional SAS code
was written to calculate the estimate of cumulative baseline
hazard 	0(�) = ∫�0 �0(�)�� and its standard errors based on

[4].
e cumulative hazard function estimates were estimated
based on the model (1).
e Cox-Snell residual was evaluated
for each subject at its observed survival time. Speci�cally, for
a subject 
 with observed survival time ��, event indicator�� and covariate ��, the residual �� is estimated by 	̂0(��) +
�̂ �����. If the model (1) is correct, the ��’s should follow a unit
exponential distribution with right censoring [1]. Because
the unit exponential distribution has the property that its
cumulative hazard function is the identity function, one can
use this property to check the goodness of �t for the additive
model. We therefore calculated the Nelson-Aalen estimates
of cumulative hazards on the data (��, ��) for all subjects. In
SAS, this can be obtained by using proc phreg with baseline
statement and method=ch option in the statement (code
is provided in online materials). 
e plot of the estimated
cumulative hazards on the residuals �� versus the residuals
�� was generated, in which a close to the 45 degree line is
expected if the model (1) is true.

Model (1) assumes that the e�ect of the covariate is
constant on the hazard function, but in fact it can be
generalized to any known parametric form that is possibly
time dependent. We also considered a more general additive
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Figure 1: Estimates of survival probabilities of oncogenicHPVand anyHPV for theHIV/CD4 strata from semiparametric and nonparametric
additive hazard model �tting with the other covariates held at reference values: age < 30, race is white, never smoked, and one male sexual
partner in past 6 months: (a) oncogenic HPV; (b) any HPV. From top to bottom for each outcome and each model �t: HIV−, CD4 > 500,
CD4: 200–500, and CD4 < 200.

hazard model that allows the coe�cients of the covariate to
be time dependent and nonparametric,

ℎ (� | �) = �0 (�) + �(�)��, (2)

where �(�) = (�1(�), . . . , ��(�))�. Unlike model (1), the new
model makes no assumption regarding the form of �(�). 
e
asymptotic theory of this model was studied in [11–13]. A SAS
macro provided in [14] was used to �t the model, which gives
the estimates of

	� (�) = ∫
�

0
�� (�) ��, � = 0, . . . , � (3)

and their standard error estimates. 
e estimates for quan-
tities 	�(�), 0 ≤ � ≤ � have closed form solutions. 	0(�) is
the cumulative baseline hazard and 	�(�), 1 ≤ � ≤ � are the
excess cumulative hazards at time �, which are de�ned from
time 0 to themaximal time � at which the designmatrix based
on the covariates � and the observed times is full rank [1, 3].
If �� is an indicator (0/1) for some �, 1 ≤ � ≤ �, the estimate
of 	�(�) gives the additional cumulative hazard estimate at
time � for being in the �� = 1 group while adjusting for the
other covariates. 
e nonparametric additive hazard model
was adjusted for the same covariates as in the semiparametric
additive hazard model. Similar Cox-Snell residual plot as in
the semiparametric model was generated with the di�erence
that all the residuals for the nonparametric additive model
were censored at the maximal time � [3].

Traditional Cox proportional hazard models for the
incident detection of oncogenic and any HPV, incorporating
the same covariates as previously mentioned, were run for
comparison to the additivemodels. All the statistical analyses
were conducted using SAS 9.1.3, and the plots were gener-
ated with R 2.9.2. 
e computer code can be downloaded
at https://sites.google.com/site/samxiepage/Additive Model
Pkg.zip?attredirects=0&d=1.

3. Results


e Cox proportional hazard model for the incident detec-
tion of oncogenic HPV showed that HIV-positive women
with CD4 > 500 had a hazard ratio (HR) 1.62 with 95%
con�dence interval (CI) 1.31 to 2.00 relative to HIV-negative
women. 
e corresponding HRs and 95% CIs comparing
HIV-positive women with CD4 200–500 and CD4 < 200,
using HIV-negative women as the reference group, were
2.49 (CI: 2.04–3.03) and 3.82 (CI: 3.01–4.86), respectively.

e � for trend was calculated by treating HIV/CD4 group
as an ordinal variable with four levels (0 to 3) and was
highly signi�cant (� < 0.0001). In addition, age was
negatively associated, and smoking was positively associated,
with incident detection of oncogenic HPV. In models of the
incident detection of anyHPV, theHRs and 95%CIs forHIV-
positive women with CD4 > 500, CD4 200–500, and CD4 <
200 were 1.65 (CI: 1.39–1.96), 2.76 (CI: 2.33–3.27), and 3.40
(CI: 2.66–4.34), respectively. 
e � for trend was less than
0.0001. Similar signi�cant factors as in the incident oncogenic
HPV were found with the additional �ndings that African
American women had higher incidence of any HPV than
Caucasianwomen, and the number ofmale sexual partners in
the past 6 months was positively associated with the incident
detection of any HPV.


ese hazard ratios, however, did not address the absolute

number of new HPV infections that would be detected

with a decrease in CD4 count. Further, checking of the
proportionality assumption for the Cox models shows that

the proportionality of hazard function did not hold for the

HIV-positive with CD4 < 200 in oncogenic HPV analysis
(� = 0.046) and for the number of male sexual partner in

past 6 months ≥3 in any HPV analysis (� = 0.02). For these
reasons, we applied the additive hazards regressionmodels to
this data set.


e semiparametric additive hazardmodel for oncogenic
HPV was �tted, and the results are given in Table 1. HIV-
positive women with CD4 > 500 had an additional hazard
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Table 1: Results from semiparametric additive hazard model �tting for oncogenic HPV and any HPV.

Oncogenic HPV Any HPV

E�ect estimate SE∗ P value E�ect estimate SE P value

HIV/CD4 Count

HIV- (ref†) 0 0

CD4 > 500 0.0343 0.0075 <0.0001 0.0878 0.0159 <0.0001
CD4: 200–500 0.0779 0.0086 <0.0001 0.2264 0.0214 <0.0001
CD4 < 200 0.1395 0.0163 <0.0001 0.2954 0.0427 <0.0001

Age

<30 (ref) 0 0

30–34 −0.0213 0.0103 0.04 −0.0472 0.0205 0.02

35–39 −0.0425 0.0097 <0.0001 −0.0547 0.0202 0.01

40–44 −0.0502 0.0106 <0.0001 −0.0282 0.0230 0.22

≥45 −0.0408 0.0137 0.003 −0.0623 0.0274 0.02

Race

White (ref) 0 0

Black 0.0140 0.0096 0.15 0.0517 0.0198 0.01

Hispanic −0.0030 0.0102 0.77 0.0118 0.0212 0.58

Other −0.0090 0.0191 0.64 0.0661 0.0485 0.17

Smoking

Never (ref) 0 0

Former 0.0034 0.0098 0.73 0.0060 0.0212 0.78

Current 0.0224 0.0079 0.005 0.0495 0.0166 0.003

Sex‡

1 (ref) 0 0

0 0.0003 0.0082 0.97 −0.0255 0.0162 0.12

2 0.0140 0.0122 0.25 0.0556 0.0256 0.03

≥3 0.0158 0.0128 0.22 0.1217 0.0330 0.0002
∗Standard error.
†Reference category.
‡Number of male sexual partner in past 6 months.

of 0.03 than the HIV-negative women, which implies that
on average there were 3 additional oncogenic HPV infection
cases per 100 HIV-positive women per year with CD4 >
500 compared toHIV-negative women; HIV-positive women
with CD4 200–500 had an increase of hazard 0.08; HIV-
positive women with CD4 < 200 had an increase of hazard
0.14. All the increases relative to HIV-negative women were
statistically signi�cant (� < 0.0001), and the increasing trend
with respect to HIV/CD4 group was signi�cant with � value
< 0.0001. 
e e�ects of age, race, smoking, and number of
male sexual partner in past 6 months agreed with those from
the corresponding Cox model.


e estimated survival probabilities for the four
HIV/CD4 strata adjusted for other covariates from the
semiparametric additive model are given in Figure 1(a). It
shows that lower CD4 count was associated with increased
detection of oncogenic HPV.


e nonparametric additive hazard model was also �tted
to the data. 
e variables in the nonparametric additive

hazard regression model had similar statistical signi�cance

to those in the semiparametric additive model and also to

those in the Cox proportional hazard regression model with

the same covariates. Figure 1(a) shows the estimates of sur-
vival probabilities of oncogenic HPV for the four HIV/CD4

groups: exp(−	̂0(�)), exp(−(	̂0(�) + 	̂1(�))), exp(−(	̂0(�) +	̂2(�))), exp(−(	̂0(�)+ 	̂3(�))) for HIV-negative women, HIV-
positive women with CD4 > 500, CD4 200–500, and CD4 <
200, respectively, adjusted for other covariates, where 	̂0(�)
is the estimated cumulative baseline hazard and 	̂�(�), 
 =1, 2, 3 is the estimated excess cumulative hazard associated for
each CD4 stratum. Figure 1(a) shows that the semiparametric
model (model (1)) and the nonparametric models (model
(2)) in general gave similar estimates on cumulative hazards
functions. In particular, the distances between the curves are

similar, indicating that these two models gave close estimates

of CD4 e�ect.
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Figure 2: Cox-Snell residual plots for oncogenic HPV models with diagonal reference lines: (a) semiparametric additive model; (b)
nonparametric additive model.

In this analysis based onmodel (2), the estimated survival
probability of oncogenicHPVover 5 years of followup among
HIV-negative women with an age < 30, of Caucasian race,
who were nonsmokers, and had only onemale sexual partner
in the past 6months, was 0.80.
e corresponding cumulative
incidence was 1−0.80 = 0.20, which implies that over 5 years
of followup 20% of HIV-negative women with the previously
mentioned characteristics had at least one positive test for
oncogenic HPV; the cumulative incidence rates by 5 years
of followup were 0.33, 0.47, and 0.60 for CD4 > 500, CD4
200–500, and CD4 < 200 groups, respectively.
us, for every
100 women with CD4 < 200, there were 40 more oncogenic
HPV infections by year 5 compared to every 100 HIV-
negative women, which is a signi�cant increase in number
of infections. Both the semiparametric and nonparametric
additive hazard models �t the data well based on the Cox-
Snell residual plots (Figure 2): the estimated cumulative
hazard curves approximately follow the 45 degree lines.


e same analyses were conducted for anyHPV (Table 1).

e e�ect estimates forHIV-positivewomenwithCD4> 500,
CD4 200–500, CD4 < 200 were 0.09, 0.23, 0.30, respectively,
with� values less than 0.0001 (� for trend< 0.0001). From the
nonparametric additive model (Figure 1(b)), the di�erence
in survival of any HPV between CD4 200–500 and CD4
< 200 group was not as signi�cant as that for survival of
oncogenic HPV. 
e cumulative incidences of any HPV at
5 years were 0.40, 0.63, 0.77, 0.84 for HIV-negative women,
HIV-positive women with CD4 > 500, CD4 200–500, CD4
< 200, respectively. 
e additive hazard models for any HPV
also �t the data well (Figure 3).

4. Conclusion


is study applied two types of additive hazard regression
models: the semiparametric and the nonparametric additive

hazards regression models and a Cox proportional hazard
model to the analysis of HPV incidence detection data in
HIV-positive and HIV-negative women and contrasted the
e�ect estimates obtained using each statistical approach. All
models found highly signi�cant associations between host
immune status and risk of incident HPV detection. 
e
semiparametric additive model showed that on average there
were an additional 14 oncogenic HPV infection cases per 100
woman-years related to CD4 count < 200 relative to HIV-
negative women; and the nonparametric model showed an
additional 40 oncogenic HPV infections per 100 women a
er
5 years of followup.

While as expected the additive models had much lower
e�ect estimates than the Cox model, the two approaches
address di�erent questions; that is, the Cox model pro-
vides estimates of relative hazard (on a multiplicative scale),
whereas the additive hazard models provide approximate
estimates for the attributable risk (i.e., the absolute di�er-
ence in the event rate per unit of change in the exposure
variable) under rare event assumption. 
e attributable risk
can be used to determine the absolute increase in number
of cases, that is, the number of extra cases of HPV infection
that occurred due to the exposure of interest. 
e relative
hazards estimated by Cox models can be especially useful in
understanding the magnitude of association, which may be
important scienti�cally; that is, when the baseline hazard of
disease is low the absolute number of additional cases related
to exposure may be small, but the relative risk can still be
strong. However, the absolute risk can be especially useful
for public health planning and intervention, when the actual
number of additional cases of a disease is of interest.

We considered a semiparametric and a nonparametric
additive hazard models. Comparing to the semiparametric
additive hazard regressionmodel, the nonparametric additive
hazard model allows the covariate e�ects to vary over time
nonparametrically and thus provides a more robust estimate
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Figure 3: Cox-Snell residual plots for any HPVmodels with diagonal reference lines: (a) semiparametric additive model; (b) nonparametric
additive model.

of the cumulative hazard function than the semiparametric
additive hazard model. However, the nonparametric models
also use more statistical degrees of freedom. 
erefore, if the
average covariate e�ective estimates are of primary interest
the semiparametric additive hazard model could be used, but
if one wants to examine whether or not some covariate e�ects
are varying over time or the cumulative hazard function (or
the cumulative incidence rate) is of primary interest, the
nonparametric additive hazard model may be preferred.

We note that the model proposed by Lin and Ying [4]
has been extended to include both additive andmultiplicative
covariate e�ects [6, 7]. 
is model may be necessary, for
example, when certain covariates in a Cox proportional
hazards model satisfy the proportional hazards assumption
and others do not. However, the interpretation of this model
is not as straightforward as either the Cox model or the
additive models.

In summary, although the theoretical foundation for the
additive hazard models is well established and computer
codes for �tting these models are available, they have been
less o
en used than other methods of time-to-event analysis.

is may partly re�ect a degree of unfamiliarity with these
models in the general research community. Continued e�orts
to increase awareness of these statistical methods are needed
and should be considered by biostatisticians and epidemiolo-
gists involved in teaching the next generation of researchers.
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