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Abstract: Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining
increasing interest in aerospace, automotive and biomedical applications due to the possibility of
processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures
and mechanical properties that are strictly related to the type of heat treatment applied after the
L-PBF process. The present review aimed to summarize the state of the art in terms of the microstruc-
tural morphology and consequent mechanical performance of these materials after different heat
treatments. While optimization of the post-process heat treatment is key to obtaining excellent
mechanical properties, the first requirement is to manufacture high quality and fully dense samples.
Therefore, effects induced by the L-PBF process parameters and build platform temperatures were
also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and
direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and
Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent
fracture mechanisms.

Keywords: additive manufacturing; laser powder bed fusion; AlSi10Mg; Ti6Al4V; heat treatments;
mechanical properties; microstructural characterization; fracture mechanism; corrosion resistance
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1. Introduction

Aluminium and titanium lightweight alloys are of great interest in automotive,
aerospace and biomedical fields where high performance is required [1–3]. The rapid
development of marine, aerospace and automotive transportation has induced constant
evolution in terms of safety and fuel efficiency, qualities that are met by the lightweight
alloys [4,5]. AlSi10Mg and Ti6Al4V, the most studied alloys in the lightweight alloy family,
found a wide range of applications thanks to the advantages of additive manufacturing
(AM) and their mechanical performance and corrosion resistance. For these reasons, the
present review aimed to summarize and discuss the effects induced by different heat
treatments (HTs) on these alloys.

AlSi10Mg is an age-hardening alloy based on the Al-Si-Mg ternary system and is char-
acterized by low density (2.67 g/cm3, [6]), good mechanical properties, excellent castability
and capability of being heat-treated [7–9]. The Al-Si phase diagram, shown in Figure 1a,
highlights the fact that AlSi10Mg presents a short solidification range (∆T ~ 40 K), making
it the most common aluminium alloy used in additive manufacturing (AM) [10,11]. This
phase diagram is typical of partially miscible liquids characterizing age-hardening alloy. In
this scenario, the 0.2 ÷ 0.4 wt.% Mg content increases strengthening via precipitation hard-
ening due to the precipitation of fine ε-Mg2Si phase during the aging heat treatment (HT,
direct or T6 heat treatment) and/or during the AM process [12–14]. At the same time, Si is
added to increase the castability and the amount of shrinkage during melt freezing, as well
as to change the microstructure from rosette (low Si) to dendritic [13,15]. Wang et al. [16]
emphasized significant effects on the mechanical properties of the Al-Si-Mg alloys with
variation in Si (wt%).
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Figure 1. Phase diagrams of the: (a) AlSi10Mg where the α is related to the Al matrix; (b) Ti6Al4V.

Ti6Al4V in an α + β alloy exhibited prolonged biocompatibility, high fatigue resis-
tance and toughness, as well as higher tensile strength and density (4.41 g/cm3, [6]) than
AlSi10Mg alloy [17,18]. At the same time, its corrosion resistance makes it possible to use
in marine and chemical industries and in the biomedical field for orthopedic, cranial and
orthodontic implants [19–21]. A tempering treatment performed at 400–600 ◦C makes the
Ti6Al4V alloy suitable for the manufacturing of cold engine components [22]. Figure 1b
shows a portion of the Ti-6Al phase diagram, where the red iso-concentration line high-
lights the cooling/heating path of Ti6Al4V alloy. In the same figure, the hexagonal closed
packed and the body cubic centered lattice structures of the α and β phases are illustrated,
respectively. Starting from the β-region (T > TβTr = ~995 ◦C, [17]), where the Ti alloy shows
a fully β-phase microstructure, to the room temperature, the β-phase is almost completely
transformed into α-phase (~90 ÷ 95%) + β-phase (~5 ÷ 10%) due to the presence of Al
and V alloying elements that stabilize the hexagonal closed packed α-phase and the body
centered cubic β-phase, respectively [17,23]. Considering, instead, a Ti6Al4V extra low
interstitial (ELI) alloy, the previously described microstructural transformation is the same,
except that the β-transus temperature is at 975 ◦C due to the different wt% content of
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alloying elements [24–26]. At the same time, Al and V increase elongation, tensile strength,
toughness and fatigue resistance, which also depend on the α + β phases morphology at
room temperature, as discussed in Section 6 [27,28].

Ti6Al4V exhibits a Widmanstätten microstructure (plate-like α + β phase) after slow
cooling (furnace, cooling rate of 2 ◦C/s) and a martensitic microstructure after rapid
cooling (water, cooling rate of 20 ◦C/s) due to the intersection between the cooling path
and the martensitic start (Ms) line. The air cooling (cooling rate of 3.5 ◦C/s) induces, firstly,
a martensitic transformation of the β-phase and then a diffusional transformation that
reduces the volume fraction of the α′ martensite phase [29–32].

Generally, AlSi10Mg and Ti6Al4V alloys are forged or cast, followed by machining to
obtain the final dimensions and shape. Owing to the large amount of material waste and
the high manufacturing costs and time that characterize these conventional manufacturing
processes, they have been replaced by AM technology [33,34]. In this scenario, the ability to
manufacture samples with complex geometry, efficient material usage, material flexibility
and dimension control are advantages that can be added at the AM field as discussed in
Section 2.

The aim of the present review is to summarize and discuss the effects induced by
different HTs on the most studied alloys in the AM field: AlSi10Mg and Ti6Al4V. Firstly,
the as-built microstructure and consequent mechanical properties are studied, highlighting
the effects of build platform (BP) pre-heating. Subsequently, by manufacturing high-
quality samples characterized by excellent mechanical properties, these can effectively be
optimized with post-process HTs. Secondly, the microstructure and mechanical properties
obtained after different HTs are illustrated to summarize and discuss the state of the art
of AlSi10Mg and Ti6Al4V alloys in the field of AM. Finally, the facture mechanisms and
corrosion resistance characterizing as-built and heat-treated alloys are also reviewed.

2. Laser-Powder Bed Fusion (L-PBF) Process

AM technology is a process opposed to the subtractive manufacturing methodologies
because it joins materials to make components from a 3D model, as defined through
the ASTM 52900:2015 standard specification [35]. If low-volume and high-value objects
(e.g., in aerospace and biomedical fields) are considered, the manufacturing processes
belonging to the AM scenario present different advantages as opposed to the conventional
subtractive manufacturing (as mentioned in Section 1) [1–3,33,34,36]. In this scenario,
another advantage is the ability to print lightweight objects thanks to a complex software
system that minimizes the part geometry after a careful engineering analysis. In parallel
with the metallurgical sector, other research fields focus their attention on the sample design
and the surface geometry to improve the mechanical properties of the manufactured object
and the consequent advantages induced by AM [37,38].

Focusing on these processes, the building of 3D metal physical objects takes place
through the fusion or bond (e.g., melting, sintering) of the material feedstock, which is
in the form of powder and/or filament/wire, joined layer by layer [35]. The different
form of the material feedstock subdivides the processes in powder bed fusion (PBF) and
direct energy deposition (DED). In the former printing method, a laser or electron beam
energy source melts and fuses the powder following the 3D project of the component
(Figure 2a), while, in the latter method, a nozzle deposits the material feedstock, as shown
in Figure 2b [35,39–41].
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The present review is based on the L-PBF AM process (Figure 2a), a technology where
the powder bed, deposited on the build platform (BP) by a recoater roller or blade, is
scanned and melted through a laser beam characterized by a laser power P [W], and
generated by one of the following energy sources: Yb:YAG fiber, Nd:YAG, CO2 laser,
infrared, etc. [43]. The moving mirror, controlled by a computer system, deflects the laser
source according to the 3D project. Only when a layer is totally scanned and melted, the BP
lowers by a quantity equal to the layer thickness (t, [mm]) and the recoater roller or blade
spreads a new powder layer. This procedure is repeated until the complete 3D physical
object is manufactured [44–46].

During the L-PBF process, the laser beam transmits enough energy to melt the entire
layer depth and a portion of the previously solidified layer, guaranteeing the adhesion
between them [47]. The molten pool (MP) depth is key to obtaining this adhesion and the
absence of defects. Tang et al. [48] illustrated the following criterion to have a full melting:(

h
W

)2
+

(
t
D

)2
≤ 1 (1)

where h is the hatch spacing (mm), which is the distance between the center of one laser
scan track and the consecutive one (Figure 3) [47], W is the width (mm), D is the total depth
of the MP (mm), and t is the layer thickness (mm). The full melting is obtained only if
Equation (1) is satisfied. As a matter of fact, the MP overlap and the consequent yellow
zone shown in Figure 3 are guaranteed. Another important process parameter, in addition
to P (W), h (mm) and t (mm) is the scan speed (v, (mm/s)) at which the laser source moves.
Combining these parameters, the energy density function (ED, (J/mm3)) can be defined
as follows:

ED =
P

vht
(2)

According to the manufacturing requirements, the ED function determines the sam-
ple’s density and, therefore, characterizes the as-built mechanical properties. Table 1 shows
a wide range of process parameters used to manufacture both AlSi10Mg and Ti6Al4V
alloys, highlighting whether the obtained samples are fully dense (δ ≥ 99.0%), or dense
(99.0 < δ ≤ 85%) or porous (δ < 85.0%).
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Table 1. Principal process parameters values used to manufacture AlSi10Mg and Ti6Al4V samples
via L-PBF process.

Materials P, (W) v, (mm/s) h, (µm) t, (µm) ED,
(J/mm3)

Fully Dense, Dense,
Porous

BR 1,
(cm3/h)

Ref.

AlSi10Mg

350 1050 170 50 39 Fully dense 32 [14]

788 1099 300

60

40 Fully dense 71

[50]
463, 625, 788,

950
500, 800, 1099,

1400, 1700, 2000 300, 350, 400 17–75 Dense
38–174

300, 463, 788 800, 1400, 1700,
2300 300, 350, 400 Porous

100 250, 500, 750,
1000 50, 100 40 25–200 Dense 2–14 [51]

320, 360, 400 600, 750, 900 70.90–116.40 30 145–200 Dense 25–28 [52]

370 1300 190 30 50 Dense 27 [53]

240, 260, 320,
360, 400

1200, 1400, 1600,
1800, 2000

36, 40, 45,
51.4, 60 30 111 Fully dense 8–13 [54]

400, 440 1350, 1500 105 50 38–56 Fully dense 25–28
[55]

300 1230 105 50 68 Dense 23

150 500, 1500, 2500 45, 75, 105 30 74, 95,
222 Fully dense 2–28

[56]250 1500 75 30 74 Dense 12

150 2500 105, 150 30, 60 9, 13 Porous 28–81
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Table 1. Cont.

Materials P, (W) v, (mm/s) h, (µm) t, (µm) ED,
(J/mm3)

Fully Dense, Dense,
Porous

BR 1,
(cm3/h)

Ref.

Ti6Al4V

250 1600 60 30 87 Fully dense 10 [32]

170 1250 100 30 45 Dense 13 [57]

200 200 180 50 111 Dense 6 [58]

157 225 100 50 14 Dense 4 [59]

100 700 75 30 6 Dense 6 [60]

Ti6Al4V

260, 280, 300 1000, 1200, 1400 140 30 44–67 Dense 15–21 [61]

55–95 150–1000 49.5–99 25 148–269 Fully dense 1–11 [62]

240, 300, 360 800, 1000, 1200 80, 100, 120 40 62.5–94 Dense 9–21 [63]

200 800 80 30 10 Porous 7 [64]

240 240 50 30 67 Porous 1 [65]

100 400 70 50 7 Porous 5 [66]

90 600 90 30 6 Porous 6 [67]
1 BR is the acronymous of the build rate.

In this scenario, the porous Ti6Al4V samples were often manufactured for biocompati-
bility requirements into biomedical fields because the cell adhesion and proliferation were
increased [65–67].

2.1. Process Parameters

The principal process parameters (P, v, h, t), which define the ED function (Equa-
tion (1)), influence microstructure and mechanical properties of AlSi10Mg and Ti6Al4V
as-built samples manufactured via L-PBF process [9,14,68]. As shown in Figure 4, they
are the only parameters that can be fully controlled, together with the laser source param-
eters, to obtain a high-quality sample. On the other hand, the other parameters such as
environment, material characteristics and parameters of the 3D model can compromise its
quality due to their partial controllability. Table 2 illustrates the type of defects that affect
the sample’s quality.
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Table 2. Defects present into L-PBFed samples: cause, remedy and effects.

Type of Defect Cause Remedy Effects Ref.

Lack-of-fusion
(LOF)

Inhomogeneous distribution of
the powder bed

Reduction in the layer
thickness and increase of

energy penetration

Decrease in mechanical
properties and fatigue

resistance
[51,59,70–72]

Non-optimization of the ED
function

Lack of material or low energy
inducing no complete

adherence of the melt to the
surrounding material

Keyhole pore
MP instability Increase in energy depth

penetration and laser
power

Decrease in mechanical
properties and fatigue

resistance
[48,73]Non-optimized process

parameters

Gas pores

Gas dissolution within the
melt material Reduction in the layer

thickness, and the
pressure into the

chamber
Reduction in the O2

Re-melting

Loss density, decrease in
tensile strength and fatigue

resistance. Gas pores are less
critical in crack propagation

than the LOF

[51,74–79]

Gas wrapped into the gas
atomized particles

Entrapment of the gas present
into the build chamber

Gas flow within the build
chamber

Anisotropy Build orientation HTs Tensile properties correlated to
the orientations [59,80,81]

Preferential
evaporation

Temperature-dependent vapor
pressure

Reduction in linear
energy density rather

than the hatch spacing

Alloying elements loss and
pore’s formation [82–84]

Residual stress
and distortion

High thermal gradient during
the L-PBF process

Pre-heated BP
Post-process HTs

Opportune scan strategy
and re-melting

Sacrificial material and
support structures

Sample distortion if residual
stress is higher than the YS
Alloying elements loss and

pore’s formation
Loss of tolerance requirement
Reduction in fatigue resistance

and tensile properties

[85–88]

Balling

Low viscosity of melt material

Reduction in ED value

Porosity

[62,89–93]

Excess of melt material Stress Concentration point

MP instability: capillarity,
Marangoni’s effect Surface quality and roughness

Splashing of MP due to its
high surface temperature Intralayer connection

The main types of defects present within a sample manufactured via L-PBF process are
lack-of-fusion (LOF), keyhole, and gas pores; each one of these is characterized by a distinct
formation mechanism and growth [51,75,84]. Focusing on LOF pores, it can be classified
as a defect with partially melted powders (Figure 5a) or poor binding defect due to the
insufficient melt material during solidification (Figure 5b) [94]. De facto, LOF is derived
from an improper melting of the powder particles or from the MP instability (as discussed
later) due to the inadequate value of the ED function.
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Tang et al. [48] illustrated the typical trend of sample porosity in relation to the ED
and the variation of the scan speed maintaining the laser power constant (Figure 6). In
detail, the LOF pores are formed with low ED and high scan speed, while high ED and low
scan speed induce a keyhole pore formation.
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Darvish et al. [98], however, showed that the LOF formations are also caused by the
imperfect overlap of the laser scan tracks (Figure 5c) or by the presence of spatter on the
layer surface (Figure 5d).

On the other hand, the keyhole and LOF formation mechanisms are very difficult to
determine due to the interaction of different physical phenomena (e.g., Maragoni effect,
vaporization, recoil pressure, laser reflection) that take place within micron seconds during
the rapid solidification of the MP [73]. In this scenario, Bayat et al. [73] added capillarity
pressure as a physical phenomenon to determine the MP instability and the consequent
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keyhole formation. Thus, the presence of different cold zones characterized by high surface
tension and negligible pressure recoil causes the pore’s formation. The same results were
obtained by [99].

Finally, the LOF and keyhole are grouped under the name melting-related defects
due to their irregular shape (Figure 5a,b), while gas pores are considered separately due
to their spherical morphology (<100 µm) [51,94]. The main causes of gas pore formation
(Table 2) are the presence of gas wrapped into the gas atomized powder, or the dissolu-
tion/entrapment of gas present within the build chamber [51,74–79]. Focusing on AlSi10Mg
samples, the gas pores can also be caused by the H2O reduction during the L-PBF process
due to the thermal cycles induced by the printing methodology [100]. De facto, the water
follows the subsequent chemical reactions:

2H2O→ 2H2 + O2

3H2O + 2Al→ Al2O3 + 3H2

producing diatomic hydrogen that dissolves into monoatomic hydrogen atoms (H2 →
2Habsorbed). Subsequently, the H atoms diffuse within the liquid aluminium due to their
high solubility in this metallic material [101]. Considering that the partition coefficient
depends on the solidification rate, the L-PBF is characterized by a greater solubility of
hydrogen than the cast process because the AM process is a rapid solidification process [102].
Weingarten et al. [75] summarized that the formation of pores decreases where the hydrogen
contamination of the powder is lower (<50% of pores after the drying of the powder at
200 ◦C) or where optimized management is used. In relation to the mechanical properties,
Gong et al. [103] concluded that the tensile strength and fatigue resistance of as-built
Ti6Al4V samples are not influenced by 1 vol% of gas pores but are considerably degraded
with a volume fraction of 5 vol%. The same conclusions can be rewritten for AlSi10Mg
as-built samples [14,104]. In this scenario, the hot isostatic pressing (HIP) HT can be used
not only to densify the material but also to reduce the residual stress [105,106]. At the same
time, if the fatigue resistance is increased due to the pore’s reduction, the tensile properties
of Ti6Al4V samples decrease, as can be observed in Figure 7 [107–111]. In contrast, the
ductility increases. More details and microstructural analysis will also be discussed in
Sections 3, 4, 6 and 7 for AlSi10Mg samples.
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The best mechanical properties of the as-built sample, which are necessary to obtain
excellent mechanical properties after the HT, can be reached by printing with optimized
process parameters. In other words, working in the operating window shown in Figure 8
must be necessary [88]. On the other hand, this generalization neglects other important
phenomena (Table 2, Figure 4) that must be considered during the L-PBF process.
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Focusing on the balling phenomena and preferential evaporation defects, the main
causes are strictly related to the thermal gradient and the instability of the MP [62,89–93].
Kruth et al. [112] suggested that the balling phenomenon takes place when the material
underlying the MP does not wet due to the surface tension. As a matter of fact, the balling
phenomenon occurs when the MP surface becomes larger than the surface of a sphere that
contains the same volume. This situation can be prevented if the process parameters are
contained in the operating window (Figure 8).

On the other hand, if the temperature of the exposed powder exceeds the temperature
melting point, the evaporation phenomena occur, inducing a loss in mechanical properties
of the as-built samples [82,112]. Juechther et al. [82] affirmed that the evaporation effects
decrease linearly with the ED transferred to the MP. Masmoudi et al. [113], analyzing
the build chamber atmosphere, concluded that the evaporated volume during the L-
PBF process can be controlled. Generally, the inert environment (continuous Ar or Ar+
He or N gas flow, [114,115]) is used to avoid metal oxidation during the laser-powder
process, particularly for Ti6Al4V and AlSi10Mg alloys that are characterized by high
oxygen affinity. The build chamber environment is already high-oxidizing for the spatter
particles and MP, considering an oxygen level of 1000 ppm [114,115]. On the other hand,
an opportune gas flow stabilizes the depth of the MP and reduces the spatter phenomena
and, consequently, oxidation [116,117]. Last but not least, the inert gas environment is
an essential factor to obtain a better quality of the samples due to the pores and surface
roughness reduction [118,119].

The principal process parameters (P, h, v, t) also influence the MP temperature and
dimension, melt lifetime and the build rate [90,120]. De facto, the MP characterized by a
typical semi-ellipsoidal shape is described by a thermal gradient decreasing from the center
to its boundaries (Figure 9a) [121].
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Due to the conduction heat transfer, the solidified material around the MP is also
invested by a thermal gradient distribution (Figure 9b), causing a heat affected zone (HAZ)
and consequent microstructural effects in AlSi10Mg and Ti6Al4V samples [14,121,122].
In addition, these thermal gradients and the MP dimensions are affected by the process
variation induced by the optimization of sample quality (Figure 10) [123,124].
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Lastly, the v, h, and t variation in L-PBF process cause a variation of the build rate (BR,
(cm3/h), [120]) and the consequent productivity because it is defined as follows:

BR = vht, (3)

where v, h and t are the scan speed (mm/s), hatch spacing (mm) and layer thickness (mm),
respectively. Thus, being that the BR equation is the denominator of Equation (1), the ED
function is strictly related to industrial productivity. Generally, a build rate of 5–20 cm3/h
characterizes the L-PBF systems, but new AM machines (e.g., XLine 1000) also reach
100 cm3/h [125–127]. Table 2 shows some BR values referred to in the literature analyzed
and the samples’ density reached. Shi et al. [128] showed an increase of layer thickness
up to 200 µm, maintaining a Ti6Al4V sample density δ > 99.73% (fully dense). On the
other hand, varying the layer thickness of AlSi10Mg and Ti6Al4V samples manufactured
via L-PBF changes the mechanical properties obtained [9,32,103,128]. The use of double
or quadruple lasers, which work in parallel on the same layer powder bed, or the use of
skin-core scan strategy are other examples concerning the increase in the BR [120,129].

3. L-PBFed AlSi10Mg: Microstructure
3.1. As-Built Microstructure

The as-built microstructure of the hypoeutectic AlSi10Mg alloy L-PBF-ed is shown
in Figure 11, where two different machine setups are compared. Figure 11a,c illustrate
the samples manufactured with a single laser, while Figure 11b,d those with multi-laser
(4 × 400 W) [14]. Both optical micrographs performed along the xy plane (Figure 11a,b)
show the laser scan tracks sections that are placed according to the scan strategy. At
the same time, it is possible to highlight the typical semi-ellipsoidal shape of the MP as
reported in Section 2. The microstructure along the build direction (Figure 11c,d) presents
a typical fish-scale morphology due to the overlapping of the laser scan tracks, as shown in
Figure 12 [14,130,131].
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Panels (a,c) are related to the single laser machine set-up and (b,d) to the multi laser. The green arrow
indicates the build direction (Reprinted from reference [14]).
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The schematic representation of different types of scanning strategies is shown in
Figure 12, as also analyzed by Su et al. [131].

The same authors suggested three laser scans overlapping, different from the con-
ventional scanning strategy (Figure 12a), to obtain a continuous track during the L-PBF
process. At the same time, the full melting criterion describe in Equation (1) is satisfied. The
intra- (Figure 12b), inter- (Figure 12c) and mixed (Figure 12d) laser scanning strategies tend
to avoid the presence of the zone with low density (Figure 12a) generating LOF/keyhole
pores, as highlighted in Figure 11c. At the same time, Figure 11a shows the spherical gas
pores discussed and analyzed in Section 2.

Despite this, comparing the single and multi-laser machine set up, no microstructural
differences can be emphasized, as also reported by Zhang et al. [132], who analyzed
the isolated and overlapped areas through the EBSD (Electron Backscatter Diffraction)
measurements

These EBSD maps show the same grain morphology in addition to the same grain
size: in fact, the single laser area shows an average size of 5.72 µm, and the overlap area of
5.62 µm [132]. On the other hand, the same EBSD measurements highlight the presence of
columnar grains nucleated and grown during the solidification process.

De facto, during the cooling of the MP, the primary planar grains nucleate and grow at
the interface between the solid and liquid phases (Figure 13a). Subsequently, the dendrites
grow and compete following the direction of the heat flux, but in opposite versus along
the <100> direction, as shown by other fcc metals [133]. Figure 13b illustrated the last
solidification step, where the columnar grains are arranged as previously discussed, and
where the Si-eutectic network is formed as highlighted within the circular area [134,135].

Lingda et al. [134], who analyzed the CET (columnar-to-equiaxed transition) into an
MP, highlighted an increase in undercooling zones during the MP solidification due to
the decrease in MP area during the increase in solidification time. This situation induces
a competitive grain growth stage, where the equiaxed grain can also nucleate and grow.
De facto, the same authors affirmed that the MP can be formed by only equiaxed grains
if it reaches an undercooling of ∆T = 15K. Hadadzadeh et al. [136], correlating the CET to
the thermal gradient (G, (K/m)) and the solidification rate (R, (m/s)) ratio, affirmed that
the CET is promoted if the G/R decreases. Paul et al. [137] showed these grain differences
within an MP through the EBSD measurements, highlighting the preferential grain growth
along the <100> direction. The same authors also showed a reduction in equiaxed grain
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amount with the increase in the layer thickness (t, (mm)) and the hatch spacing (h, (mm)).
De facto, by decreasing the t and h, the grain size decreases. Ghio et al. [9] showed, instead,
an increase in the amount of the equiaxed grains with the increase in layer thickness and
decrease in the hatch spacing.
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Figure 13. Schematic representation of the MP solidification process: (a) interaction between the
laser beam during the melt of powder bed and the initiation of the solidification process; (b) final
phase of the solidification process. The red circle highlights the α-Al matrix surrounded by Si-eutectic
network.

Figure 14 illustrates SEM micrographs of the AlSi10Mg as-built microstructure, show-
ing the Si-eutectic network that surrounds the α-Al matrix, as analyzed by [14,87,128,138]
and previously discussed in Figure 13c. The same authors highlight the presence of Si-rich
precipitates within the α-Al matrix (Figure 14a) that coarsened (Figure 14b) if the pre-heated
BP at 200 ◦C was used during the L-PBF process. This microstructural configuration is also
shown by [14]. Van Cauwenbergh et al. [139] showed the presence of Si-rich precipitates in
the α-Al matrix, confirming again that it is a supersaturated solid solution (SSS).
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These microsegregation features, related to the SSS, are caused by the chemical com-
position fluctuation at the liquid/solid interface during the solidification process. It can
be predicted through Brady-Fleming’s cellular microsegregation model to determine the
effects induced in the AlSi10Mg L-PBFed alloy. This mathematical model describes the
profile of the solid-state concentration through the following Equation (4):

Cs = k0C0

[
a

k0 − 1
+

(
1− ak0

k0 − 1

)
(1− fs)

k0−1
]

(4)
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where k0 (-) is the equilibrium partition coefficient, C0 (-) is the alloy solute concentration, fs
(-) is the solid fraction, a (-) is the cellular microsegregation parameter. In this scenario, the
cellular microsegregation coefficient is strictly related to the alloy characteristics (diffusion
coefficient into liquid (Dl, (m2/s)), and slope liquid (ml, (K)) and to the process conditions
(thermal gradient (G, (K/m)) and solidification rate (R, (m/s)). In fact, it is defined as
follows:

a =
G
R

(
Dl

mlC0

)
(5)

The ratio between the thermal gradient and the solidification rate also determines,
firstly, the microstructures’ morphology obtained after the solidification process and, sec-
ondly, the grains size [136,139–141]. In the first case, the relationships between G and
R allow for obtaining a solidification map as shown in Figure 15a where the lines and
hyperbola branches are described by the G

R (that affects the structure morphology) and G ×
R (that affects the microstructure scale), respectively.
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Figure 15. (a) Solidification map obtained by the G/R and G × R factors; (b) SEM micrographs of the
MP center (MPC) and MP boundaries (MPB) (Adapted from reference [139]).

Through this graphical representation, the cellular fine microstructure and cellular
dendritic structure, which characterized the MP center (MPC) and the MP boundaries
(MPBs), respectively, can be predicted (Figure 15b) [139].

In the second case, G and R are related to SDAS (Secondary Dendrite Arm Spacing) as
follows:

SDAS = k(G× R)−n (6)

where the material constants k and n are 43.2 m(K/s)n and 0.324, respectively [140]. Despite
this equation describing the cast alloy, different research study validates the same equation
to describe the AlSi10Mg alloy manufactured via L-PBF process considering the SDAS as
the cellular island of α-Al [136,139]. Moreover, in this case, if the MPC is characterized by a
higher cooling rate (~105 ÷ 106 K/s, [9,136,139]) than the MPB, the adjacent solidified mate-
rial is exposed to annealing temperatures that generated the HAZ as expressed in Section 2.
These three different zones are characterized by an increment of the grain size due to the Si
diffusion [7,14,136,139,142,143]. De facto, this local high-temperature exposure modifies
the cellular microstructure, destroying the Si-eutectic network (Figure 16) [139,142].

Delahaye et al. [142] showed the reduction in Si-rich fraction from the MPC and MPB
to the HAZ due to the Ostwald ripening phenomenon. All of this reflects on the HV
microhardness, as is widely reported in the literature [9,137,144].
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Figure 16. (a) SEM micrograph of the AlSi10Mg sample along the xz plane: (b,c) SEM micrographs at
high magnification of the MPBs that highlight the Si-eutectic network destruction and the columnar
grains (Reprinted from reference [139]).

From a three-dimensional point of view, as-built AlSi10Mg samples are characterized
by a tubular structure of the α-Al matrix, which is surrounded by the Si-eutectic network
(Figure 17a), due to the thermal gradient developed during the L-PBF [87,145]. In the
same scenario, Figure 17b illustrates the same tubular structure containing, however, the Si
particles that precipitate thanks to the pre-heated BP as previously discussed.
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Figure 17. Schematic 3D rendering of the as build L-PBFed AlSi10Mg manufactured on: (a) cold BP,
(b) hot BP.

As regards the Al, Si, Mg and Fe elements present in AlSi10Mg alloys, during the
L-PBF process, these are distributed into microstructures (Figure 18a) as illustrated through
the Figure 17b–e, as reported by Bai et al. [146]. The higher Si content is present in Si-
eutectic particles along the cell boundaries where the Mg content is also segregated and
into α-Al matrix (Figure 18b,d,e), as already discussed in Figures 14 and 16. Zhou et al. [147]
confirmed this distribution through the TEM measurements that also showed the (200),
(111), (311) diffraction spots of Si-particles within the α-Al matrix cell boundaries. In
addition, the same authors reported the presence of fine acicular Si precipitates (length of
50 ÷ 300 nm and width of ~10 nm) characterized by the following orientation relationship:
[001]Al ‖

[
122
]

Si and (200)Al ‖ (111)Si. In conclusion, they did not report if the BP was
used at room temperature or at higher temperatures.
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Figure 18. (a) Microstructural morphology of the as-built AlSi10Mg sample; (b–e) element mappings
of the Al, Si and Mg (Reprinted from reference [146]).

Finally, Fe content is distributed into Fe-rich intermetallic phases such as
π-Al8Si6Mg3Fe [147] or as brittle needle-like β-Al5FeSi phase [148,149]. At the same time,
the AlSi10Mg is an age-hardening alloy (Figure 1a) that is characterized by the precipitation
phenomena of the ε-Mg2Si phase [7,150,151]. Some authors show the presence of this ε
phase already in as-built samples [14,148], while other studies do not achieve the same
results [152,153]. As a matter of fact, Mathe et al. [154] showed an increase of ε phase
with a decrease in the ED from 133 to 67 J/mm3. Casati et al. [138] showed, however,
an increase in the precipitation phenomena using the pre-heated BP. De facto, the CP AB
(cold platform at 35 ◦C, as-built) sample presents the sequence of precipitation peaks in
the DSC (Differential Scanning Calorimetry) curves shown in Figure 19, unlike the HP AB
(hot platform at 200 ◦C, as-built) sample, proving that the pre-heated BP at 200 ◦C induces
precipitation phenomena of the ε-Mg2Si phase.
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Figure 19. DSC analysis of as built AlSi10Mg samples manufactured using a cold BP at 35 ◦C (CP
AB) and a pre-heated BP at 200 ◦C (HP AB). CP sol represents the CP AB sample after the solution
heat treatment (SHT) (Reprinted from reference [138]).

Cerri et al. [14], who analyzed the effects induced by the pre-heated BP at 150 ◦C,
showed different amounts of ε-Mg2Si and Si particles within the α-Al matrix between the
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bottom and top regions into an AlSi10Mg billet (height of 300 mm). Thus, despite the use
of a pre-heated BP, the as-built sample can be characterized by a different distribution of
the precipitation phenomena induced by the BP temperature.

3.2. Heat-Treated Microstructure

Table 3 reports the HTs analyzed in the present review and the nomenclature used.

Table 3. Classification of the HTs analyzed in the present review for the L-PBFed AlSi10Mg samples.

HTs Temperature Used Scopes Ref.

Direct aging DA T ≤ 200 ◦C
Si-eutectic network is not
destroyed (T ≤ 200 ◦C).
Alloying strengthening

[7,9,14,138,139,155–158]

Stress relief SR ~300 ◦C
Avoid deformations during
sample removal from the BP

Residual stress reduction
[139,143,155,159–163]

Solution heat treatment SHT
T6

400 < TSHT < Teutectic
1

TSHT > 480 ◦C 2

Formation of SSS
Melt of Si-eutectic (T > Teutectic)

Increase of ductility [7,143,157,162–166]

Artificial aging AA TAA ≤ 200 ◦C
160 < TAA < 180 ◦C 2 Alloying strengthening

Hot Isostatic Pressing HIP 500 ◦C < T < Teutectic
Sample’s densification

Increase of ductility [107,109,165,167,168]

1 400 < T < 480 ÷ 500 ◦C can be considered as an annealing (ANN) HT. 2 According to the ASTM F3318-18 [166].

The direct aging (DA) HT allows researchers to strengthen the as-built AlSi10Mg
through the precipitation phenomenon of the ε-Mg2Si phase, which follows the subsequent
precipitation sequence: SSS of Al→ GP zones formation (aggregation of Si/Mg atoms)→
dissolution of Mg→ cluster formation→ precipitation of ε” phase→ precipitation of ε′

and ε” phases→ precipitation of stable ε-Mg2Si phase [7,150,155]. Different studies show
the DSC curve performed on the as-built AlSi10Mg samples highlighting the exothermic
peaks related to the precipitation phenomena of the ε-Mg2Si sequence. Fiocchi et al. [155]
showed a single precipitation peak at 256 ◦C attributable to ε-Mg2Si phase performing
the DSC between 0 and 500 ◦C. Van Cauwenbergh et al. [139] showed, instead, the first
and second exothermic peaks at 195 and 295 ◦C, respectively, related to the precipitation
phenomenon. Tonelli et al. [156] reported another exothermic peak at 150 ◦C related to
the ε” precipitate. In this scenario, these studies can confirm the effects induced by the
pre-heated BP at temperatures between 100 and 200 ◦C.

The stress relief (SR) HT was often used to remove the manufactured samples from
the BP to avoid their deformation.

Finally, T6 HT allows for obtaining an increase in ductility thanks to the solution heat
treatment (SHT) and the alloy strengthening through the precipitation phenomena during
the following artificial aging (AA). While HIP HT was used to increase the sample density.

The microstructures obtained after the DA (180 ÷ 225 ◦C) are shown in Figure 20, as
reported by [14,139].

At low magnification (Figure 20a), the MPC and MPBs do not show any microstruc-
tural variation, as also reported by [9,157,158,169]. On the other hand, finer Si-rich pre-
cipitates are visible in the α-Al matrix, as shown in Figure 20b by [139]. It is necessary
to underline that the sample analyzed in Figure 20a,b was manufactured on the BP at
room temperature (Figure 13). The same authors analyzed the AlSi10Mg alloy in the same
condition shown in Figure 13, where the samples were manufactured on the BP at room
temperature. Cerri et al. [14] showed an increase in these precipitates, which were already
present in as-builtα-Al matrix, after the DA at 200 ◦C for 6 h (Figure 20c) and at 225 ◦C × 6 h
(Figure 20d). At the same temperature, Baek et al. [157] affirmed that the precipitation of
these particles can cause a uniform distribution of the dislocation, unlike the HT performed
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at 225 ◦C, which induces initial destruction of the Si-eutectic network. The openings within
this network become larger as the temperature increases from 240 to 300 ◦C during the SR
HT due to the Ostwald ripening effect (Figure 21a–c) [139,155,159,160,163,164].
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Moreover, in this case, Van Cauwenbergh et al. [139] did not detect the presence of
the stable ε-Mg2Si phase even after the SR HT at 270 ◦C, confirming the DSC analysis
previously discussed.

Despite the loss in mechanical properties (that will be discussed in Section 4), SR heat
treatment aims firstly to decrease the residual stress that is generated during the L-PBF
process and, secondly, to avoid the consequent deformations derived by the removal of
the printed sample from the BP [156,161]. In this scenario, the use of the pre-heated BP can
prevent the execution of the SR HT due to the lower amount of residual stress into the as-
built sample [138,162]. At the same time, the Si-eutectic network is not destroyed (Figure 13)
and the mechanical properties are preserved (which will be discussed in Section 4).

Figure 21d,e show the AlSi10Mg microstructure after the T6 heat treatment (SHT +
AA), where the high anisotropy characterizing the as-built sample is cancelled even if, in
Figure 21d, the MPBs can still be observed after the SHT at 505 ◦C × 4 h [9]. Ji et al. [170]
explained this behavior through the Si content variation between the laser scan tracks
boundaries and their centre. During the SHT, the microstructural evolution follows the
schematic representation shown in Figure 22.
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precipitate along the Al-Si cellular boundaries and grow up as reported in Figure 22c. By 
increasing the Si particle size, their density in terms of quantity decreases. The increase in 
size with the SHT temperature is related to the decrease of Si density; the same authors 
confirm that the as-built α-Al matrix is SSS. De facto, the excess of Si is rejected from the 
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Figure 22. Schematic representation of the Si-eutectic network evolution during the SHT treatment,
where the α-Al matrix is the gray background: (a) as-built AlSi10Mg with a full cellular structure
where the Si-eutectic network is undamaged, (b) Si-eutectic network destroyed with the initial
Si-particle coarsening, (c) Si-particle coarsened.

After the SHT + AA, the Si is rejected from the α-Al matrix and forms small Si particles
as illustrated in Figure 22a,b. Due to the high SHT temperature/time, the Si particles
precipitate along the Al-Si cellular boundaries and grow up as reported in Figure 22c. By
increasing the Si particle size, their density in terms of quantity decreases. The increase in
size with the SHT temperature is related to the decrease of Si density; the same authors
confirm that the as-built α-Al matrix is SSS. De facto, the excess of Si is rejected from the
lattice structure [170,171]. Other authors showed an increase in Si particle size also with
the holding time at high SHT temperature [148,172]. In this scenario, Li et al. [171] reported
the Si solubility study considering the following Vegard’s law:

v = −0.0032Xsi + 0.40494 (7)

where v is the lattice parameter of α-Al and XSi is the atomic fraction of Si into α-Al.
The same authors show a solubility of 8.89% for the as-built AlSi10Mg and 3.25, 2.75
and 2.13% after the SHT at 450, 500 and 550 ◦C, respectively. The values were reduced
by the following AA at 180 ◦C for 12 h to 2.52, 2.02, and 1.68%, respectively, due to the
precipitation phenomena. During the same SHT, Zhou et al. [147] also showed the presence
of needle-like Fe-rich phase (β-Al5FeSi), in addition to the spherical precipitates rich in
Si and Fe within the α-Al. The same authors confirm the precipitation of needle-like ε”
precipitates (length < 10 nm) placed along <100> direction and GP zones after 520 ◦C × 2 h
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of SHT and 160 ◦C/2 h of AA. Liu et al. [173] showed the same results after 530 ◦C × 6 h,
as shown in Figure 23.
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Figure 23. (a,c–g) STEM-HAADF (Scanning Transmission Electron Microscope—High-Angle Annular
Dark Field)images of the β-Al5FeSi intermetallic phase, Al, Si and Mg elements detected into solution
heat treated AlSi10Mg sample at 530 ◦C × 6 h. (b) SAED (Selected Area Electron Diffraction) pattern
of the area marked with a circle in (a) (Reprinted from reference [173]).

They also affirmed the absence of ε′ and ε precipitates, unlike Wei et al. [172], who
confirmed the presence of ε-Mg2Si precipitate after 540 ◦C × 2 h.

The same results were obtained by Iturrioz et al. [174], who analyzed the AlSi10Mg
samples after SHT at 450 and 550 ◦C and AA at 180 ◦C. They supposed that the unde-
tectability of the ε-Mg2Si precipitates is because their lower amount than the detection limit.
On the other hand, the intensity of Si peaks increases from the as-built to the heat-treated
condition confirm the increase of Si content into α-Al due to the Si precipitates as reported
by [14,143,147,170,174]. In addition, the T6 HT induces a coarsening of the columnar grains
formed during the L-PBF fusion rather than the DA and SR HTs [157]. Increasing the SHT
temperature and/or time, the recrystallized equiaxed grains form due to the recrystal-
lization process [148]. This phenomenon balances the reduction in plasticity induced by
the Si particles precipitation [143]. Wei et al. [172] showed that the grain size increases
slightly between the as-built- and T6 heat-treated at (540 ◦C× 2 h) + (170 ◦C× 4 h) samples
and that the % of recrystallization grains is the same. De facto, Chen et al. [175] affirmed
that the dislocations present within the cellular boundaries of the as-built sample can act
as nucleation sites. On the other hand, Si particles can hinder the grain growth because
of the recrystallization process during the T6 HT [172,175]. If the higher microstructural
variation takes place during only the SHT treatments, Merino et al. [165] showed Si particles
coarsening, even after an AA performed at 177 ◦C × 1000 h.
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In conclusion, the HIP HT, which can be used to reduce the internal pores inducing the
sample’s densification, confers the same microstructural effects of the T6 HTs [107,108,167].
Merino et al. [165] showed a complete recrystallization process after HIP (515 ◦C × 3 h ×
100 MPa) and HIP + T6 (515 ◦C × 3 h × 100 MPa) + ((530 ◦C × 6 h) + (160 ◦C × 6 h)) HTs.
In this scenario, Ertuğrul et al. [107] also combined the HIP HT with the T6 to increase the
mechanical properties, but the round Si particles become larger and more spherical, and
the microstructure shows needle-like Fe-rich phases. The same results were reported by
Schneller et al. [108] and Hafenstein et al. [167] who showed a decrease between 64 and
66% of the internal pores.

4. L-PBFed AlSi10Mg: Mechanical Properties

Table 4 shows the mechanical properties of L-PBFed AlSi10Mg samples before and
after the heat treatments of which microstructural effects are discussed in Section 3.2.
(DA, SR, SHT, and HIP). Due to the influence of the ED on both the presence of defects
and microstructure, all studies reported in the following table showed ED values from
35 to 60 J/mm3. Thus, all illustrated values are comparable to each other. For a better
understanding, H and V represent the horizontal and vertical directions, respectively.

Table 4. Mechanical properties of as-built and heat-treated L-PBFed AlSi10Mg samples.

Process Parameters
Directions HT

UTS
(MPa)

YS
(MPa) A (%) Ref.P

(W)
v

(mm/s)
h

(µm)
t

(µm) BP

370 1400 70 90 150 ◦C H As-built
441 ± 3 285 ± 6 6.6 ± 0.8

[9]
411 ± 9 1 237 ± 6 7.0 ± 1.3

750 1100 – – RT – As-built 375 ± 18 225 ± 14 6.0 ± 2.5 [13]

350 1150 170 50 150 ◦C H As-built
430 ± 8 286 ± 8 7.0 ± 0.4

[14]
365 ± 7 1 220 ± 2 7.2 ± 0.3

– –

190
60

–

H

As-built

323 ± 2 190 ± 6 6.7 ± 0.2

[137]

30 367 ± 4 244 ± 1 6.9 ± 1.0

100 30 469 ± 4 314 ± 1 5.6 ± 0.6

190
60

V
340 ± 1 214 ± 6 3.2 ± 0.1

30 380 ± 2 233 ± 2 3.9 ± 0.2

100 30 437 ± 4 278 ± 1 3.4 ± 0.1

– – – 60
RT

– As-built
435 250 7.5 ± 2.5

[139]
200 ◦C 310 160 5.0 ± 1.0

370 1300 190 30 165 ◦C
H

As-built
429 ± 8 226 ± 7 4.0 ± 0.3

[143]
V 418 ± 7 269 ± 6 7.8 ± 0.4

340 1300 200 30 160 ◦C
H

As-built
386 ± 3 248 ± 2 8.6 ± 1.4

[138]
V 412 ± 5 228 ± 4 7.0 ± 0.1

250 1400 130 30 – – As-built 448 264 9.8 [158]

300 1000 130 40 – – As-built 463 ± 3 237 ± 4 7.6 ± 1.0 [165]

350 1140 170 50 100 ◦C – As-built 434 ± 12 322 ± 8 5.3 ± 0.2 [170]

200 1000 150 30 – V As-built 465 ± 8 305 ± 4 8.6 ± 1.4 [176]

– – – – –
H

As-built
318 216 5.7

[177]
V 320 221 5.4
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Table 4. Cont.

Process Parameters
Directions HT

UTS
(MPa)

YS
(MPa) A (%) Ref.P

(W)
v

(mm/s)
h

(µm)
t

(µm) BP

370 1300 190 30 –
H

As-built
409 ± 2 242 ±2 10.9 ± 0.7

[178]
V 410 ± 2 224 ± 1 6.7 ± 0.3

390 1300 190 30 RT H As-built 525 ± 4 287± 2 – [179]

350 1150 170 50 150 ◦C V As-built 393 ± 20 273 ± 3 2.5 ± 0.4 [180]

370 1400 70 90 150 ◦C

H DA 200 ◦C × 4 h

374 ± 1 231 ± 2 8.2 ± 1.2

[9]
363 ± 8 1 219 ± 6 8.5 ± 0.6

350 1150 170 50 150 ◦C
371 ± 9 230 ± 8 8.2 ± 0.7

348 ± 2 1 209 ± 2 7.6 ± 0.8

750 1100 – – RT – DA 160 ◦C × 8 h 399 ± 13 284 ± 16 4.5 ± 1.9 [13]

350 1150 170 50 150 ◦C H

DA 175 ◦C × 6 h
419 ± 16 258 ± 9 7.6 ± 0.4

[14]

396 ± 18 1 232 ± 11 7.6 ± 0.6

DA 200 ◦C × 6 h
395 ± 11 235 ± 12 9.0 ± 1.0

350 ± 9 1 199 ± 6 9.2 ± 0.5

DA 225 ◦C × 6 h
341 ± 15 199 ± 6 13.6 ± 1.1

331 ± 19 1 184 ± 5 15.2 ± 1.0

– – – 60 RT – DA 170 ◦C × 6 h 400 295 5.05 ± 0.5 [139]

340 1300 200 30 RT
H

DA 160 ◦C × 4 h
471 ± 1 321 ± 2 8.6 ± 0.5

[138]
V 493 ± 1 292 ± 1 6.0 ± 0.6

250 1400 130 30 – – DA 180 ◦C × 6 h 452 310 6.2 [158]

300 1000 130 40 – –

DA1 177 ◦C × 10 h 418 ± 9 233 ± 12 5.1 ± 0.8

[165]DA2 177 ◦C × 100 h 403 ± 9 229 ± 12 4.2 ± 0.6

DA3 177 ◦C × 1000 h 391 ± 5 231 ± 9 4.6 ± 0.7

750 1000 – – RT – SR 300 ◦C × 2 h 225 ± 7 132 ± 9 11.5 ± 3.5 [13]

370 1300 190 30 RT – SR 300 ◦C × 2 h 302 ± 15 210 ± 16 10.7 ± 1.6 [107]

– – – 60 RT – SR 270 ◦C × 2 h 335 210 12 ± 2 [139]

370 1300 190 30 165
H

SR 300 ◦C × 2 h
257 ± 1 160 ± 1 18.1 ± 0.5

[143]
V 261 ± 3 170 ± 2 19.1 ± 1.0

300 1000 130 40 – –

SR 285 ◦C × 2 h 249 ± 10 153 ± 8 21.3 ± 1.7

[165]

SR+DA1 285 ◦C × 2 h +
177 ◦C × 10 h 246 ± 9 154 ± 8 21.6 ± 1.8

SR+DA2 285 ◦C × 2 h +
177 ◦C × 100 h 271 ± 4 174 ± 3 16.5 ± 1.2

SR+DA3 285 ◦C × 2 h +
177 ◦C × 1000 h 245 ± 5 155 ± 2 14.8 ± 2.0

SR 190 ◦C × 2 h 2 443 ± 16 258 ± 4 4.7 ± 1.2

SR +
DA1

190 ◦C × 2 h +
177 ◦C × 10 h 441 ± 9 231 ± 7 5.0 ± 0.8

SR +
DA2

190 ◦C × 2 h +
177 ◦C × 100 h 407 ± 8 229 ± 7 5.0 ± 0.7

SR +
DA3

190 ◦C × 2 h +
177 ◦C × 1000 h 387 ± 4 221 ± 6 5.3 ± 1.1
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Table 4. Cont.

Process Parameters
Directions HT

UTS
(MPa)

YS
(MPa) A (%) Ref.P

(W)
v

(mm/s)
h

(µm)
t

(µm) BP

200 1000 150 30 – V
SR 300 ◦C × 4 min 322 ± 5 220 ± 4 6.3 ± 0.2

[176]
SR 300 ◦C × 40 min 282 ± 4 192 ± 6 12.8 ± 0.7

390 1300 190 30 RT H
SR 250 ◦C × 2 h 421 ± 2 249 ± 2 –

[179]
SR 300 ◦C × 2 h 341 ± 16 212 ± 12 –

– – – – 200 ◦C
H

SR 300 ◦C × 2 h
327 ± 3 209 ± 1 –

[181]
V 350 ± 0 209 ± 0 –

370 1400 70 90 150 ◦C H T6
505 ◦C × 4 h +
175 ◦C × 4 h

295 ± 2 239 ± 2 11.3 ± 2.5
[9]

292 ± 5 1 236 ± 5 9.5 ± 2.2

750 1100 – – RT – SR + T6

300 ◦C × 2 h +
543 ◦C × 1 h +
180 ◦C × 1 2h

329 ± 12 278 V 6 6.0 ± 1.4

[13]
300 ◦C × 2 h +
543 ◦C × 3 h +
180 ◦C × 8 h

332 ± 11 292 ± 12 4.4 ± 0.8

350 1150 170 50 150 ◦C H T6
505 ◦C × 4 h +
175 ◦C × 4 h

274 ± 3 226 ± 2 8.4 ± 0.8
[14]

290 ± 4 1 238 ± 4 9.7 ± 1.0

370 1300 190 30 RT – T6 540 ◦C × 2 h 297 ± 10 234 ± 7 5.0 ± 1.5 [107]

– – – – RT – T6 540 ◦C × 8 h +
160 ◦C × 6 h 225 180 – [139]

370 1300 190 30 165 ◦C H SHT 500 ◦C × 2 h 133 ± 1 78 ± 1 29 ± 1 [143]

340 1300 200 30 RT
H

T6
540 ◦C × 1 h +
160 ◦C × 4 h

323 ± 0 243 ± 0 15.3 ± 2.4
[138]

V 302 ± 2 223 ± 3 16.0 ± 1.4

300 1000 130 40 – –

T6 530 ◦C × 6 h 308 ± 8 240 ± 8 16.2 ± 1.5

[165]

T6 +
DA1

530 ◦C × 6 h +
160 ◦C × 6 h +
177 ◦C × 10 h

283 ± 10 232 ± 7 14.5 ± 1.5

T6 +
DA2

530 ◦C × 6 h +
160 ◦C × 6 h +
177 ◦C × 100 h

201 ± 2 159 ± 3 16.2 ± 0.6

T6 +
DA3

530 ◦C × 6 h +
160 ◦C × 6 h +

177 ◦C × 1000 h
144 ± 6 94 ± 4 28.9 ± 2.7

350 1140 170 50 100 ◦C – SHT

450 ◦C × 2 h 282 ± 6 197 ± 4 13.4 ± 0.5

[170]500 ◦C × 2 h 214 ± 5 126 ± 2 23.5 ± 0.8

550 ◦C × 2 h 168 ± 2 91 ± 2 23.7 ± 0.8

200 1000 150 30 – V
SHT 540 ◦C × 2 h 185 ± 7 98 ± 2 16.7 ± 0.5

[176]
T6 540 ◦C × 2 h +

160 ◦C × 2 h 254 ± 7 194 ± 5 7.0 ± 0.3

250 1400 130 30 – – T6 520 ◦C × 2 h +
180 ◦C × 6 h 242 180 9.6 [180]

– – – – 200 ◦C
H

SR + T6
300 ◦C × 2 h +
540 ◦C × 8 h +
160 ◦C × 10 h

337 ± 8 280 ± 5 –
[181]

V 315 ± 15 267 ± 12 –
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Table 4. Cont.

Process Parameters
Directions HT

UTS
(MPa)

YS
(MPa) A (%) Ref.P

(W)
v

(mm/s)
h

(µm)
t

(µm) BP

370 1300 190 30 RT –

HIP 500 ◦C × 75 min
+ 100 MPa 176 ± 2 108 ± 3 25.0 ± 0.5

[107]

SR
+HIP +

T6

300 ◦C × 2 h +
500 ◦C × 75 min

+ 100 MPa +
540 ◦C × 2 h +
180 ◦C × 4 h

345 ± 1 308 ± 25 5.8 ± 1.7

SR +
HIP +

T6

300 ◦C × 2 h +
500 ◦C × 75 min
+ 100 MPa + 540
◦C × 2 h +

180 ◦C × 12 h

306 ± 9 254 ± 9 8.7 ± 3.3

300 1000 130 40 – – HIP 515 ◦C × 3 h +
100 MPa 144 ± 1 88 ± 4 32.2 ± 1.2 [165]

300 1000 130 40 – –

HIP +
DA1

515 ◦C × 3 h +
100 MPa +

177 ◦C × 10 h
144 ± 1 93 ± 2 31.8 V 1.0

[165]
HIP +
DA2

515 ◦C × 3 h +
100 MPa +

177 ◦C × 100 h
138 ± 1 93 ± 1 30.5 ± 3.1

HIP+DA3
515 ◦C × 3 h +

100 MPa +
177 ◦C × 1000 h

127 ± 1 80 ± 1 33.3 ± 1.3

1 The UTS, YS and A are related to the top samples (maximum distance from the pre-heated BP) [14]. 2 HT defined
as SR by the same authors [165].

Generally, the tensile strengths of the as-built samples reach high values due to
the microstructure shown in Figures 12, 13 and 20. On the other hand, the ductility
values do not meet the standard specification and project requirements very often
(Table 4) [9,13,137,139,166,176]. In this scenario, despite the similar ED values of all stud-
ies analyzed, the process parameters and the build chamber orientation significantly in-
fluence the mechanical properties of the as-built sample [137,138,143,176,177]. Firstly,
Paul et al. [137] showed a reduction in the strength of ~10–12% with an increase in t from
30 to 60 µm. In this case, the ductility was not affected. The UTS (Ultimate Tensile Strength)
and YS (Yield Strength) reach 323 MPa and 190 MPa from 367 MPa and 244 MPa, respec-
tively, with 190 µm of hatch spacing. Both the UTS and YS values increase with decreasing
the hatch spacing at 100 µm, as shown in Table 4. Ghio et al. [9] showed, instead, increase in
strengths of about 5.5% by increasing the layer thickness (+40 µm) and decreasing the hatch
spacing (–100 µm). Secondly, the H-samples show lower UTS and YS than the V-samples,
in addition to the ductility’s variation, highlighting the anisotropy that characterizes the
as-built samples [138,139,143]. Other authors have not reported differences between the
tensile strength values in relation to the build orientation [177,178]. In terms of ductility,
Ben et al. [177] explained this variation, firstly, through the load conditions during the
tensile test, secondly, through the presence of voids. They affirmed that the crack-like voids
(LOF) present along the MPBs are more dangerous than the spherical pores (Section 2) due
to their different deformation during the tensile test. The spherical pores show limited
deformation compared to the crack-like voids along the load direction.

Another factor that influences the tensile properties is the presence of the pre-heated
BP during the L-PBF process, which influences the precipitation phenomena, as reported
in Figure 19. Cerri et al. [14] reported a decrease in UTS and YS from 430 ± 8 MPa and
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365 ± 7 MPa and from 286 ± 8 MPa to 220 ± 2 MPa, respectively, analyzing the effects
of the pre-heated BP at 150 ◦C (see both Table 4 and Section 3.1). As a matter of fact, the
aging phenomenon and Si-particles precipitation occurring in as-built samples (Figure 13)
increase the tensile strengths. The elongation values are not significantly influenced. At
the same time, the BP effects are equally significant after the DA HT performed at similar
temperatures of the platform. De facto, Cerri et al. [14] showed an increase of UTS and YS
values on top samples (which are not affected by the hot BP) rather than the bottom samples
after the DA at 175 ◦C × 6 h. Yang et al. [13] highlighted the same effects performing the
DA at 160 ◦C × 8 h on AlSi10Mg samples manufactured on cold BP (35 ◦C), while Casati
et al. [138] showed these effects after the DA at 160 ◦C × 4 h. Finally, it is necessary to
observe that the effects induced by the pre-heated BP are strictly related to its temperature,
and to the printing time.

Analyzing the SR HT, no study shows the increase in the tensile strengths due to the
microstructure reported in Figure 21. Obviously, the higher decrease in strengths is obtained
only after the SHT or HIP HTs when the UTS and YS values are similar to those obtained for
the as-cast AlSi10Mg alloy [7,10,49,147]. On the other hand, the elongation values reached
with the SR heat treatment can already satisfy the standard specification requirements
(A > 10%) [166]; however, those obtained after the SHT and HIP heat treatment reach the
maximum obtainable values (23 ÷ 31%). In all cases, the tensile strengths were recovered
through opportune DA heat treatments. Li et al. [176] showed the UTS and YS increase
of 30 and 50%, respectively, after the DA at 160 ◦C × 2 h performed on solution heat-
treated samples at 500 ◦C × 2 h. The same results are reported by [143,170]. For each heat
treatment, a disproportionate holding time at the aging temperatures induces a decrease
in strength due to the microstructural effects, as shown by Merino et al. [165]. The same
authors applied different DA heat treatments at 177 ◦C × 10, 100, 1000 h on HIPed and T6
heat-treated.

The decreasing trend of UTS and YS values, opposite to the elongation values, are
appropriately described by [157,164,165,176]. Starting from the as-built samples and the
direct aged samples at low temperature (where no microstructural variation was observed),
Li et al. [176] proposed three deformation scenarios (Figure 24) that deviated from the
Orowan bowing mechanisms around the Si particles and that could justify the tensile
strength behavior. The first one is the dislocation de-pinning from supersaturated atoms in
α-Al (Figure 24a); the second one is the deformation by cutting dislocation forest near the
interface between the Al/Si interfaces (Figure 24b); the last one is the dislocation emission
from the same interfaces (Figure 24c).
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The presence of dislocation density around the solute atoms into the aluminium matrix
is also reported in Section 3.1.

Thus, the high mechanical properties can be expressed through the following sum of
strengthening effects [182,183]:

σ0.2 = σf + σss + σHP + σOr + σP + σpre (8)

where σf (MPa) is the friction stress of the lattice, σss (MPa) is the solid solution strengthen-
ing, σHP (MPa) is the strength obtained by the grain size (Hall–Petch equation), σOr (MPa)
is the Orowan strengthening, σp (MPa) is the dislocation hardening and σpre (MPa) is the
contributed sum of the dislocation and precipitates. Li et al. [176] showed that the first
parameter can be calculated as 5.5 MPa; for this reason, it can be neglected if compared
with the other contributions. Yang et al. [13] expressed the solid solution strengthening as
follows:

σss =
[
kMg(C

Mg
α )

m
+ KSi(CSi

α )
m]

(9)

where kMg and kSi are 17 and 11 MPa wt%−1, respectively, m is 1 and C is the chemical
concentration of Mg and Si into the α-Al matrix, respectively. The same authors suggest
that this contribution is negligible after the T6 HT. Hadadzadeh et al. [182] proposed the use
of the Hall–Petch equation (considering the cellular structure of the L-PBFed AlSi10Mg):

σHP =
K√

d
, (10)

where K is a material constant (~0.04 MPa m1/2, [184]), and d is the average cell size (m).
The Orowan strengthening was expressed by Dieter [185], as follows:

σOr =
0.13Gb

λ
ln

r
b

, (11)

where G (GPa) is the Al shear modulus (26.5, [158,183]), b is the Burgers vector

(0.286 nm), [158,184], λ is the interparticle spacing (nm)
(

λ = r
(

2π
3 f

) 1
2
)

[148], and r is

the particle radius (nm). Figure 25a,b show the schematic interaction between a dislocation
and the cell boundaries via Orowan looping in a full-cellular AlSi10Mg structure [164].
When an applied load moves a large dislocation (same magnitude of the grain size) into
the AlSi10Mg microstructure, it will be pinned by the Si-eutectic network, forming both
dislocation loops around the Si-particles and a new dislocation (Figures 24a and 25b).
Chen et al. [186] observed a high amount of dislocation and dislocation loop through
HRTEM (High-Resolution Transmission Electron Microscope) observations in a deformed
AlSi10Mg sample.

Rodriguez [187] expressed the dislocation hardening contribution as follows:

σp = βMGb
√

ρp (12)

where β is a material constant (0.16, [181]), M is the Taylor factor (3.06, [158,184]), G
(GPa) is the Al shear modulus, b is the Burgers vector and ρp is the density dislocation.
Finally, Starink et al. [188] suggested the following equation to predict the strengthening
contribution conferred by the dislocation and precipitates:

σpre = C4
Gb√
lDlt

[√
f + 0.7 f

√
lD
lt

+ 0.12
(

lD
lt

)√
f 3

]
(13)
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where C4 (-) is a material constant, lD and lt are the diameter (nm) and thickness of the
precipitate (nm), f is the volume fraction (-). Thus, considering all contributions expressed
through the Equations (9)–(13), the Equation (8) can be rewritten as follows:

σ0.2 = 5.5 +
[
kMg(C

Mg
α )

m
+ KSi(CSi

α )
m]

+

[
K√

d

]
+

[
0.13Gmb

λ
ln

r
b

]
+
[
βMGb

√
ρp
]

+

[
C4

Gb√
lDlt

[√
f + 0.7 f

√
lD
lt

+ 0.12
(

lD
lt

)√
f 3

]] (14)
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Focusing on the microstructure obtained after the T6 and HIP HTs (Section 3.2),
some contributions reported in Equation (13) decrease with respect to the as-built case.
Baek et al. [157] showed a decrease of σHP from 89.22 MPa to 12.46 MPa considering the
as-built and T6 heat-treated sample, respectively. The same authors highlighted an obvious
increment of the Orowan strengthening from 59.05 MPa (as-built condition) to 183.30 MPa
considering the direct aged samples (180 ◦C × 6 h), and a subsequent drastic decrease
to 12.56 MPa analyzing the T6 heat-treated samples. Finally, the contribution related to
the dislocation amount decreases with the HT temperature and holding time (Section 3.2).
Merino et al. [165] observed that the mechanical properties of T6 and HIP heat-treated
samples is dominated by the grain size and Si particles in terms of size and distribution. In
fact, the tensile strength decrease showed by the same authors is confirmed through the
coarsening effects (Section 3.2), and not through the precipitation phenomena, despite the
DA HT. The same observations were emphasized by Baek et al. [157]. Wei et al. [172] did
not show the same results due to the slight increase in the grain size after the T6 HT. They
affirmed that the decrease in hardness is dominated only by the reduction of the dislocation
amount within the cells and not by the grain size.

In this scenario, the microstructural configuration reported in Figures 11, 16 and 21
dominate the fracture mechanisms and the elongation of the L-PBFed AlSi10Mg samples
in as-built and heat-treated conditions. Delahaye et al. [142], who analyzed the fracture
mechanism into as-built AlSi10Mg samples, highlighted that the dislocation can easily
move into the HAZ zones rather than into MPC due to their microstructure (Figure 16) and
due to the different values of the yield strength. Other important factors characterizing the
fracture mechanism are the Si-particle decohesion from the α-Al matrix, and the formation
of voids at their interface [142,179]. This crack path characterizes more the V-samples than
the H-samples, as reported in different studies [137,177,189,190]. De facto, the load direction
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changes the mechanical behavior between the H- and V-samples due to the microstructural
texture characterizing the as-built samples [13,137]. Yang et al. [13] affirmed that the H-
samples show a grain deformation, while the V-samples are characterized by deformation
along the MPBs through a detailed description of the strain and stress anisotropy. Thus, the
path of the cracks can vary, as schematically shown in Figure 26 and carefully described
by [137,189].
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The presence of internal pores is another important factor into damage mechanisms
because they caused an early break of the sample under a load [13,177,190].

The fracture surfaces shown in Figure 27, analyzed by Zhou et al. [191], report the
presence of dimples, cleavage surface, cracks and the typical geometry of the MPBs, which
confirms what was previously discussed. The lamellar features and the segments of the
Si-eutectic network present on fracture surfaces are caused by the load-bearing capacity of
the Si network and by the load transfer from the same particles to the α-Al matrix [179].
The same authors proposed an interesting scheme of damage mechanisms about the
microstructural variation from the full-cellular to coarsened structures. In the former
case, the crack propagates along the cell boundaries, while, in the latter one, the crack
interconnects the Si particles and voids caused by the Si-particle decohesion from the
matrix. Figure 28 shows what was just reported, in addition to the effects induced by
the MP boundary that remained in the T6 heat-treated microstructure (Section 3.2) [9].
The same results are shown in other studies conducted by [9,13,107,142,157]. Martin [192]
proposed the following correlation to obtain the work W necessary to create a crack between
the Si-particle and the α-Al matrix:

W ∝ γAl + γSi − γAlSi (15)

where γAl (J/m2) and γAl (J/m2) are the matrix and precipitate surface energy, while γAlSi
(J/m2) is the interface energy. This last term is strictly related to the Si-particle size, and it
increases with the size.

The coarsened microstructure obtained after the T6 or HIP HTs increase the value of
the interface energy (γAlSi) and, consequently, reduces the work necessary to nucleate a
crack. In addition, the nucleation and propagation of the crack can be influenced by the
presence of brittle β-Al5FeSi phases and by the density variation after the HTs [13,49,107].
As a matter of fact, already after the SR at 300 ◦C × 2 h the sample’s density can decrease
from 2.68 g/cm3 to 2.58 ÷ 2.61 g/cm3 as reported by Mfusi et al. [160]. The same results
were also obtained after different T6 heat treatments by [13,48,49]. Yang et al. [13] and
Girelli et al. [49] justified the increase in porosity through the matrix deformation caused
by the gas pressure during the heat treatment. De facto, the yield strength of the material
around the pore decreases due to the high temperature; the increase in gas pressure can
deform it.
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5. L-PBFed AlSi10Mg: The Corrosion Resistance

The corrosion resistance of the as-built and heat-treated AlSi10Mg samples is strictly
related not only to their surface finishing but also to their microstructure, which depends on
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the following aspects: ED values used during the L-PBF process, HT time and temperatures,
build orientations and presence of defects (Table 5) [193–200].

Table 5. Review on the corrosion of the AlSi10Mg samples.

Environment Corrosion Related
to HT Corrosion Characteristics Ref.

Harrison’s
solution

Surface finish,
build orientation As built Anisotropy of corrosion resistance

between the xz and xy planes Ecorr = −0.6 ÷ −0.7 V [193]

Harrison’s
solution

Surface finish and
HTs

As built

The spontaneously passive layer
formed in air is more protective

than the same forming during the
L-PBF process.

Ecorr/unpolished = −0.561 ÷
−0.649 V

Ecorr/polished = −0.570 ÷
−0.758 V

[194]275 ◦C × 2 h
(AC)

SR does not reduce the
susceptibility to the corrosion

attack penetration.

Ecorr/unpolished = −0.615 ÷
−0.869 V

Ecorr/polished = −0.476 ÷
−0.624 V

275 ◦C × 2 h
(AC) + 525 ◦C
× 1 h (WQ)

SR + SHT increase the local
corrosion

Ecorr/unpolished = −0.600 ÷
−0.608 V

Ecorr/polished = −0.610 ÷
−0.620 V

01M NaCl Scans strategy,
layer thickness

As-built (BP
T = 180 ◦C)

Pitting into MPBs, crack
formation. Relation between the
cellular grain size and the Volta
potential between Si and α-Al.

Ecorr = −0.639 ÷ −0.650 V [197]

3.5 wt% NaCl SLM/As cast As built As built lower mass loss than
as cast

Ecorr = −0.73 V,
icorr = 0.54 µA/cm2 [199]

3.5 wt% NaCl Surface finish 300 ◦C × 2 h Higher resistance for the polished
than unpolished samples

Unpolished 2.13 pit/cm2.
Polished 0.93 pit/cm2 [200]

Fathi et al. [198] showed an apparently better corrosion resistance of the as-built
L-PBFed AlSi10Mg samples than the same as-cast samples due to their finer microstruc-
ture. Revilla et al. [197] demonstrated that the potential difference between the Si crystals
inside the MPBs and the α-Al matrix was higher, at about 127 mV, than the same differ-
ence between the Si crystals and the outside zone (95 mV) (see Figure 29a). The same
authors showed a presence of crystallographic pitting developing in the α-Al grains within
the MPBs.
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The same results were also obtained by [172,197,198,202]. Cabrini et al. [202] high-
lighted that the Si-eutectic network partially shielded the MPC from the corrosion attack
because the local acidification formed during the corrosion process prevent the oxide film
reformation.

On the other hand, several studies show a large corrosion attack penetration along the
MP boundaries [193,194,196,203]. De facto, Figure 30 shows a schematic representation of
the corrosion initiation and propagation of the as-built L-PBFed Al-Si alloys as proposed
by [204].
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Figure 30. Schematic representation of the corrosion mechanism in the AlSi10Mg as built sample:
(a) surface without corrosion attack, (b,c) initiation of the corrosion attack, (d) micro-crack formation,
(e) micro-crack and corrosion attack propagation (Reprinted from reference [201]).

Figure 30a–c show the initiation of the corrosion attack that takes place at the MPB
due to the higher driving force for galvanic corrosion induced by the higher potential
difference. Moreover, crack formation can be due to the Si-eutectic destruction into HAZ
correlated to the residual stress characterizing the as-built samples (Sections 2 and 3.2) and
to the α-Al matrix dissolution. Finally, the corrosion path can follow the crack propagation
(Figure 30d,e) [203].

Finally, the presence of pores might play a significant role in stress corrosion cracking
(SCC) due to their concentration point effects during the mechanical loading (Sections 2.1
and 3). In this scenario, the residual stress characterizing the L-PBFed sample also influences
the SCC [197].

As for the mechanical properties (Section 3.1), the corrosion resistance is also anisotropic
along the xy and xz planes of the as-built samples [193,205]. It is, however, necessary to
highlight that the greater anisotropy is obtained with the intergranular corrosion test [203]
rather than with the potential dynamic polarization experiment in Harrison’s solution
in the aerated solution of NaCl [193,204–207]. If Chen et al. [207] show higher corrosion
resistance on the xz plane than on the xy for the as-built Al-12Si alloy, the previous studies
show the opposite. This difference behavior can be attributable to the different chemical
compositions, even if they belong to the same family.

Starting from the DA samples, the corrosion attack takes place still along the MPB
due to the slight microstructural change (Figure 20). Cabrini et al. [194] showed that the
penetration of the corrosion attack along the MPB was higher in the AlSi10Mg after DA
at 200 ◦C rather than in the SR samples at 300 ◦C. In all cases, the influence of the build
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orientation remains visible. Rubben et al. [206] showed the corrosion attack along the MPB
even after the SR at 300 ◦C × 2 h. As a matter of fact, the corrosion mechanism changes in
relation to the heat treatment, as shown in Figure 31, due to the microstructural variation
between the as-built (first row) and heat-treated samples (T > 300 ◦C, second row). Despite
this, in both cases, corrosion propagation occurs along the MPBs.
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Figure 31. Schematic representation of the corrosion mechanism in the as-built AlSi10Mg (first row)
and in the SR (second row) samples (Reprinted from reference [201]).

Increasing the heat treatment temperature, Cabrini et al. [195] showed more general
corrosion after the intergranular test performed on the heat-treated samples at 400 ◦C. De
facto, the propagation of the corrosion attack is no longer obstructed by the Si-eutectic
network that is gradually destroyed with the temperature (Figures 20 and 21). Reaching
the SHT temperatures and focusing on T6 HT, Wei et al. [172] reported an increase in the
weight loss from 0 to 400 mg/cm−3 with the SHT temperatures and time.

On the corroded surface, the same authors showed the typical pit of pitting corrosion
after the T6 HT, in addition to a greater corrosion effect around the Si particles and/or
ε-Mg2Si precipitates after the corrosion test in 1M HNO3 solution. The dissolution of the
α-Al matrix occurs for the following reasons after the T6 HT:

• The amount of the Si rejected from the α-Al;
• The formation of the ε-Mg2Si precipitates that increase the galvanic couple.

In addition, the corrosion effects accelerate if these precipitates are characterized
by big dimensions [192]. Generally, the presence of the Mg alloying element within the
chemical composition tends to decrease the corrosion resistance of the aluminium alloys;
in fact, Al12Si is characterized by higher corrosion resistance than the AlSi10Mg and the
AlSi7Mg0.6 [207–210]. De facto, the ε-Mg2Si phase is anodic to the α-Al matrix when
the corrosion attack occurs, as demonstrated by Zeng et al. [208]. During the corrosion
phenomenon, the Mg content decreases and the consequent shift of the potential to more
positive values make the ε-Mg2Si cathodic to α-Al matrix. This variation in terms of
potential is induced by the increase in the Si effects.

6. L-PBFed Ti6Al4V: Microstructure
6.1. As-Built Microstructure

The as-built L-PBF-ed Ti6Al4V alloy shows a fully or majority martensitic (α′) mi-
crostructure within prior columnar β-grains that are arranged along the build direction
(Figure 32a,b,d,f), as also reported by [32,59,211,212].
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Figure 32. OM (Optical Microscope) micrographs of the as-built Ti6Al4V samples manufactured
along different build directions: (a,b) H-sample, sample A; (c,d) 45◦-sample, sample B; (e,f) V-sample,
sample C (Adapted from reference [211]).

The typical square shape of the columnar β-grains is shown in Figure 32e, which
represents the cross-section of sample C; they are contained in laser scan tracks. For this
reason, their distribution and size depend on the scanning strategy [211,213,214]. De facto,
some authors showed that their thickness size is in agreement with the width of the laser
scan tracks [59,213], while the α′ martensite thickness is between 0.5 and 3 µm [215,216].
The main causes of this grains size variation are correlated firstly with the selection of
different process parameters, which vary the ED and the heat transfer, and, secondly,
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with the temperature of the BP. Cepeda-Jiménez et al. [217] showed a fine and weakly
textured microstructure at ED < 37 J/mm3, which became strongly textured at ED higher
than 37 J/mm3. Other studies illustrate the same results [218–220]. Table 6 reports the
correlation between the ED values and the obtained microstructure in the L-PBFed as-built
Ti6Al4V samples, as reported by Xu et al. [221].

Table 6. As-built microstructure of Ti6Al4V samples manufactured through different ED values.

Sample ED (J/mm3) Microstructure Ref.

S1 68.47 Acicular α′-martensite
[221]S3 50.62 Lamellar α + β

S7 33.74 Acicular α′-martensite + minority of α + β

Reducing the ED from 68.47 to 33.74 J/mm3 (increasing the layer thickness, hatch
spacing and laser power from 30 µm, 120 µm and 175 W to 60 µm, 180 µm and 375 W,
respectively), the fully acicular α′-martensite microstructure is gradually replaced by α + β
lamellar structure. Barriobero-Vila et al. [222] showed a gradual microstructure transforma-
tion between the bottom region characterized by the ultrafine α + βmicrostructure and the
top region showing the acicular α′-martensite (Figure 33). Xu et al. [221] suggested that the
control of ED is necessary to achieve an ultrafine α + β during the L-PBF rather than after
the STA (solution treatment and aging), as is discussed in Section 6.2.
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In this scenario, the as-built sample formed by a fully α′ martensite structure does
not show any portion of the β-phase in the XRD spectrum, as shown in Figure 34. The
same results are illustrated by [111,223–225]. On the other hand, increasing the presence of
the α + β phase, the XRD spectrum starts showing small peaks related to the β-phase, as
highlighted in the red spectrum related to the Ti6Al4V stress-relieving sample. These can
be considered as confirmation of the α′→ α + β decomposition, as highlighted through the
orange spectra (Figure 34) after the SR HT. Finally, the fully α + β microstructure increases
the intensity of the peaks related to β and α phases, respectively.
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Figure 34. XRD spectra of as-built and stress relieved Ti6Al4V samples. In this context, the last
heat-treated condition can be compared to an as-built sample also formed by α + βmicrostructure
(Reprinted from reference [213]).

Secondly, Ali et al. [226] demonstrated the effects induced on microstructures and
mechanical properties by the pre-heated BP. At temperatures up to 370 ◦C, the microstruc-
ture remains martensitic but shows an increase in the α′ lath sizes with temperature
(Figure 35a,b). At 470 ◦C, the α′ → α decomposition occurs according to the study on
phase transformation of Ti6Al4V conducted by Kaschel et al. [227]. The authors reported
TEM results indicating the decomposition temperature at 400 ◦C, as also shown by Xing
et al. [228], and a full decomposition at 700 ◦C. Sallica-Leva et al. [229] reported, however,
an exothermic peak related to the martensite decomposition between 760 and 850 ◦C. Other
authors collocated this decomposition in the range of 600–800 ◦C [221,230]. Considering,
instead, the BP at 570 ◦C, the α′ → α + β (basketweave) transformation takes place, while
the globularization of the α-phase occurs from 670 ◦C. At the same time, the authors
showed the presence of β nanoparticles inside the α laths (Figure 35d) that increase with
temperature (Figure 35e,f).
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Simultaneously, the pre-heated BP induces a residual stress reduction, as described 
by the decreasing trend shown in Figure 36 [226,231]. Malỳ et al. [231] also emphasized a 
residual stress reduction that increased the ED from 65.5 to 83.3 J/mm3. 

Figure 35. As-built Ti6Al4V microstructures of samples manufactured on BP at different temperatures:
(a) 100 ◦C, (b) 370 ◦C, (c) 470 ◦C, (d) 570 ◦C, (e) 670 ◦C and (f) 770 ◦C where red arrows indicate the
β-particles precipitate (b) and their growth (c–f) (Adapted from reference [226]).

Simultaneously, the pre-heated BP induces a residual stress reduction, as described
by the decreasing trend shown in Figure 36 [226,231]. Malỳ et al. [231] also emphasized a
residual stress reduction that increased the ED from 65.5 to 83.3 J/mm3.
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De facto, the partial remelting of the previously solidified layer (Figure 4a) and the 
steeper gradient of temperature make more favorable the formation and growth of the 
columnar grains [239]. Bontha et al. [240] demonstrated that the process parameters vari-
ation induces a morphological grain change, as also discussed in Section 1. The same au-
thors showed that the transformation from columnar grains to mixed equiaxed micro-
structure is possible by increasing laser power or by decreasing scan speed. The same 

Figure 36. The trend of the residual stress in relation to the BP temperatures (Reprinted from
reference [226]).

During the L-PBF process, the β-grains originate from the base and grow up through
each deposited layers generating a string texture along the build direction (i.e., <100>,
parallel to the heat extraction direction) [32,59,232–235]. Moreover, in this case, the L-PBF
process is characterized by a high cooling rate (up to 108 K/s, [236,237]); focusing on G/R
and G × R factors, the L-PBFed Ti6Al4V is composed of columnar or columnar-mixed-
equiaxed grains, which are distributed as proposed in Figure 37 by Saboori et al. [238].
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De facto, the partial remelting of the previously solidified layer (Figure 4a) and the
steeper gradient of temperature make more favorable the formation and growth of the
columnar grains [239]. Bontha et al. [240] demonstrated that the process parameters
variation induces a morphological grain change, as also discussed in Section 1. The
same authors showed that the transformation from columnar grains to mixed equiaxed
microstructure is possible by increasing laser power or by decreasing scan speed. The
same results are obtained by [214,217]. After the β-grains nucleation and growth, the
diffusionless β → α′ transformation occurs due to the concomitance of cooling below
the Ms (575 ≤ TMs ≤ 800 ◦C, [241]) at a rate exceeding 470 K/s [242]. In addition, this
transformation is fulfilled according to the following crystallographic dependences [243]:

[111]‖(112)β ≡
[
2113

]
‖(2112)α′ ; [111]‖(101)β ≡

[
2113

]
‖(1; 001)α′

Yang et al. [244] reported an interesting point of view about theα′-martensite analyzing
their hierarchical structure. As matter of fact, the Ti6Al4V microstructure is formed by
columnar β-grains containing primary, secondary, tertiary and quartic α′ due to the thermal
cycles generated during the manufacturing process (Figure 38).
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Figure 39a–d show the hierarchical structure in addition to the β precipitates and
the twin structures. Other authors also highlighted the presence of a high number of
dislocations [99,213,244–246] that promote the martensite nucleation and the hierarchical
structure [244]. Karimi et al. [246] demonstrated that the number of dislocations increases
from a single to a triple re-melting during the L-PBF process.

Focusing on the cycle related to the (l + 3)th layer, into the same diagram temperature-
time shown in Figure 38, the α′-martensite can decompose generating α′ + β + α final
microstructure [99,242,244]. In addition, due to the high heat inputs, developed during the
L-PBF process, the α2-Ti3Al can precipitate (Figure 40) due to its precipitation temperature
in the range 500 ÷ 650 ◦C [222,247,248].
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Figure 39. (a,b) SEM micrographs of as-built Ti6Al4V microstructure showing: (a) the primary,
secondary, tertiary α′-martensites, (b) β precipitates within the α lath; (c,d) SAED micrographs that
highlight the

{
1011

}
twinning plane (Adapted from references [99,213]).
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relationship {011}β ‖ {0001}α, (b) SAED patter showing the α2-Ti3Al precipitate within the α
lamella (Reprinted from reference [222]).
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This spheroidal α2 precipitate formed by 25% of Al, is essential during the AA
HT [249,250]. Figure 40a shows the α + β ultrafine microstructure of an as built Ti6Al4V
sample containing the α2-Ti3Al precipitate highlighted by the electron diffraction pattern
shown in Figure 40b [222].

Thus, the L-PBF process allows reaching the precipitation temperature range for a
sufficient time to form α2 precipitates. In fact, some authors showed that α2 precipitates in
the range of 500–600 ◦C for several hours [222,241,251]. Dear et al. [251], considering the
as-cast Ti-7Al, showed an increase in the intensity of superlattice reflections of α2-Ti3Al
through TEM micrographs after 500 ◦C × 2 h (AC). The intensity increases significantly
after 240 and 2880 h. In this scenario, not only the thermal gradient reached during the
L-PBF process but also the Al and O contents promote the α2 transformation due to their
effects on the α + α2 phase-field [252,253].

In relation to the α′-martensite, which is an acicular vanadium supersaturated phase,
it crystallizes into hexagonal closed packed (hcp) as well as the equilibrium α-phase
(Section 1). Due to the difference in V content, these phases should be characterized by
several lattice parameters (a, c) and c/a ratio; however, the values shown in Table 7 do
not highlight important differences. De facto, the peaks related to the α′ and α phases
are in the same position, and the labels α′, α′/α and α can be achieved after a careful
analysis of the presence of β peaks and after scanning and/or transmission microscopy
measurements (Figure 34) [221]. The absence of the peaks of the β-phase indicates that
its amount is lower than the detection limit, so the microstructure can be considered fully
martensitic. On the other hand, the spectra showing the peaks related to the β-phase do not
discriminate the presence or absence of the α′-martensite, especially after heat treatments
at low temperatures (Section 6.2).

Table 7. Lattice parameters of the α and α′ phases into L-PBFed Ti6Al4V sample.

Phases a (Å) c (Å) c/a Ref.

α-phase
0.295 0.468 1.5896 [243]
0.294 0.467 1.588 [254]
0.293 0.468 1.597 [255]

α′-martensite
0.293 0.468 1.597 [227]
0.293 0.467 1.594 [256]

On the other hand, Takase et al. [257] showed a lattice parameters variation in relation
to the distance from the pre-heated BP (z-axis) at 520 ◦C (Figure 41a) due to the different
cooling rate during the manufacturing process that induces a α′ and α phases transforma-
tion. These obtained results are in opposition to what is discussed in Figure 33. The same
authors also showed an increase of c/a ratio from 1.595 to 1.598 considering the α′ and α
phases, respectively (Figure 41b). All of these reflect on the results obtained by the X-Ray
diffraction analysis where the α and α′ phases are considered together due to the peaks
overlap [111,227,230,258,259]. In this scenario, Sallica-Leva [229] reported the analysis of
the FWHM to discriminate the presence of the α′ and α phases. Focusing on Figure 41a,
Takase et al. [257] demonstrated that Ti6Al4V structure varies in relation to the Z position,
while the process parameters remain the same due to the different cooling rates obtained.
Figure 41b, however, highlighted the influence of the process parameters variation.
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The other phase that can be formed during the solidification process is the orthorhom-
bic α”-martensite. Fleißner-Rieger et al. [260] proposed a schematic representation of the β
→ α”→ α transformation where, due to the heat inputs, the equilibrium structure is not
perfectly matched and the intermediate α”-martensite can be nucleated. On the other hand,
the β→ α′ transformation occurs where the atomic movement is completed, and the hcp
structure is formed. The same authors reported the following lattice parameters: a = 2.96 Å,
b = 5.05 Å and c = 4.68 Å (c/a = 1.581); according to Brag’s law (2dhkl sin θ = nλ), the α”
orthorhombic phase changes the peaks obtained into XRD spectra. Kazanteva et al. [261]
and Requena et al. [262] reported the same results. Motyka et al. [243] affirmed that the
α”-martensite can be formed with opportune atom volume, electrons’ concentration, and
valency (elements with valency > 4 as V).

At the same time, the supersaturated α′ and α” martensites show a need-like structure.
Finally, different studies conducted by [258,259,261,263,264] reported the following crystal-
lographic relationships among all microstructures present in as-built Ti6Al4V samples:

(011)β‖(0001)α

(110)β‖(0001)α′

{110}β‖{001}α′′

Due to both the previously described Burgers relationship and the self-accommodation
of the α′ phase, the martensite phases are inclined by 0, 30, 60 and 90◦ to each
other [59,244,265].

6.2. Heat-Treated Microstructure

Table 8 shows the heat treatments, and their nomenclature, analyzed in the present
review. Focusing on the Ti6Al4V phase diagram (Figure 1b), these heat treatments must be
subdivided in relation to the β-transus, namely, above and below 995 ◦C. De facto, only the
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SHT and HIP are subdivided into βSHT, βHIP (T > TβTr) and α + βSHT and α + βHIP
(T < TβTr) in relation to the temperature reached during the heat treatments.

Table 8. Classification of the heat treatments analyzed in the present review for the L-PBFed Ti6Al4V
samples.

HTs Temperature Used Scopes Ref.

Stress Relief SR 400 < TSR < 800 ◦C 1
Residual stress reduction

Mechanical properties improvement
Avoid distortions

[54,59,111,265–270]

Annealing ANN 700 < TANN < 940 ◦C

Martensite decomposition
Mechanical properties improvement

(balance between strength and ductility:
bi-modal structure)

[226,230,245,259,260,271]

SHT SHT
STA

940 < TSHT < 970 ◦C 2

Tβ
SHT > β-transus

Microstructural variation to improve
ductility [30,271–276]

Artificial aging AA TAA ≤ 700 ◦C 3
Higher mechanical properties than the

ANNed samples.
α, β, α2-Ti3Al precipitation

Hot Isostatic
Pressing HIP 900 < TSHT < 1050 ◦C

(p ~ 100 MPa) 4

Sample’s densification
Increase in ductility and fatigue strength

Improvement of biocompatibility
[110,111,269,276–279]

1 According to the ASTM F3310-18 [269]. 2 According to H-81200C specification [280]. 3 Overagin conditions. 4 In
some cases, the pressure used is 150 ÷ 200 MPa.

On the other hand, the temperatures reached during the SR, ANN and AA HTs are
in the α + β region. The only distinction among these heat treatments is the subdivision
proposed by Haar et al. [245], who showed the following categories (Figure 42):

• low-SSTR (Solid Solution Temperature Region): Tdess < T ≤ 800 ◦C
• medium-SSTR: 800 < T ≤ 900 ◦C (~T0)
• high-SSTR: 900 < T ≤ TβTr
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Figure 42. α-phase vol% versus the HT temperatures (Reprinted from reference [245]).

Tdess is the α-phase dissolution temperature from which the α→ β transformation
takes place. In fact, the Tdess line shown in Figure 42 decreases with increasing temperature
up to the β-transus. In addition, T0 is defined as a critical temperature that is a temperature
range between 872 and 893 ◦C, from which the α′-martensite can be obtained after a fast
cooling (WQ or AC) [245,281,282].
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In this scenario, not only is the temperature reached during the heat treatment fun-
damental, but also the following cooling method is observable in the CCT (Continuous
Cooling Transformation) curves illustrated in Figure 43.
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At the same time, as discussed in Section 6.1, the α′ martensite decomposition already
takes place at 400 ◦C, while the α-phase decomposition occurs around 700–705 ◦C and
continues with an exponential decrease in the β-transus. Table 9 shows the microstructure
obtained after different HTs [59,245,269,283].

Table 9. Effects of different HTs on Ti6Al4V microstructure.

HT Cooling Method Microstructure Ref.

500 ◦C × 10 h FC α′-martensite decomposition [227]

T < 600 ◦C WQ
No morphological changes of the as-built microstructure

[233]
α′-martensite decomposition in α platelet arranged in the same

martensite orientation

640–650 ◦C - Nucleation of β phase [284]

700 ◦C × 2 h FC
Partially α′-martensite decomposition

[212]Fine α needle-like phase

700 ◦C × 2 h FC
α′ → α + β transformation

[230]Small fraction of β nano-particles

704 ◦C × 2 h FC α′ → α + β transformation [268]

730 ◦C × 2 h FC
α′ → α + β transformation and grain growth

[59]
α′ and α phases with the same length and width size

750 ◦C × 2 h WQ α′ → α decomposition (same directions) [233]

750 ◦C × 8 h AC
α′ → α + β transformation (quartic α′ → β; and primary, secondary and

tertiary α′ → α) [245]
Minimal grain growth
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Table 9. Cont.

HT Cooling Method Microstructure Ref.

750 ◦C × 10 h FC α′ → α + β fully transformed [227]

800 ◦C × 2 h FC
α′ → α + β transformation does not reach the equilibrium

Solute distribution into the matrix
α′, α and βmicrostructure [230]

800 ◦C × 6 h FC Twins disappeared + recovered microstructure

800 ◦C × 10/20 min AC 10 min does not affected the microstructure, while 20 min induces α′

decomposition
[265]

800 ◦C × 4 h AC
Complete decomposition of α′ martensite

Regular arrangement of α + β structure caused by
self-accommodation α′

850 ◦C × 1 h FC α′ → α decomposition and β formation due to the V content
α′, α and βmicrostructure [270]

910 ◦C × 0.5/2/8 h WQ
Primary α′ → α lamella in βmatrix, tertiary and quartic α′ into β

0.5 h is not sufficient to obtain equilibrium phases which are obtained
after 2 h [245]

945 ◦C × 4 h WQ Large amount of grain growth

960 ◦C × 0.5/4 h WQ
0.5 h is similar to the 910 ◦C × 0.5 h (WQ).

Globularisation of the α phase and significant grain growth. The α phase
becomes elongated.

900 ◦C × 2 h AC
α′ → α + β transformation with lamellar morphology

[285]Heterogeneous distribution of alloying elements + secondary α

950 ◦C × 2 h FC
α′ → α + β lamella more stable and α′ is fully decomposed

[265]
β grains become equiaxed

950 ◦C × 1 h WQ
Primary α coarsened

[275]
Precipitate dissolve and a SSS is formed

950 ◦C × 1 h AC
β→ α” transformation

Grain growth, but finer than FC
Bi-lamella structure with secondary α + β nano-particles

950 ◦C × 1 h FC Greater diffusion-controlled nucleation

1000 ◦C WQ Recrystallization (β equiaxed grain) + α′ martensite
Colony-tipe α′ martensite→ weave-type α′ martensite [212]

1000 ◦C × 2 h FC α′ → α + β lamellae stable transformation

1015 ◦C × 15 min WQ α′ martensite into columnar β grains
[268]1015 ◦C × 15 min AC α′ coarse needle + α coarse phase

1015 ◦C × 2 h FC α + β lamella [32]

1050 ◦C × 1 h FC
Recrystallization (β equiaxed grain) + α crystalizes in the β grain

boundaries
α + β structure

[270]

1050 ◦C × 1 h AC Recrystallization (equiaxed + half equiaxed β grains) [265]

1150 ◦C × 2 h AC
Recrystallization (β equiaxed grain) + α crystalizes in the β grain

boundaries
α + β coarsened lamella structure

[285]

920 ◦C × 2 h + 100 MPa
+ 920 ◦C × 12 h AC + AC 1 α′ → α + β equilibrium lamellar mixture without a significant

dislocation density [275]

704 ◦C × 2 h + 920 ◦C ×
2 h + 100 MPa FC + AC α′ → α + β equilibrium lamellar mixture [268]

955 ◦C × 1 h + 600 ◦C×
8 h FC+WQ 2 + AC α + β lamellar microstructure into semi-equiaxed grains [286]
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Table 9. Cont.

HT Cooling Method Microstructure Ref.

850 ◦C × 2 h + (975 ◦C
× 30 min→ 875 ◦C→

975 ◦C × 30 min) 3
FC + AC

α + β lamellar microstructure (width of α laths increases with
temperature)

Large primary + fine secondary α phases
[224]

950 ◦C × 2 h + (975 ◦C
× 30 min→ 875 ◦C→

975 ◦C × 30 min) 3
FC + AC α + β lamellar microstructure (width of α laths increases with

temperature)
Large primary + fine secondary α phases

[224]
1020 ◦C × 2h + (975 ◦C
× 30 min→ 875 ◦C→

975 ◦C × 30 min) 3
FC + AC

950 ◦C × 15 min +
500 ◦C × 8 h WQ + AC Acicular α′ + primary rod-like α phase [287]

950 ◦C × 4 h + 150 MPa – Coarsened α + β lamellar [288]

900 ◦C × 2 h + 100 MPa FC α + β lamellar [223]

920 ◦C × 2 h + 100 MPa – α + β lamellar and recrystallization process
[110]1050 ◦C × 2 h + 100 MPa α + β lamellar more coarsened than 900 ◦C × 2 h

1 Controlled air cooling with a cooling rate of 0.02 ◦C/s [111]. 2 FC between 955 and 855 ◦C and WQ at room
temperature [275]. 3 cyclic annealing (C-ANN) to obtain a bi-modal structure [224].

Starting from the as-built microstructure formed by fully α′ martensite (pre-heated
BP at T < 400 ◦C, [226]), the SR HT does not induce any morphological variation up to
640–650 ◦C, where Brown et al. [225] showed the presence of β phase through the XRD
spectra indicating the α′ → α + β transformation. The same authors reported a complete β
transformation at 1008 ◦C. Lekoadi et al. [212] did not show any observable microstructural
changes after 700 ◦C × 2 h (FC), while Simonelli et al. [59] highlighted the α′ → α + β
transformation after 730 ◦C × 2 h (FC) showing a microstructure formed by α + β structure.

In the same temperature range, Eshawish et al. [268] confirmed the presence of
the β phase after the SR at 704 ◦C × 2 h (FC), while Malinov et al. [284] determined
the β phase nucleation at 650 ◦C confirming the results shown by [225]. Longhitano
et al. [271] reported the same results after 650 ◦C × 3 h (FC). Finally, the morphology of
the columnar β-grains is not affected during the SR heat treatments, while the quartic α′

is transformed into β phase and the other (primary, secondary and tertiary) into α phase
(Table 9) [59,212,227,233,245,265,268,271,285].

Figure 44 illustrates the focal point of the SR heat treatment, namely, the residual stress
reduction in as-built L-PBFed Ti6Al4V samples.
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The same graph highlights that the time required to obtain an acceptable stress re-
duction is strictly related to the SR temperature. In this scenario, an appropriate choice of
this temperature should be necessary due to the following reasons: the microstructural
variations as previously discussed, and the precipitation phenomena of β nano-particles, α,
β phases and of the α2-Ti3Al [230,247,268,271,285,290]. As concerns the β nano-particles,
Etesami et al. [285] showed the presence already in as-built Ti6Al4V samples manufactured
on cold BP. The same results were obtained by Ali et al. [226]. The presence of the α2-Ti3Al
particles is caused by its precipitation temperature range and for the fact that the as-built
samples are SSS (see Section 6.1). De facto, some studies reported a solute distribution
and diffusion during the HTs, confirming the obtained microstructural variations and
precipitation phenomena [225,230,265]. Thus, the SR heat treatment parameters must be
selected to obtain the excellent reduction in the residual stress and not to incur precipitation
phenomena.

The α′-martensite decomposition and the α, β grains growth increase with the temper-
ature increasing, i.e., considering the ANN heat treatments. De facto, the range temperature
between 750 ÷ 900 ◦C fully decomposes the α′-martensite into α platelets and induces
the β-phase formation due to the V diffusion [225,230,265]. Clear differentiation between
the ANN and SR heat treatments are not reported through the literature; however, Table 8
illustrates this in the scopes section. In terms of microstructure, Huang et al. [265] re-
ported α + β structure with a regular arrangement caused by the self-accommodation of α′

martensite. In addition, they affirmed that the presence of defects induced by the L-PBF
process impedes the grain boundary movements restricting the grain growth. On the other
hand, already at ANN temperatures, the holding time and the cooling method become
significantly more important to the microstructure morphology (Table 9). Haar et al. [245]
obtained a greater grain growth (1.5–3.5 µm) of the α grain width in sample heat-treated
at 870 ◦C × 2 h (FC) than in the sample (1.5–2.5 µm) heat-treated at 870 ◦C × 4 h (AC).
Etesami et al. [285] showed an increase in size and volume of α and βwith time, in addition
to the increase in secondary α phase and the formation of rod-shaped β between the laths
of α phases.

The same authors reported the β→ α′ martensite transformation after 930 ◦C × 2 h
(WQ), confirming the T0 critical temperature, while secondary α phase into primary α
phase was obtained after 930 ◦C × 2 h (AC). The FC cooling, however, induces a complete
microstructural change into α + β, where α globularized and β is distributed into α laths.

A schematic representation of the microstructural variation (Figure 45) is reported
by Haar et al. [245], who analyzed different HTs in the low-, medium- and high-SSTR.
During the ANN below the T0 (T < 900 ◦C), α′ → β begins from the smallest quartic
α′, while the other phases coarsen. Increasing the holding time at high temperatures,
the α′ → β transformation also occurs from the larger grains (first the tertiary and then
the secondary martensites) (Figure 45a–c). At the same time, the β phase nucleates and
grows at the grain boundaries and the complete β-phase transformation from the primary
α′-martensite occurs at T > Tβtransus . As also shown in Table 9, the ANN microstructures
obtained at high temperatures reach a primary α′ → α transformation. On the other hand,
increasing the temperature above the T0, the fragmentation of primary and secondary
α grains (Figure 45d) takes place due to the β-phase formation into twinning sites. In
addition, the grain growth increases after the fragmentation process due to the increase in
the surface energy minimization.
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the ANN heat treatments in low-SSTR (b), medium-SSTR (c) and high-SSTR (d) (Adapted from
reference [245]).

After a high cooling rate, the α′-martensite becomes a matrix where the fragmented
primary and secondary α phases are. Thus, a subsequent ANN HT in low-SSTR can be
considered to obtain the α′ → α transformation.

The AA HT, which can be directly performed on as-built Ti6Al4V samples, can be used
to reduce the residual stress without excessive microstructural changes (Tables 9 and 10).
On the other hand, its focal points are the balance of the tensile strengths and ductility
with a bi-modal microstructure (as will be discussed successively in Section 6) and the
precipitation of α, β and α2-Ti3Al [179,224,271,276,285,291,292].

For these reasons, and for the fact that the solvus temperature of the α2-Ti3Al is around
500 ◦C, G. Lütjering [292] affirmed that the heat treatments at 600 ◦C or above will only
change the microstructure and reduce the residual stress. Gehlin et al. [249] reported
that the crystallographic ordering of Al can occur in the range between 500 and 700 ◦C,
which leads to the precipitation of the α2-Ti3Al. De facto, long-term aging performed at
500–600 ◦C produces precipitates between 5 and 10 nm. In addition, the α2-Ti3Al formation
is influenced by the alloying elements as oxygen and the other β-stabilizers [293,294].

From a mechanical point of view, the microstructure obtained after the AA heat
treatments is more important than the precipitation phenomena due to the strict relation-
ship between the microstructure and the fracture mechanisms under different load condi-
tions [59,295–298]. De facto, the temperature reached during the βSHT

(
TSHT > Tβtransus

)
or the α + βSHT

(
TSHT < Tβtransus

)
and the subsequent cooling method induce differ-

ent microstructures, such as α′-martensite, α-colonies, plate-like α, acicular α, grain
boundary α, basketweave or Widmanstätten structure into equiaxed or columnar β-grains
(Table 9) [59,227,230,233,265,271,276,285]. As regards the holding or residence time at high
temperatures, the main effect is the grain growth, which is more effective at near β-transus
temperature. In fact, considering the heat treatments into low-SSTR, the α and β grains tend
to grow, but will hinder each other [32]. Into high-SSTR or, even above the β-transus, the
holding time has a greater influence on the microstructural morphology and size. Eshawish
et al. [268] also reported the presence on the columnar β-grains after 1015 ◦C × 15 min
(WQ), unlike Wu et al. [233], who instead showed the recrystallization process (columnar
→ equiaxed β grains) after 1000 ◦C × 40 min (WQ). In this context, Huang et al. [265]
reported the same transformation after 1050 ◦C × 1 h (AC), suggesting that the equiaxed
grains form from the split of the columnar grains. In fact, the same authors showed that
the diameter of the equiaxed grains is the same as the columnar width. Lekoadi et al. [212]
reported an incomplete β-grains transformation after 1000 ◦C × 2 h, a fully α′ martensite
decomposition into α + β lamellar with α-colonies after 4 h, and a globularization after 8 h
(Figure 46).
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Figure 46. OM micrographs of Ti6Al4V microstructures in as-built condition (a,b) and after the
HTs at the following temperatures: (c,d) 700 ◦C, (e,f) 950 ◦C and (g,h) 1000 ◦C (Reprinted from
reference [212]).

As previously reported, the other focal point is the cooling method; however, in this
case, it also depends on the temperature from which the cooling pathway starts. The
effects induced by the cooling rate are moderate if the samples are heat-treated in low-
SSTRs, but they become very important when the samples are at temperature > T0, as
previously discussed [32,212,265,271,276,285]. Focusing on this last temperature range,
Etesami et al. [285] reported a microstructure formed by primary α-phase containing β-
particles and needle-like α′-martensite after 930 ◦C × 2 h (WQ). The same authors showed
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a mixture of primary α and secondary α + β-phase structure after 930 ◦C × 2 h (AC),
which change in total α + β lamellar after the same heat treatment followed by furnace
cooling. Lekoadi et al. [212], who analyzed the same cooling methods and holding time
at 1000 ◦C, showed a fully α′ martensite structure contained into columnar β-grains after
both the WQ and AC. As reported by Huang et al. [265], it is possible to underline that
this α′-martensite is different to that formed during the L-PBF process due to the different
responses to the heat treatment. The former decomposes more easily than the latter after
800 ◦C × 1 h (AC). Finally, only the FC promoted the basketweave structure formed by
lamellar α + β. In relation to the cooling pathway, Muhammad et al. [276] demonstrated
that the 950 ◦C × 1 h (FC) rather than the 950 ◦C × 1 h (AC) allows one to dissolve a large
part of the nanoparticles present within the α-phase laths.

The α′-martensite decomposition and the α→ α + β transformation are also obtained
after the HIP HT due to the temperature to which the treatment was carried out. Moreover,
in this case, it can be subdivided into β-HIP

(
T > TβTr

)
and α + β-HIP

(
T < TβTr

)
and

the following obtained microstructure depends on both the holding time (generally 2 h)
and cooling pathway (Table 9). Benzing et al. [299], who analyzed the additive manufac-
tured Ti6Al4V samples, showed the columnar→ equiaxed β-grains transformation after
(1050 ◦C × 2 h (WQ) + 100 MPa) + (800 ◦C × 2 h + 30 MPa) and a greater microstructural
homogeneity than after HIP at 920 ◦C × 2 h + 100 MPa. At the same time, a significant
increase in the grain size from the as-built (α + β) to the HIP samples is not highlighted.
On the other hand, the greatest coarsening of the α laths starting from α′-martensite was
obtained after 1050 ◦C × 2 h + 100 MPa rather than after 920 ◦C × 2 h + 100 MPa, as
shown in the study of Leuders et al. [110]. The vast majority of the HIP heat treatments
reported on different research were performed in the temperature and pressure ranges of
900–950 ◦C and 100–150 MPa, respectively; the α + β lamellar structure is the microstruc-
ture obtained [110,111,223,268,288,300]. In this scenario, not only the T > TβTr influence the
α laths coarsening but also the T < TβTr , as reported by Wycisk et al. [301], who showed a
α laths coarsening from ~1 µm to 4 µm. The same results are shown by Mahmud et al. [111],
who reported a linear increase with time. To avoid an excessive grain coarsening, Herzog
et al. [302] proposed an increase in pressure to 200 MPa and a consequent decrease in
temperature up to 820 ◦C. Other studies, however, proposed different cooling pathways to
control the α lamellar dimensions after the HIP heat treatments (from 500 nm of the α′ to
3 ÷ 60 µm of the α phase) [223,287,301,303].

Apart from the microstructural effects, the HIP heat treatment allows for obtaining
the sample densification through the reduction in LOF, keyhole and gas pores, cracks,
etc., (see Section 2) present into as-built samples [111,223,268,300,302]. Herzog et al. [302]
demonstrated that a fully dense (δ > 99.9%) sample can be obtained if its density in as-built
conditions is higher than 95%. In fact, they reported an increase from 93.4 to 98.7% and from
97.7 to 99.9%, respectively, after the HIP at 820 ◦C× 2 h + 200 MPa. The densification effects
are also supported in the study conducted by Eshawish et al. [268], where the volume
fraction of the spherical pores decreases from 0.31 ± 0.2% to 0.20 ± 0.09% after 900 ◦C ×
2 h + 100 MPa. The same HIP heat treatment induced the decrease in the maximum pore’s
diameter from 140 µm to 15–21 µm. Therefore, the HIP heat treatment induces sample
densification, allowing an expansion of the process window illustrated in Figure 8 [302];
however, if the as-built samples is manufactured with optimized process parameters, their
microstructure can be optimized through other heat treatments.

From a last microstructural point of view, L-PBFed Ti6Al4V samples can present a
bimodal microstructure after heat treatment to obtain a good balance between strength
and ductility. Chong et al. [304] reported that the so-called bimodal microstructure is a
“dual-phase” composed of the primary αp phase and secondary αs phase transformed by
β-phase, as reported in Figure 47.
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indicate primary and secondary α-phase, respectively (Reprinted from reference [245]).

Due to the first annealing performed in high-SSTR, the primary αp phase tends to
assume a globular morphology, while other parts of the microstructure transform into
β phase due to the diffusion of the alloying elements (see Tdess in Figure 42). Sabban
et al. [305] confirmed the diffusion of the alloying element during the first heat treatment
through the EMPA element maps. The microstructural zone is characterized by a higher
amount of V involved in β → αs transformation (Widmanstätten structure) due to the
subsequent heat treatments [245,304,305]. The cooling method, and the related cooling
rate, will affect the secondary lamellar αs size. Zhao et al. [306] affirmed that the first
globularization process initiates due to the α′-martensite splitting during the first heat
treatment.

In addition, the applied HT induces a texture variation highlighting an increase in
intensity along with the directions parallel to the build orientation, as studied by Sabban
et al. [305].

In this scenario, Haar et al. [245] showed a bimodal microstructure after the duplex
annealing HTs (910 ◦C × 8 h (WQ) + 750 ◦C × 4 h (FC)).

Bai et al. [224] and Sabban et al. [305] reported, however, a bimodal structure after
the same cycling annealing between 975 and 875 ◦C. The first study shows a sequence of
nine heating and cooling steps in 24 h characterized by rates of 2.5 ◦C/min and 1 ◦C/min,
respectively, while the second illustrates a cycling annealing formed by five steps of heating
(3.33 ◦C/min) and cooling (1.67 ◦C/min) with a holding time of 30 min at 975 ◦C for each
step. De facto, the obtained microstructure shows a globular αp and a lamellar α + β
Widmanstätten structure representing the αs phase.

Heat Treatment Effects on α′, α and β Phases

During the heating of the previously analyzed heat treatments, the coarsening of
α′-martensite, its decomposition and transformation into α + β, α coarsening, α globu-
larization and β→ α transformation can occur with the temperature increasing. During
the subsequent cooling pathway, the microstructure can change in relation to the cooling
rate. Starting from a fully martensitic microstructure of a L-PBFed as-built sample, its XRD
spectra do not reveal any β-peaks correlated, as discussed in Section 6.1 and shown in
Figures 34 and 48 [227,230].
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Only increasing the temperature to 550 ◦C, Kaschel et al. [227] revealed a broad
shoulder peak between the base of the

(
1011

)
α/α′ and the (110)β directions, indicating

the α′ → α + β decomposition, in addition to a new (0002)α between 37 and 38.6◦. On the
other hand, Eshawish et al. [268] did not show any peak related to the β-phase even after
704 ◦C × 2 h, nor do Cao et al. [230], who illustrated the β {100} peaks only after 800 ◦C
× 2 h. On the other hand, Mahmud et al. [111] showed the same peaks after 670 ◦C × 5 h
and Mierzejewska [307] after 650◦C × 2 h (FC) as shown in Figure 48. The development of
the XRD spectra is, therefore, caused by the alloying element diffusion, which induces not
only the phases transformation but also the stress relaxation. All of this is strictly related
to the crystal lattice evolution shown in Figure 49 where the α′-martensite evolves into
equilibrium α phase at 700 ◦C. The first considerable variation of the lattice parameters
takes place at 400 ◦C due to the internal diffusion and self-accommodation of the Al and V
alloying elements. As matter of fact, the α′-martensite decomposition begins at 400 ◦C (see
Section 6.2); other changes at temperatures lower than 400 ◦C can be induced by a thermal
expansion of the lattice structure [227,308]. A higher increase in lattice parameters is shown
at 550 ◦C, where the V atoms diffuse out of the lattice structure and the Ti atoms replace
them. De facto, the increase in lattice parameters is caused by the Ti radius (1.47 Å), which
is higher than the V radius (1.43 Å) [309]. Finally, the α′ martensite is fully decomposed in
the equilibrium α phase at 700 ◦C (Figure 49c).
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Figure 49. (a–c) Lattice structure transformation from α′-martensite to equilibrium α-phase at:
(a) 25 ◦C, (b) 550 ◦C and (c) 700 ◦C.

At the same time, Kaschel et al. [227] showed the c/a ratio variation with temperature,
and that the ratio increased significantly only after 500–550 ◦C. The same authors suggested
that the α→ β transformation induces a decrease in the c/a ratio after 995 ◦C. In addition,
Tsai et al. [310] showed the variation of the β-phase lattice parameters from 3.188 to 3.244 Å
into a temperature range of 550–800 ◦C.

During the same heat treatments, in particular, during SR and ANN, the twin struc-
tures (Figure 39) and the number of dislocations present into α′-martensite laths are reduced.
In detail, the twin structures are fully dissolved only after 800 ◦C × 6 h [230]. The same
results were obtained by Li et al. [287] and Tsai et al. [310]. On the other hand, the number
of dislocations was deeply reduced after the HIP at 920 ◦C × 12 h with the formation of
α + β lamellar microstructure rather than after the SR at 670 ◦C × 5 h as illustrated in
Figure 50 [111].
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Together with the decrease of the dislocations, twin structures, and α′ → α + β

transformation, the already formed α platelets tend to coarse if the temperature of the heat
treatment exceeds the low-SSTR (i.e., the temperature of α′ → α + β decomposition). In
fact, Figure 51 shows a slight coarsening effect at 700 ◦C, which increases as fast as the
increase in temperature. This trend is described by the following relationship:

δα(t=t∗) = δα(t=0) t
( T−850

1000 ) (16)

where the δα(t=0) is the average lamellar width (µm) of the as-built Ti6Al4V sample, namely
with t = 0 of HT, t and T are the time (h) and temperature (K) of the HT [311].
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Considering the tangents of all curves shown in this graph and their slope, the coars-
ening rate increases with temperature but decreases with time.

In this scenario, the lamellar coarsening of the α-phase width follows the coarsening
theory (LSW) developed by Lifshitz, Slyozov and Wagner [312,313]:

d = ξtn
HT (17)

where the d is the average lamellar width (µm), ξ is a constant of proportionality, n is the
coarsening coefficient and t is the heat treatment time [s]. This equation can be rewritten
into logarithmic form, as follows:

ln(d) = ln(ξ) + n ln(t) (18)

assuming a linear trend if it is plotted into an ln-ln diagram (Figure 52, [111]). As is also
shown in the same figure, Mahmud et al. [111] reported that n is equal to 0.29, 0.30 and
0.31 for 920, 950 and 970 ◦C, respectively, while ξ is equal to 6.03·10−10, 6.62·10−10 and
7.32·10−10 m/s, respectively. Moreover, 0.33, 0.33 ÷ 0.40, 0.40 ÷ 0.50 were obtained at
700 ÷ 800 ◦C, 900 and 950 ◦C by Cao et al. [314]. The same results were obtained by Liu
et al. [311] who confirmed that the coarsening kinetics model of the α-phase follows the
LSW theory (Equations (17) and (18)).

Focusing on the HT temperature and on the high holding time, the α-phase also tend
to globularize following one of these mechanisms [288,305,315–317]:

• direct cylinderization (Figure 53a): initiates at the edge of the α platelet where the
different curvature allows for the mass transfer to the flat part of the same platelet.
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The subsequent formation of these ridges can induce a cylindrical morphology if the
ridges join together.

• edge spheroidization (Figure 53b), which differs from the direct cyliderization
(Figure 53b) due to eventual perturbations developing along the ridges which separate
the lamella into spheroids.

• thermal grooving and boundary splitting (Figure 53c): induce α globularization due
to the initial groove’s formation into triple junction generated by sub-grain boundaries
into α lamellae with α/β interface, and due to the sequent Al and V diffusion that
break the lamella with the β-phase formation.

• termination migration consists of the mass transfer from the curved surface of the
lamella to the flat lamella.
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Process Parameters 
ED 

(J/mm3) 
Direc-
tions Microstructure E (GPa) 

UTS 
(MPa) YS (MPa) A (%) Ref. P 

(W) 
v 

(mm/s) 
h 

(μm) 
t 

(μm) 
BP 

(°C) 
-- -- -- -- -- -- -- -- -- 895 825 10 [318] 

-- -- -- -- -- -- 
H(xy) 

Fully α’ martensite 
-- 1274 ± 26 1047 ± 23 10 ± 1 

[305] 
V -- 1219 ± 32 1043 ± 18 12 ± 1 

200 -- 150 150 -- -- -- Fully α’ martensite -- 1191 ± 6 970 ± 6 5.4 ± 1.4 [265] 

200 -- 80 50 

100 -- -- Fully α’ martensite 

114 ± 5 

1123 1139 6.0 

[226] 
370  -- 

Fully α’ martensite with 
increased laths 1 1234 1159 9.5 

470  -- α’ → α decomposition 1232 1173 9.7 
570  -- Colonies α + β 1233 1176 10.0 

Figure 53. Globularization mechanisms of the α-phase: (a) direct cylinderization, (b) edge
spheroidization, (c) thermal grooving and boundary splitting.
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7. L-PBFed Ti6Al4V: Mechanical Properties

The mechanical properties of the as-built Ti6Al4V samples (Table 10) show high values
in terms of ultimate tensile strength and yield strength due to their fully α′ martensitic
microstructure. Obviously, high strengths correspond to low ductility (<10%) values that
do not satisfy the ASTM F2924-12 standard specification [318]. In this scenario, appropriate
heat treatments provide an opportunity to balance the tensile strength and the ductility
values (necessarily > 10%). On the other hand, some authors reported good elongation
values already after the L-PBF process. Firstly, Xu et al. [221] reported an increase in ductility
up to 11.4 ± 0.4%, varying the ED values to obtain an ultrafine α + β microstructure.
Secondly, Ali et al. [226] showed 10% of elongation considering the samples manufactured
with the pre-heated BP at 570 ◦C (Figure 35). The same authors have declared that the
samples manufactured on pre-heated BP at 670 and 770 ◦C reached a premature failure
due to the different cooling rates observed during the printing process. In this scenario,
as well as in the following process related to the heat-treated samples, it is possible to
show the influence of the cooling rate on the yield strength and ductility, as proposed by
Lütjering [292].

Table 10. Mechanical properties of L-PBFed Ti6Al4V samples in as-built conditions.

Process Parameters
ED

(J/mm3) Directions Microstructure E (GPa) UTS (MPa) YS (MPa) A (%) Ref.P
(W)

v
(mm/s)

h
(µm)

t
(µm)

BP
(◦C)

– – – – – – – – – 895 825 10 [318]

– – – – – –
H(xy)

Fully α′ martensite
– 1274 ± 26 1047 ± 23 10 ± 1

[305]
V – 1219 ± 32 1043 ± 18 12 ± 1

200 – 150 150 – – – Fully α′ martensite – 1191 ± 6 970 ± 6 5.4 ± 1.4 [265]

200 – 80 50

100 – – Fully α′ martensite

114 ± 5

1123 1139 6.0

[226]
370 –

Fully α′ martensite
with increased

laths 1
1234 1159 9.5

470 – α′ → α
decomposition 1232 1173 9.7

570 – Colonies α + β 1233 1176 10.0

200 – 80 50

670 –
Colonies α + β + β
nano-particles + α

globularization
1201 1174 2.58

[226]

770 – Increase the effects
obtained at 670 ◦C 207 2 748 2 – –

– – – – 37 – – Fully α′ martensite – 1236 ± 27 1181 ± 34 8.7 ± 0.5 [285]

1000 1400 230 100

70

38.3
H Fully α′ martensite

(< 1µm)

– 1204 ± 27 1052 ± 16 2.1 ± 0.3

[288]

V – 1075 ± 80 958 ± 73 1.8 ± 0.2

800 1925 190 50 43.7
H

Fully α′ martensite
(1–2 µm)

– 1176 ± 8 1024 ± 6 2.5 ± 0.4

V – 1086 ± 6 933 ± 7 2.5 ± 0.3

350 770 180 50 50.5
H – 1251 ± 114 1067 ± 27 3.4 ± 1.3

V – 1191 ± 19 1065 ± 27 2.4 ± 1.2

170 1250 100 30 – 45.33 – Fully α′ martensite 109 ± 4 1218 ± 2 1015 ± 10 5.9 ± 1.0 [271]

375 1029 120 60 – 50.62 V Ultrafine α + β – ~1240 1106 ± 6 11.4 ± 0.4 [221] 3

280 1200 140 30 100 55.56 – Fully α′ martensite 1206 ± 23 1041 ± 23 9.6 ± 0.4 [288]

175 710 120 30 – 68.47 V Fully α′ martensite – ~1160 – ~9 [221] 3

175 710 120 30 – 68.47 H Fully α′ martensite – 1321 ± 6 1166 ± 6 2.0 ± 0.7 [319]
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Table 10. Cont.

Process Parameters
ED

(J/mm3) Directions Microstructure E (GPa) UTS (MPa) YS (MPa) A (%) Ref.P
(W)

v
(mm/s)

h
(µm)

t
(µm)

BP
(◦C)

250 1600 60 30 – 86.81 – Fully acicular α′

martensite – 1267 ± 5 1110 ± 9 7.3 ± 1.1 [32]

157 225 100 50 – 139.56

H(xz)

Fully α′ martensite

115 ± 6 1143 ± 6 978 ± 5 11.8 ± 0.5

[59]H(xy) 113 ± 5 1199 ± 49 1075 ± 25 7.6 ± 0.5

V 119 ± 7 1117 ± 3 967 ± 10 8.9 ± 0.4

1 possible decomposition into α equilibrium phase. 2 Sample reaches the premature failure [226]. 3 Samples
manufactured with a Focal Offset Distance of 2 mm.

Lütjering [292] showed an increase in yield strength and with the increase of the
cooling rate due to the consequent variation in terms of colonies size. The final exponential
increment is conferred by the α′-martensite. At the same time, the ductility increases
up to a maximum, after which it declines drastically. The author affirmed that, at the
maximum point, the fracture mechanism passes from ductile transcrystalline dimple type
to intercrystalline dimple type along with the continuous layers of α phase.

If the ED values and pre-heated BP can influence the as-built mechanical proper-
ties, another important factor is the build direction of the sample within the build cham-
ber. In this context, it is useful to remember that the columnar β-grains growth occurs
through the layers and, therefore, in the perpendicular direction to the BP, regardless of
the build orientation (Section 6.1). As reported in Table 10, the samples manufactured
vertically for the xy plane show generally lower tensile strengths and ductility than the
H-samples due to the relationship between the load direction and the columnar β-grains
distribution [59,230,320,321]. Figure 54 illustrates a schematic representation where, if
the load is applied along with the major axis of the columnar β-grains (Figure 54a), the
β-phase grain boundaries are subjected to Mode I opening tension, while the α-phase grain
boundaries are subjected to Mode I opening tension when the load is applied along the
short axes of the columnar β-grains (Figure 54b) [320].
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In the same context, Willson-Heid et al. [321] analyzed and demonstrated that the
anisotropic elongation and the β grain aspect ratio (x) can be correlated as follows:

y = 0.00125e0.91x + 0.98 (19)
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where y is related to elongation. Its anisotropy becomes significant when x > 6. Another
important factor influencing the anisotropy of the mechanical properties is the presence of
the LOF (Figure 55a–c).
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Figure 55. Schematic representation of the load direction and the LOF major axis (a) during a tensile
test in V-samples (b,d) and H-sample (c,e); (d,e) Schematic representation of the load direction and
the different orientation of LOF major axis within the same sample and correlated to the different
layers (Adapted from reference [322]).

If the load direction and the major axis of the LOF are from an angle of 90◦, the pores
tend to open, inducing a stress concentration on their apexes and possible consequent crack
initiation. This configuration can induce a premature failure into as-built sample rather
than that shown in Figure 55c, where the angle θ is 0◦. In this situation, the LOF pore will
be closed; in fact, the void growth and the crack initiation need a greater tensile load [322].
As discussed in Section 2, the presence of LOF pores along the xy plane depend on the
process parameters and on the scanning strategy. Thus, the V-samples are more affected by
LOF opening during the tensile test than the H-samples (Figure 55d,e), where the angle
between load direction and the LOF major axis can vary between 0 and 90◦ [322].

The different sample’s orientation also affects the fracture mechanisms, as shown
in Figure 56, where the grey ellipses represent the columnar β-grains [296]. When the
H-sample (Figure 56b) is subjected to a tensile load, the main failure is Mode I with low
ductility values obtained. On the other hand, the V-sample (Figure 56c) is characterized by
an intergranular fracture much more tortuous than in the H-sample (Figure 56b) [59,295].
Focusing on 45◦ samples (Figure 56d), the effects of the tensile load must be subdivided
into normal and shear stresses and the crack propagation is transgranular [296]. In this
scenario, the best mechanical properties depend on a good combination between the build
orientation and the presence of defects, which also reduce the layer interconnection and
vary with the process parameters, in addition to the dimensions and relative aspect ratio of
the β-grains [59,294,321,322]. Simonelli et al. [59] show the typical surface fracture of the
as-built Ti6Al4V samples characterized by an almost flat central region and an external
portion high inclined at around 45◦. Additionally, the same profiles show an intergranular
fracture, where crack propagation is strictly related to the crystallographic orientation
of the α′ and α phases (see Sections 6.1 and 6.2) that may arise as single α-phase or as
α-colonies. This situation can characterize both the as-built and the SR heat-treated samples
where the crack can be deflected due to the microstructural texture remaining, however
intergranular [59,110,323]. Figure 57a–c shows V-sample where some β-grains are cut from
the crack propagation along the α grain boundaries then others can directly accommodate
the crack propagation. Finally, the H-samples are subjected the crack propagation along the
β-grains boundaries [59,295]. Zafari et al. [322] also showed deformed α′ plates through
TEM analysis, which emphasizes entangled dislocations and dislocation cells (Figure 57d,e).
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the rings related to the α′ martensite (Reprinted from reference [324]).
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Finally, the SAEDP map shown in Figure 57f illustrates a randomly orientation of the
α′ martensite.

Starting from the mechanical properties of the as-built samples, generally, the elon-
gation increases at the expense of the tensile strengths as reported in Table 11, where the
mechanical properties of heat-treated Ti6Al4V samples were illustrated. If the SR heat
treatment slightly increases the elongation with a small loss in tensile strength, the ANN
heat treatment confers good ductility satisfying the ASTM F2924-12 standard specifica-
tion [32,59,230,271,318]. Generally, the heat treatments performed above the β-transus
show a decreasing trend of the tensile strengths and an increase in ductility (Table 11).

Table 11. Mechanical properties of the heat-treated Ti6Al4V samples manufactured via L-PBF process.

HT
Region HT Microstructure 1 Directions E (GPa) UTS

(MPa) YS (MPa) A (%) Ref.

α + β

540 ◦C × 5 h
(WQ) SR – V 113 ± 30 1223 ± 52 1118 ± 39 5.4 ± 2.0 [32]

611 ◦C × 2 h
(AC) SR α′ martensite + β

precipitate V – 1213 ± 20 1171 ± 40 13.3 ± 0.7 [285]

640 ◦C × 2 h ANN 2 β(C)

1225 ± 4 1104 ± 8 7.4 ± 1.6

[319]1214 ± 24 1140 ± 43 3.2 ± 2.0

1256 ± 9 1152 ± 11 3.9 ± 1.2

650 ◦C × 3 h
(FC) SR

α′ martensite + α,
β precipitation in

β(C)
V 111 ± 1 1101 ± 5 1040 ± 7 7.8 ± 0.7 [271]

670 ◦C × 5 h
(FC) SR

Acicular α′ + α +
β in β(C)

H(xz) 116 ± 1 1170 ± 5 1112 ± 4 9.2 ± 0.2

[111]H(xy) 115 ± 1 1207 ± 5 1147 ± 7 7.9 ± 0.6

V 121 ± 1 1193 ± 8 1164 ± 5 3.8 ± 0.1

700 ◦C × 2 h
(FC) SR α′ + α + β H – 1109 ± 18 1013 ± 17 13.5 ± 0.2 [230]

700 ◦C × 1 h
(10 K/min) SR

α′ + α (fine
needles) + β in

β(C)
– 117.45 1115 1051 11.3 [304]

705 ◦C × 3 h
(AC) ANN β(C) V 115 ± 2 1082 ± 34 1026 ± 35 9.1 ± 2.0 [32]

730 ◦C × 2 h
(AC) ANN α′ + α + β in β(C) H(xz) 113 ± 9 1057 ± 8 958 ± 6 12.4 ± 0.7 [59]

α + β

730 ◦C × 2 h
(AC) ANN α′ + α + β in β(C)

H(xy) 112 ± 6 1065 ± 21 974 ± 7 7.0 ± 0.5
[59]

V 117 ± 6 1052 ± 11 937 ± 9 9.6 ± 0.9

730 ◦C × 2 h
(AC) ANN

H 101 ± 4 1046 ± 6 965 ± 16 9.5 ± 1
[325]

V 110 ± 29 1000 ± 53 900± 101 1.9 ±8 0.8

800 ◦C × 2 h
(AC) ANN α′ + α (0.7µm) +

β in β(C) – – 1073 ± 9 1010 ± 11 17.0 ± 1.0 [265]

800 ◦C × 2 h SR β(C) V – 1228 ± 32 – 8.0 ± 1.5 [110]

800 ◦C × 2 h
(FC) ANN

α + β lamellae

H – 1024 ± 10 955 ± 9 14.7 ± 0.4

[230]800 ◦C × 6 h
(FC) ANN H – 1017 ± 5 928 ± 6 18.9 ± 1.3

800 ◦C × 12 h
(FC) ANN H – 1007 ± 4 923 ± 3 18.5 ± 0.6
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Table 11. Cont.

HT
Region HT Microstructure 1 Directions E (GPa) UTS

(MPa) YS (MPa) A (%) Ref.

850 ◦C × 1 h
(FC) ANN α′ + α + β in β(C) V 114 ± 1 1003 ± 4 945 ± 6 8.1 ± 0.3 [271]

850 ◦C × 2 h
(FC) ANN

α + βwith
increase of β

fraction in β(C)
V 115 ± 4 1004 ± 6 955 ± 6 12.8 ± 1.4

[32]

850 ◦C × 5 h
(FC) ANN

α + βwith
increase of β

fraction in β(C)
V 112 ± 3 965 ± 20 909 ± 24 –

900 ◦C × 30′

(AC) ANN α + β V – 1013 ± 23 981 ± 26 16.1 ± 2.9

[285]900 ◦C × 60′

(AC) ANN α + β V – 1026 ± 8 974 ± 1 15.5 ± 0.6

900 ◦C × 120′

(AC) ANN α + β V – 1021 ± 18 975 ± 16 15.0 ± 0.2

920 ◦C × 2 h
+ 100 MPa HIP β(E) V – 1086 ± 26 – 13.8 ± 1.3 [110]

930 ◦C × 2 h
(FC) ANN

α + β V

– 968 ± 4 924 ± 8 19.5 ± 3.2

[285]930 ◦C × 2 h
(AC) ANN – 1031 ± 44 991 ± 47 16.9 ± 1.9

930 ◦C × 2 h
(WQ) ANN – 1097 ± 12 1048 ± 15 9.2 ± 1.0

940 ◦C × 1 h
(AC) + 650 ◦C
× 2 h (AC)

STA α + β in β(C) V 116 ± 3 948 ± 27 899 ± 27 13.6 ± 0.3 [32]

950 ◦C × 2 h
(AC) ANN

Bi-lamellar
structure α (2.4
µm) + β in β(C)

– – 945 ± 5 893 ± 3 14.1 ± 1.5 [265]

950 ◦C × 1 h
(FC) ANN

α′ + α + β
coarsen in
β(C→E)

V 114 ± 2 926 ± 3 860 ± 5 10.5 ± 0.6 [271]

950 ◦C × 1 h
(WQ) +

700 ◦C × 2 h
(AC)

Mixed α + β
H 103 ± 11 1036 ± 30 944 ± 8 8.5 ± 1

[325]
V 98 ± 3 1040 ± 4 924 ± 14 7.5 ± 2

900 ◦C × 2 h
+ 700 ◦C ×

1 h
(10 K/min)

Mixed α/β phase
columnar in β(C) – 118.8 988 980 9.5 [303]

910 ◦C × 8 h
(WQ) +

750 ◦C × 4 h
(FC)

Mixed Bimodal
microstructure – – ~950 ~900 ~18 [245]

900 ◦C × 2 h
+ 100 MPa +
700 ◦C × 1 h
(10 K/min)

HIP +
ANN

α/β phase
columnar in β(C) – 115.4 973 ± 1 885 ± 3 19.0 ± 0.5 [303]
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Table 11. Cont.

HT
Region HT Microstructure 1 Directions E (GPa) UTS

(MPa) YS (MPa) A (%) Ref.

920 ◦C × 2 h
(AC) +

100 MPa +
920 ◦C × 12 h

(AC)

HIP +
ANN

Basketweave α +
β in β(E)

H(xz) 116 ± 1 1007 ± 1 937 ± 1 16.0 ± 0.4

[111]H(xy) 117 ± 2 1003 ± 1 936 ± 3 15.4 ± 0.3

V 113 ± 1 999 ± 1 911 ± 4 16.9 ± 0.9

920 ◦C × 2 h
+ 100 MPa β(E) – – 1089 ± 26 – 13.8 ± 1.3 [110]

See Table 9
C

ANN
Bimodal

microstructure

H(xy) – 1017 ± 16 865 ± 19 18 ± 1
[305]

V – 1004 ± 23 849 ± 12 16 ± 1

α + β
940 ◦C × 1 h
+ 650 ◦C ×

2 h (AC)
STA – V 116 ± 2 948 ± 27 899 ± 27 13.6 ± 0.3 [32]

β

1020 ◦C × 2 h
(FC) SHT α + β + α2-Ti3Al

in β(E) V – 840 ± 27 760 ± 19 14.1 ± 2.5 [32]

1050 ◦C × 1 h
(FC) SHT

α + β + αp along
β grain

boundaries β(E)
V 114 ± 1 869 ± 3 787 ± 4 11.5 ± 1.0 [241]

1050 ◦C × 1 h
(WQ) +

820 ◦C × 2 h
(AC)

SHT +
ANN α + β

H 96.7 ± 5 1019 ± 11 913 ± 7 8.9 ± 1.0
[325]

V 95 ± 4 951 ± 55 869 ± 64 7.9 ± 2.0

1050 ◦C × 2 h SHT β(C) V – 986 ± 45 – 13.8 ± 0.8
[110]1050 ◦C × 2 h

+ 100 MPa HIP β(E) V – 1007 ± 15 – 13.5 ± 0.7

1050 ◦C × 1 h
(AC) SHT α (0.7µm) +β in

β(E, hE) – – 988 ± 8 869 ± 4 13.4 ± 0.7

[265]1050 ◦C × 1 h
(WQ) +

990 ◦C × 30′

(AC)

SHT +
ANN

Basketweave α +
β in β(E, hE) – – 962 ± 12 838 ± 6 12.0 ± 0.1

1150 ◦C × 2 h
(AC) SHT α + β coarsen + α

grain boundaries V – 1128 ± 8 1107 ± 10 4.9 ± [285]

β
1200 ◦C × 1 h

(AC) SHT α (0.9µm) + β in
β(E, hE) – – 988 ± 8 878 ± 7 11.2 ± 1.2 [265]

β + α +
β

1015 ◦C × 30′

(AC) + 843 ◦C
× 2 h (FC)

SHT +
ANN β(C) V – 874 ± 23 801 ± 20 13.5 ± 1.2

[32]
1015 ◦C × 30′

(AC) + 730 ◦C
× 2 h (AC)

STA β(E) V 113 ± 3 902 ± 19 822 ± 25 12.7 ± 0.6

1 C, E and hE indicate Columnar, Equiaxed and half-Equiaxed β-grains. 2 the authors defined this heat treatment
as ANN highlighting however the effects induce by the SR heat treatment.

As summarized in the same Table 12, the HTs effects are already significant as the
temperatures reach T0, and then ~995 ◦C, where the cooling method and the residence time
must be considered.
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Table 12. Effects induced on microstructure and tensile properties by the different heat treatment
temperatures.

HT Region Microstructural Strength Ductility

α + β
T < low-SSTR

α′ → α decomposition
Slight coarsening (high residence time)

No effects of the cooling rate
Ti3Al precipitation

~as-built

low- < T <
medium-SSTR

α′ → α + β decomposition (~705 ◦C)
Slight coarsening

No effects of the cooling rate
↓ ↑

medium- < T <
high-SSTR

α + βmicrostructure + α globularization
Coarsening effects

Effects of cooling tare (T→ T0)
↓ ↑↑

β T > TβTr

Recrystallization process (C→ E)
Coarsening effects

Effects of cooling method
↓↓ ↑↑

De facto, Etesami et al. [285] showed a significant increase of tensile strength despite
the heat treatment at 930 ◦C × 2 h due to the followed WQ that induces the diffusionless
α′-martensite transformation of the formed β-phase. Increasing the temperature above
the β-transus, the recrystallization process (columnar→ equiaxed β-grains) takes place
only after adequate holding time and cooling method as previously discussed through the
study conducted by [268]. Thus, a slow cooling rate increases tendentially the ductility
values and decreases the tensile strengths, while a high cooling rate induces higher tensile
strengths, but does not significantly improve the ductility (Tables 11 and 12). Considering
the HIP heat treatments, a very important reduction in the vol % of LOF surely increases
the obtained tensile strengths and ductility due to the reduction in potential triggers
of cracks [111,268,299,300]. On the other hand, considering a dense or fully dense as-
built sample, the HIP heat treatment does not significantly improve the tensile properties
compared to the effects induced by the same heat treatments without the use of pressure.
In this scenario, Mahmud et al. [111] and Kasperovich et al. [303] show higher ductility
combining the α + βHIP to the ANN heat treatment. These values were not even reached
by the βHIP at 1050 ◦C × 2 h +100 MPa as proposed and analyzed by Leuders et al. [110].
The same authors showed that the tensile strength obtained after α + βHIP 920 ◦C × 2 h +
100 MPa are slightly higher than those obtained after βHIP 1050 ◦C× 2 h + 100 MPa despite
an equal elongation (Table 11). A good balance between the strengths and ductility can
be reached by performing a mixed heat treatment that induces a bi-modal microstructure
(Section 6.2). De facto, Table 12 shows an increment of the tensile strengths, maintaining
excellent elongations [112,224,265,305]. A good balance between the tensile strengths and
the ductility was obtained in the research conducted by Sabban et al. [305]. The authors
showed UTS > 1 GPa, YS > 850 MPa and the elongation higher than 16% after the cycling
annealing (Table 11). Bai et al. [224], performing the same heat treatment with a holding
time of 30′ for each step at 975 ◦C, showed higher UTS and YS values (1196 ± 10 MPa and
1054 ± 10 MPa, respectively) but an elongation of 9.8 ± 1.8%.

Gallaraga et al. [30] showed that mechanical properties variation resides in the mi-
crostructural changes after the different HTs (Tables 10 and 11). De facto, the increase in
strengths and the decrease in ductility (Figure 58) are related to the following microstruc-
ture: in relation to the different microstructure: equiaxed β-grains with α + βmicrostructure
rather than columnar β-grains with α + β, partially or fully α′ martensite.

In this scenario, considering different samples having the same microstructure mor-
phology, the tensile strength variation can be caused by the coarsening effects (see
Section 6.2). Moreover, in this case, the Hall–Petch relationship (Equation (10)) can be
considered to evaluate the strengthening mechanisms of the Ti6Al4V alloy in as-built and
heat-treated conditions, respectively. Unlike the AlSi10Mg, the term d is the average of the
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α lamellae width in the lamellar microstructure, or the average grain size of the α-phase
in the equiaxed microstructure [326]. Despite this, the yield strength decreases with the
increasing width/grain size [30,327–329].
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Considering the as-built case, Akram et al. [330] demonstrated the validity of the
Hall–Petch equation also highlighting the mechanical properties anisotropy between the H-
and V-samples. The same authors confirmed that H-samples are characterized by higher
tensile strengths than the V-samples, highlighting a faster increase in the yield strength
with the inverse square root of the αwidth (Figure 59).
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The same graph shown in Figure 59 highlights R2 of 0.79 for the transverse samples
(V-samples) indicating a greater values’ dispersion due to the microstructural texture and
presence of defects previously discussed [330].

However, focusing on the heat-treated Ti6Al4V samples, which are characterized by
a bi-modal microstructure, Galindo-Fernàndez et al. [327] proposed the variation of the
Hall–Petch equation, as follows:

σHP = σ0 + K

(
Vαs√

dα
+

1−Vαs√
dαs

)
(20)

where Vαs (-) is the volume fraction of the secondary αs phase, dα and dαs (m) are the
average grain size of the primary αp and the secondary αs phases, respectively. The same
authors reported that the friction stress (σ0, [MPa]) must be considered for the α and the β
phases unlike for the as-built Ti6Al4V samples, as follows:

σ0 = σα
0 Vα + σβ

0 (1−Vα) (21)

where σα
0 and σβ

0 (MPa) are the friction stress related to α and β phases, respectively. In
addition, the Equation (21) can be rewritten as follows:

σ0 =
(

σα
prism + σα

ss

)
Vα + σβ

0 (1−Vα) (22)

where σα
prism is the stress required to activate the prismatic slip (~90 MPa), while σα

ss (MPa)
is the solid solution strengthening stress defined as follows:

σα
ss =

3

√(
∑i B3/2

i xi

)2
(23)

where xi is the concentration of the atoms of the element i and Bi is its strengthening
constant. Galindo-Fernàndez et al. [327] suggested σα

ss = 454 MPa and a friction stress of
544 MPa. At the same time, they concluded the following Equation (24) to describe the
flow stress of the Ti6Al4V alloy:

σ = σ0 · G
(
T,

.
ε
)
+ 0.3Mµb

√
ρ (24)

where G
(
T,

.
ε
)

is the normalized activation energy G for the cross-slip dislocation, which
depends on the temperature T and on the strain rate (

.
ε), M is the Taylor factor (0.05 ÷ 3), µ

is the shear modulus (µ = 54− 0.03T) GPa, b is the Burgers vector and ρ is the dislocations’
density. The fully martensitic microstructure leads to an increase in the yield strength
of ~400 MPa due to the very small α′-martensite laths (Section 6.1), while the lamellar
structure (~3 µm) and the equiaxed grains (~8 ÷ 10 µm) induced a contribution of ~170
and ~100 MPa, respectively.

In this scenario, the bimodal structure shows higher yield strength than the lamellar
and equiaxed structures, respectively, due to its greater impediment to the dislocation
movement thanks to the crystallographic misorientation of the primary αp phase, secondary
αs phase and β phase [111,327]. The presence of the β-phase after the α′-martensite
decomposition during the heat treatments (Section 6.2) induces the decrease in strength
and varies the dislocation movement as reported in Figure 60 by Zheng et al. [331]. De
facto, the β-phase is present between two adjacent α-lamellae (Figure 60) and can be
considered as a barrier of the dislocations’ motion, which forms a pile-up generating a
stress concentration [222,326,331]. In this scenario, Zheng et al. [331] and Kohn et al. [332]
affirmed that the contribution of the β-phase was ignored by the Hall–Petch mechanism,
considering that it was controlled by the platelets and/or laths of the α-phase.
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In fact, the deformation initiated into α-grain, and with the subsequent strain hard-
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Figure 60. Schematic representation of the interaction between the dislocations and the α/β interface
(a) during a plastic deformation emphasizing the effect of β laths: (b) pure α-phase, (c) one thin
β-phase, (d) one thick β-phase, (e) two thin β-phase (Adapted from reference [331]).

In fact, the deformation initiated into α-grain, and with the subsequent strain harden-
ing, the plastic flow starts into adjacent α-phase after the slip transfer across the β-phase
that is an interface [326]. In this scenario, Zheng et al. [331] affirmed that due to the different
Burgers vector between the α and β phases, a residual Burgers vector

(
∆b = N(bβ − bα)

)
is left at the α/β interface generating a new residual dislocation (Figure 60). On the other
hand, the amount of the β-phase and the α + βmorphology induce significant effects on
the mechanical behavior, as previously reported. Through Figure 60b–e, Zheng et al. [331]
proposed a schematical representation of the dislocation pile-up variation induced by the
amount and size of the β-phase.

Finally, Tan et al. [333] reported an interesting point of view regarding the crack
initiation and propagation into a bimodal and/or trimodal microstructure (Figure 61).
In this scenario, the trimodal microstructure is a structure formed by globular primary
αp phase, lamellar αp phase, and secondary αs phase + β which is formed by the β-
phase [334,335].
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Generally, the crack nucleates at the primary αp laths rather than at the boundaries
of the β-grains and propagates tortuously because it is deflected by both the globular αp
phase and by the same β-grains boundaries. Tan et al. [333] affirmed that the trimodal
microstructure or the bimodal microstructures with an appropriate amount of the αp
equiaxed phase may confer higher ductility than the lamellar micro-stretches. Moreover,
a greater resistance of crack propagation is obtained if the globular αp phase is at the
β-grains boundaries. Figure 61c showed that αp equiaxed phase is relatively soft and
reaches yielding first due to the high amount of the slip band contained.

8. L-PBFed Ti6Al4V: The Corrosion Resistance

Moreover, in this case, the corrosion resistance is strongly correlated to the microstruc-
tural morphology and the vol% of the α and β phases, respectively, in other the aspects
highlighted for the AlSi10Mg samples (Section 5) [209,336,337]. As reported in Section 6.1,
the as-built Ti6Al4V samples are generally formed by a fully α′ martensitic microstructure,
an SSS phase considered as a non-equilibrium phase enough to reduce the corrosion resis-
tance [337]. De facto, the as-built Ti6Al4V samples showed lower corrosion resistance than
the as-cast sample showing an α + β structure in the same corrosion environment [337].
In this scenario, Zhao et al. [338] affirmed that the as-built L-PBF samples showed a lower
corrosion rate of the electron beam melted samples if the potential is lower than 1.2 V. The
opposite results were highlighted with values > 1.5 V. The same authors explained this
behavior through the different densities of the grain boundaries amount. The same results
are obtained by [337].

As discussed for the mechanical properties, the corrosion resistance also varies in
relation to the considered plane. Dai et al. [339] reported a slight variation between the xy
and the xz planes, which showed 0.7 and 0.9 mg/cm2 of the weight loss, respectively, after
15 min in 1M HCl. On the other hand, the same samples are not corroded if the 3.5wt% of
NaCl solution was used [340].

Focusing on the effects induced by the different heat treatments, Dai et al. [339] showed
a decrease in the corrosion resistance with an increase in the corrosion current (icorr) from
0.9 µA/cm2 in as-built condition to values higher than 1.5 µA/cm2 after the heat treatment
at 1000 ◦C × 2 h. This atypical correlation between the increase in the β-phases caused by
the heat treatment (Section 6.2) and the decrease in the corrosion resistance were explained
through the grain refinement. Chandramohan et al. [341] demonstrated that the 3.5 wt% of
NaCl solution becomes corrosive on the heat-treated Ti6Al4V sample showing an increase
in icorr after the heat treatments both at 900 ◦C × 1 h and 1000 ◦C × 1 h. In the first case,
the corrosion rate reaches 5.9 × 10–4 mm/y; while 3.4 × 10−4 mm/y in the second case.
Finally, Pazhanivel et al. [342] showed an increase in Ecorr (potential of corrosion) from
−0.30 ± 0.02 to −0.20 ± 0.02 V in as-built and heat-treated condition at 850 ◦C × 2 h,
respectively. The authors affirmed that the oxide film is more protective in heat-treated
samples than in the as-built samples after the corrosion test in 3.5 wt% of NaCl due to the
microstructural morphology. In fact, the homogeneous ultrafine α + β structure confers
a higher number of nucleation sites of the passivation layer and, consequently, higher
corrosion resistance than the inhomogeneous α′-martensite [342].

9. Conclusions

In the present paper, the effects induced by different heat treatments on as-built
AlSi10Mg and Ti6Al4V samples produced via L-PBF were reviewed. From an indus-
trial point of view, the wide range of applications makes heat treatment optimization
necessary to obtain excellent mechanical properties through microstructural stabilization.
Manufacturing high-quality, fully dense samples is a necessary requirement. Excellent
mechanical performance characterizing as-built samples can be maintained even after heat
treatment. The effects induced by both the process parameters and BP temperature on the
microstructure, mechanical properties and fracture mechanisms of as-built samples have
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been reviewed. Systematically, the same effects have been analyzed after the following heat
treatments: SR, ANNs, SHT + AA (T6 and STA), HIP.

In relation to AlSi10Mg samples manufactured via L-PBF, the main findings are
reported as follows:

9.1. Microstructure and Corrosion Resistance of AlSi10Mg

1. The as-built microstructure is formed by a Si-eutectic network containing the α-Al
matrix with Si particles, β-Al5FeSi intermetallics, GP zones and finely dispersed ε”/ε′

precipitates depending on the process parameters and/or BP temperatures.
2. Increasing the BP temperature leads to increased stress relaxation, the number of

precipitates and their size. Such effects decrease with increasing distance from the
pre-heated BP plate.

3. DA and SR: precipitation phenomena induced on as-built sample manufactured on a
cold BP and Si-eutectic network destruction at T > 200 ◦C with Si particle coarsening.

4. SHT (+AA): Si particles coarsen with total Si-eutectic network destruction and mi-
crostructure recrystallization. This induces precipitation phenomena and β-Al5FeSi
formation. T6 can increase the vol% of pores, unlike the HIP HT.

5. The corrosion resistance, which is characterized by an anisotropic mechanism in
full and quasi-cellular structures, decreases from the as-built samples to the SR and
T6 heat-treated samples due to both variations in the Si eutectic and precipitation
phenomena.

9.2. Mechanical Properties of AlSi10Mg

6. Due to the strengthening phenomena conferred by this microstructure, the mechanical
behavior is strongly anisotropic, exhibiting high tensile strength (UTS > ~400 MPa, YS
> ~240 MPa) and low elongation (A < ~9%).

7. The post-HT tensile strength generally decreases while the ductility increases with
increasing heat treatment temperatures. By increasing the DA temperatures above
255 ◦C, initiation of Si-eutectic network destruction induces a decrease in the tensile
strength (UTS = ~340 MPa, YS = ~200 MPa) but also an increase in elongation with
values higher than 10%. In this scenario, the anisotropic mechanical performance can
be eliminated after the SR at 300 ◦C × 2 h.

8. The ductility can reach 23–29% after T6 and HIP HTs. Firstly, the subsequent AA to
complete the T6 heat treatment recovers the tensile strength due to precipitation of
the ε-Mg2Si (UTS = 230–330 MPa, YS = 180–280 MPa). Secondly, the tensile strength
can be increased with the T6 rather than a DA after the HIP heat treatments.

9. In as-built samples and DA samples at low temperatures, the fracture mechanisms
are dominated by both the laser scan tracks and MP boundaries, where the crack
generally propagates (inter-layer and inter-track fractures). In other cases, the crack
also propagates inside the center of the MP, generating a trans-track fracture. In
relation to the SR at 300 ◦C and, therefore, after the T6 and HIP heat treatments, the
fracture mechanisms are dominated by the Si-eutectic particles which generate the
voids at their interface with the α-Al matrix. In this case, cracks can be deflected by
the laser scan tracks and MP boundaries remaining after the heat treatment at high
temperatures.

In relation to Ti6Al4V samples manufactured via L-PBF process, the main conclusions
are outlined as follows:

9.3. Microstructure and Corrosion Resistance of Ti6Al4V

10. The as-built microstructure is formed by columnar β-grains arranged along the di-
rections of the heat flux. In relation to the BP temperature, process parameters and
the distance from the BP plane, columnar grains can contain a fully α′ microstructure
(primary, secondary, tertiary and quartic α′-martensite’s), a mixture of α′ and α + β
lamellar phase, or a fully ultrafine α + βmicrostructure.



Materials 2022, 15, 2047 69 of 84

11. Corrosion resistance is influenced by the β grain boundary density and is character-
ized by anisotropic behavior, increasing from the as-built state to samples formed
by an α + β microstructure due to the higher number of nucleation sites where the
passivation layer can form.

12. The heat-treated microstructure is progressively more influenced by heat treatment
temperatures as the latter increase. Starting from ~400 ◦C, the α′ → α decomposition
takes place inducing the diffusion of the Al and V, which cause β precipitation. At
around 704–705 ◦C, the α′ → α + β transformation occurs, increasing drastically after
the 800 ◦C up to the β-transus. Above the critical temperature, and into high-SSTR,
the tensile strength can be recovered with appropriate cooling methods, remembering
that the α-phase progresses towards globularization. These effects become progres-
sively more important above the β-transus, where the recrystallization process from
columnar to equiaxed grains also begins, depending on the time that the material is
held at this temperature.

9.4. Mechanical Properties of Ti6Al4V

13. The UTS, YS (higher than 1.1 GPa and 950 MPa, respectively) and elongation (A < 9%)
do not exhibit great differences between as-built samples formed by α′ martensite or
ultrafine α + βmicrostructure.

14. The SR and ANN heat treatments performed in low-SSTR, which are not affected by
the different cooling rate (WQ, AC, FC), induce slight coarsening effects that reflect on
the tensile strength: UTS > 1 GPa, YS > 900 MPa and A < 10%. Between the medium-
and high-SSTRs, coarsening effects increase and the α′ → α + β is completed. In
addition, the cooling method becomes significant, reaching the T0. The UTS and YS
decrease up to ~970 and ~900 MPa, respectively, after the ANN HT at 850 ◦C × 5 h
(FC).

15. The ductility also increases up to 14%, and the tensile strengths decrease at values
that can also satisfy the ASTM F2924-12 standard specification after HTs performed
into high-SSTR.

16. The balance between the tensile strengths and elongation can be obtained with a bi-
modal and/or a trimodal microstructure after an appropriate combination of different
ANN heat treatments below and/or above the β-transus.

17. The fracture mechanisms of the as-built and unrecrystallized samples are related,
firstly, to the load conditions and columnar β-grain directions and, secondly, to the
α-phase crystallographic orientations. This damaging behavior, together with the
presence of LOF pores in the xy plane, induces significant anisotropic mechanical
properties that can be reduced with the HIP heat treatment. In this case, the as-built
samples transform their structure into α + β Widmanstätten, where the β-phase
between two adjacent α lamellae modifies the fracture mechanism. Focusing on
bimodal and/or trimodal microstructures, crack propagation follows the α-phase,
and is finally characterized by a tortuous path due to the presence of the β-grains
boundaries and globular αp phase. The greatest effects are induced when this globular
phase is located at β-grains boundary.

10. Future Trends and Prospective

AM processes are revolutionizing the industrial setting due to their important advan-
tages in terms of sample geometry, customization and reduction in weight compared to
conventional manufacturing processes. Reductions in production time and cost are also of
fundamental importance. L-PBF makes up a large part of metal AM applications, where
AlSi10Mg and Ti6Al4V cover the largest portion of demand in the aerospace, automotive
and biomedical fields. For this reason, they are the most studied alloys in relation to this
manufacturing process. AlSi10Mg and Ti6Al4V must guarantee the high requirements
of these different applications, necessitating the manufacturing of excellent mechanical
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components and physical objects. Consequently, the effects induced by appropriate process
parameters and HTs must be controlled to obtain the best results.

For both lightweight alloys, there are many gaps in the optimization of the heat
treatment parameters in relation to the microstructural morphology obtained by different L-
PBF process parameters. Very few researchers have studied the effects of the BP temperature
on as-built samples, for which the effects of heat treatment on the same samples are also
largely unknown. These factors could potentially have important implications on the
design of samples and their mechanical properties. Future studies must, therefore, define
new heat treatments to optimize the mechanical properties of these alloys in order to
preserve the metallurgical advantages conferred by the L-PBF process. Another area of
interest is the mechanism involved during post-process heat treatments performed on
Ti6Al4V alloy to improve mechanical properties. At the same time, more studies on cyclic
heat treatments may be necessary.

11. Acronyms

Table 13 illustrates all acronyms and their definitions within the present review.

Table 13. Acronyms used in the present review and their definitions.

Acronyms Meanings

A Elongation at break (%)

AA Artificial Aging

AC Air Cooling

AM Additive Manufacturing

ANN Annealing

BFTEM Bright-Field Transmission Electron Microscopy

BP Build Platform

BR Build Rate

C-ANN Cycling Annealing

CP Cold Platform

DA Direct Aging

DED Direct Energy Deposition

DSC Differential Scanning Calorimetry

ED Energy Density

EBSD Electron Backscatter Diffraction

FC Furnace Cooling

H Horizontal

HAADF High-Angle Annular Darf-Field

HAZ Heat Affected Zone

HIP Hot Isostatic Pressing

HP Hot Platform

HRTEM High-Resolution Transmission Electron Microscopy

HT Heat Treatment(s)

L-PBF(ed) Laser-Powder Bed Fusion/(Fused)

LSW Lifshitz, Slyozov, Wagner

LOF Lack-Of-Fusion
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Table 13. Cont.

Acronyms Meanings

Ms, Mf Martensite start, finish

MP Melt/Molten pool

MPB MP Boundary(s)

MPC MP Center(s)

OM Optical Microscope

PBF Powder Bed Fusion

SAED Selected Area Electron Diffraction

SCC Stress Corrosion Cracking

SEM Scanning Electron Microscopy

SDAS Secondary Dendrite Arm Spacing

SHT Solution Heat Treatment

SLM Selective Laser Melting

SSTR Solid Solution Temperature Region

STA Solution Treated and Aged

STEM Scanning Transmission Electron Microscope

TEM Transmission Electron Microscope

UTS Ultimate tensile strength

V Vertical

XRD X-Ray Diffraction

YS Yield Strength

WQ Water Quenching
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169. Fusanová, M.; Dvorský, D.; Michalcová, A.; Vojtĕch, D. Changes in the microstructure and mechanical properties of additively
manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater. Charact. 2018, 137, 119–126. [CrossRef]

170. Ji, Y.; Dong, C.; Kong, D.; Li, X. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface
fabricated by selective laser melting. J. Mater. Sci. Technol. 2020, 46, 145–155. [CrossRef]

171. Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSI10Mg alloy fabricated by selective
laser melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism. Mater. Sci. Eng. A 2016, 663, 116–125.
[CrossRef]

172. Wei, P.; Chen, Z.; Zhang, S.; Fang, X.; Lu, B.; Zhang, L.; Wei, Z. Effect of T6 heat treatment on the surface tribological and corrosion
properties of AlSi10Mg samples produced by selective laser melting. Mater. Charact. 2021, 171, 110769. [CrossRef]

173. Liu, M.; Takata, N.; Suzuki, A.; Kobashi, M. Effect of heat treatment on gradient microstructure of AlSi10Mg lattice structure
manufactured by laser powder bed fusion. Materials 2020, 13, 2487. [CrossRef] [PubMed]

http://doi.org/10.3390/ma13183969
http://doi.org/10.1016/j.matchar.2018.04.022
http://doi.org/10.1016/j.addma.2018.03.014
http://doi.org/10.1016/j.jmst.2019.08.049
http://doi.org/10.1016/S1359-6454(98)00059-7
http://doi.org/10.1007/s11661-003-0088-y
http://doi.org/10.3390/met9121337
http://doi.org/10.1016/j.matdes.2017.11.045
http://doi.org/10.1007/s40964-019-00086-6
http://doi.org/10.1016/j.jallcom.2016.12.019
http://doi.org/10.1007/s11663-021-02179-6
http://doi.org/10.1016/j.msea.2021.141486
http://doi.org/10.1016/j.matchar.2021.111113
http://doi.org/10.3139/105.110418
http://doi.org/10.3390/met9111216
http://doi.org/10.1016/j.matdes.2021.109550
http://doi.org/10.1016/j.addma.2018.04.025
http://doi.org/10.3390/met11020179
http://doi.org/10.1016/j.pnsc.2021.08.003
http://doi.org/10.1016/j.jmrt.2021.04.062
http://doi.org/10.3390/technologies8030048
http://doi.org/10.1016/j.msea.2019.138713
http://doi.org/10.1016/j.matchar.2018.01.028
http://doi.org/10.1016/j.jmst.2020.01.037
http://doi.org/10.1016/j.msea.2016.03.088
http://doi.org/10.1016/j.matchar.2020.110769
http://doi.org/10.3390/ma13112487
http://www.ncbi.nlm.nih.gov/pubmed/32486032


Materials 2022, 15, 2047 78 of 84

174. Iturrioz, A.; Gil, E.; Petite, M.; Garciandia, F.; Mancisidor, A.M.; San Sebastian, M. Selective laser melting of Alsi10Mg alloy:
Influence of Heat Treatment Condition on Mechanical Properties and Microstructure. Weld World 2018, 62, 885–892. [CrossRef]

175. Chen, R.; Xu, Q.; Jia, Z.; Liu, B. Precipitation behavior and hardening effects of Si-containing dispersoids in Al-Si-Mg alloy during
SHT. Mater. Des. 2016, 90, 1059–1068. [CrossRef]

176. Li, Z.; Li, Z.; Tan, Z.; Xiong, D.-B.; Guo, Q. Stress relaxation and the cellular structure-dependence of plastic deformation in
additively manufactured AlSi10Mg alloys. Int. J. Plast. 2020, 127, 102640. [CrossRef]

177. Ben, D.D.; Ma, Y.R.; Yang, H.J.; Meng, L.X.; Shao, X.H.; Liu, H.Q.; Wang, S.G.; Duan, Q.Q.; Zhang, Z.F. Heterogeneous
microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A 2020,
798, 140109. [CrossRef]

178. Bharath, C.; Shamanth, V.; Hemath, K. Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting
and A360 alloy by die casting. Mater. Today Proc. 2021, 45, 78–81. [CrossRef]

179. Zhao, L.; Macías, J.G.S.; Ding, L.; Idrissi, H.; Simar, A. Damage mechanisms in selective laser melted AlSi10Mg under as built and
different post-process conditions. Mater. Sci. Eng. A 2019, 764, 138210. [CrossRef]

180. Bagherifard, S.; Beretta, N.; Monti, S.; Riccio, M.; Bandini, M.; Guagliano, M. On the fatigue stresses enhancement of additive
manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater. Des. 2018, 145, 28–41. [CrossRef]

181. Ngnekon, J.N.D.; Nadot, Y.; Henaff, G.; Nicolai, J.; Kan, W.H.; Cairney, J.M.; Ridosz, L. Fatigue properties of AlSi10Mg produced
by additive manufacturing. Int. J. Fatigue 2019, 119, 160–172. [CrossRef]

182. Hadadzadeh, A.; Baxter, C.; Amirkhiz, B.S.; Mohammadi, M. Strengthening mechanisms in direct metal laser sintered AlSi10Mg:
Comparison between Virgin and Recycled Powders. Add. Manuf. 2018, 23, 108–120. [CrossRef]

183. Zhang, X.; Huang, L.; Zhang, B.; Chen, Y.Z.; Liu, F. Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy
processed by high-pressure torsion with different heat treatments. Mater. Sci. Eng. A 2020, 794, 139932. [CrossRef]

184. Ryen, Ø.; Holmedal, B.; Nijs, O.; Nes, E.; Sjölander, E.; Holmedd, B.; Ekstrom, H. Strengthening mechanism in solid solution
aluminum alloy. Metall. Mater. Trans. A 2006, 37, 1999–2006. [CrossRef]

185. Dieter, G.E. Mechanical Metallurgy, 1st ed.; Mc-GrawHill: New York, NY, USA, 1986; pp. 212–220.
186. Chen, B.; Moo, S.K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K. Strength and strain hardening of selective laser melted

AlSi10Mg alloy. Scr. Mater. 2017, 141, 45–49. [CrossRef]
187. Rodriguez, P. Sixty years dislocations. Bull. Mater. Sci. 1996, 19, 857–872. [CrossRef]
188. Starink, M.J.; Wang, S.C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Mater. 2003, 51, 5131–5150.

[CrossRef]
189. Girelli, L.; Giovagnoli, M.; Tocci, M.; Pola, A.; Fortini, A.; Merlin, M.; La Vecchia, G.M. Evaluation of impact behaviour of

AlSi10Mg alloy produced using laser additive manufacturing. Mater. Sci. Eng. A 2019, 748, 38–51. [CrossRef]
190. Roth, C.C.; Tancogne-Dejen, T.; Mohr, D. Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput Testing and

Modelling. Add. Manuf. 2021, 43, 101998. [CrossRef]
191. Zhou, S.; Su, Y.; Gu, R.; Wang, Z.; Zhou, Y.; Ma, Q.; Yan, M. Impacts of defocusing amount and molten pool boundaries on

mechanical properties and microstructure of selective laser melted AlSi10Mg. Materials 2019, 12, 73. [CrossRef]
192. Martin, J.W. Precipitation Hardening, 2nd ed.; Butterwirth-Heinemann: Oxford, UK; Boston, MA, USA, 1998.
193. Cabrini, M.; Lorenzi, S.; Pastore, T.; Pellegrini, S.; Manfredi, D.; Fino, P.; Biamino, S.; Badini, C. Evaluation of corrosion resistance

of Al-Si10Mg alloy obtained by means of direct metal laser sintering. J. Mater. Process. Technol. 2016, 231, 326–335. [CrossRef]
194. Cabrini, M.; Lorenzi, S.; Pastore, T.; Pellegrini, S.; Ambrosio, E.P.; Calignano, F.; Manfredi, S.; Pavese, M.; Fino, P. Effect of heat

treatment on corrosion resistance of DMLS AlSi10Mg alloy. Electrochem. Acta. 2016, 206, 346–355. [CrossRef]
195. Cabrini, M.; Calignano, F.; Fino, P.; Lorenzo, S.; Lorusso, M.; Manfredi, D.; Testa, C.; Pastore, T. Corrosion behavior of heat-treated

AlSi10Mg manufactured by laser powder bed fusion. Materials 2018, 11, 1051. [CrossRef] [PubMed]
196. Rafieazad, M.; Mohammadi, M.; Nasiri, A.M. Microstructure and early stage corrosion performance of heat treated direct metal

laser sintered AlSi10Mg. Add. Manuf. 2019, 28, 107–119. [CrossRef]
197. Revilla, R.I.; Liang, J.; Godet, S.; De Graeve, I. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM

and SKPFM. J. Electrochem. Soc. 2017, 164, C27–C35. [CrossRef]
198. Fathi, P.; Mohammadi, M.; Duour, X.; Nasiri, A.M. A comparative study on corrosion and microstructure of direct laser sintered

AlSi10Mg_200C and die cast A360.1 aluminium. J. Mater. Process. Technol. 2018, 259, 1–14. [CrossRef]
199. Leon, A.; Shirizly, A.; Aghion, E. Corrosion behavior of AlSi10Mg alloy produced by additive manufacturing (AM) vs. its

counterpart gravity cast alloy. Metals 2016, 6, 148. [CrossRef]
200. Leon, A.; Aghion, E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser

melting (SLM). Mater. Charact. 2017, 131, 188–194. [CrossRef]
201. Revilla, R.I.; Verkens, D.; Rubben, T.; De Raeve, I. Corrosion and corrosion protection of additively manufactured aluminium

alloys—A critical review. Materials 2020, 13, 4804. [CrossRef]
202. Cabrini, M.; Lorenzi, F.; Pastore, T.; Testa, C.; Manfredi, D.; Lorusso, M.; Calignano, F.; Pavese, M.; Andreatta, F. Corrosion

behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corros. Sci. 2019, 152, 101–108.
[CrossRef]

http://doi.org/10.1007/s40194-018-0592-8
http://doi.org/10.1016/j.matdes.2015.11.069
http://doi.org/10.1016/j.ijplas.2019.12.003
http://doi.org/10.1016/j.msea.2020.140109
http://doi.org/10.1016/j.matpr.2020.10.095
http://doi.org/10.1016/j.msea.2019.138210
http://doi.org/10.1016/j.matdes.2018.02.055
http://doi.org/10.1016/j.ijfatigue.2018.09.029
http://doi.org/10.1016/j.addma.2018.07.014
http://doi.org/10.1016/j.msea.2020.139932
http://doi.org/10.1007/s11661-006-0142-7
http://doi.org/10.1016/j.scriptamat.2017.07.025
http://doi.org/10.1007/BF02744623
http://doi.org/10.1016/S1359-6454(03)00363-X
http://doi.org/10.1016/j.msea.2019.01.078
http://doi.org/10.1016/j.addma.2021.101998
http://doi.org/10.3390/ma12010073
http://doi.org/10.1016/j.jmatprotec.2015.12.033
http://doi.org/10.1016/j.electacta.2016.04.157
http://doi.org/10.3390/ma11071051
http://www.ncbi.nlm.nih.gov/pubmed/29933566
http://doi.org/10.1016/j.addma.2019.04.023
http://doi.org/10.1149/2.0461702jes
http://doi.org/10.1016/j.jmatprotec.2018.04.013
http://doi.org/10.3390/met6070148
http://doi.org/10.1016/j.matchar.2017.06.029
http://doi.org/10.3390/ma13214804
http://doi.org/10.1016/j.corsci.2019.03.010


Materials 2022, 15, 2047 79 of 84

203. Cabrini, M.; Lorenzi, S.; Pastore, T. Corrosion behavior of aluminium-silicon alloys obtained by Direct Metal Laser Sintering.
In Proceedings of the EUROCORR 2017—The Annual Congress of the European Federation of Corrosion, 20th International
Corrosion Congress and Process Safety Congress, Prague, Czech Republic, 3–7 September 2017.

204. Revilla, R.I.; De Graeve, I. Influence of Si content on the microstructure and corrosion behavior of additive manufactured Al-Si
alloys. J. Electrochem. Soc. 2018, 165, C926–C932. [CrossRef]

205. Cabrini, M.; Lorenzi, F.; Pastore, T.; Pellegrini, S.; Pavese, M.; Fino, P.; Ambrosio, E.P.; Calignano, F.; Manfredi, D. Corrosion
resistance of direct metal lase sintering AlSi10Mg alloy. Suf. Interface Anal. 2016, 48, 818–826. [CrossRef]

206. Rubben, T.; Revilla, R.I.; De Graeve, I. Influence of heat treatments on the corrosion mechanism of additive manufactured
AlSi10Mg. Corros. Sci. 2019, 147, 406–415. [CrossRef]

207. Chen, Y.; Zhang, J.; Gu, X.; Dai, N.; Qin, P.; Zhang, L.-C. Distinction of corrosion resistance of selective laser melted Al-12Si alloy
on different planes. J. Alloys Compd. 2018, 747, 648–658. [CrossRef]

208. Zeng, F.; Wei, Z.; Li, J.-F.; Li, C.-X.; Tan, X.; Zhang, Z.; Zheng, Z. Corrosion mechanism associated with Mg2Si and Si particles in
Al-Si-Mg alloys. Trans. Nonferrous Mater. Soc. China 2011, 21, 2559–2567. [CrossRef]

209. Gupta, R.K.; Sukiman, N.L.; Fleming, K.M.; Gibson, M.A.; Birbilis, N. Electrochemical behavior and localized corrosion associated
with Mg2Si particles in Al and Mg alloys. ECS Electrochem. Lett. 2012, 1, C1–C3. [CrossRef]

210. Ahlatci, H. Production and corrosion behaviours of the Al-12Si-XMg alloys containing in situ Mg2Si particles. J. Alloys Compd.
2010, 503, 122–126. [CrossRef]

211. Sui, Q.; Li, P.; Wang, K.; Yin, X.; Liu, L.; Zhang, Y.; Zhang, Q.; Wang, S.; Wong, L. Effect of build orientation on the corrosion
behavior and mechanical properties of selective laser melted Ti-6Al-4V. Metals 2019, 9, 976. [CrossRef]

212. Lekoadi, P.; Tlotleng, M.; Annan, K.; Maledi, N.; Masina, B. Evolution of heat treatment parameters on microstructure and
hardness properties of high-speed selective laser melted Ti6AL4V. Metals 2021, 11, 255. [CrossRef]

213. He, J.; Li, D.; Jiong, W.; Ke, L.; Qin, G.; Ye, Y.; Qin, Q.; Qiu, D. The martensitic transformation and mechanical properties of
Ti6Al4V prepared via selective laser melted. Materials 2019, 12, 321. [CrossRef]

214. Liu, J.; Li, G.; Sun, Q.; Li, H.; Sun, J.; Wang, X. Understanding the effect of scanning strategies on the microstructure and
crystallography texture of Ti-6Al-4V alloy manufactured via laser powder bed fusion. J. Mater. Process. Technol. 2022, 299, 117366.
[CrossRef]

215. Lui, E.W.; Xu, W.; Pateros, A.; Qian, M.; Brandt, M. New development in selective laser melting of Ti-6Al-4V: A Wider Processing
window for the achievement of fully lamellar α + βmicrostructures. JOM 2017, 69, 2679–2683. [CrossRef]

216. Karami, K.; Blok, A.; Weber, L.; Ahmadi, S.M.; Petrov, R.; Nikolic, K.; Borisov, E.V.; Leeflang, S.; Ayas, C.; Zadpoor, A.A.;
et al. Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of Post-Processing on Microstructural
Anisotropy and Fatigue Behavior. Add. Manuf. 2020, 36, 101433. [CrossRef]

217. Cepeda-Jiménez, C.M.; Potenza, F.; Magalini, E.; Luchin, V.; Molinari, A.; Pérez-Prado, M.T. Effect of energy density on the
microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion. Mater. Charact. 2020, 163, 110238.
[CrossRef]

218. Simonelli, M.; Tse, Y.Y.; Tuck, C. On the texture formation of the selective laser melted Ti-6Al-4V. Metall. Mater. Trans. 2014, 45,
2863–2872. [CrossRef]

219. Kumar, P.; Prakash, O.; Ramamurty, U. Micro- and macro-structures and their influence on mechanical properties of selectively
laser melted Ti-6Al-4V. Acta Mater. 2018, 154, 246–260. [CrossRef]

220. Dilip, J.J.S.; Zhang, S.; Teng, C.; Zeng, K.; Robinson, C.; Pal, D.; Stucker, B. Influence of process parameters on the evolution of MP,
porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Add. Manuf. 2017, 2, 157–167.
[CrossRef]

221. Xu, W.; Brandt, M.; Sun, S.; Elambasseril, J.; Liu, Q.; Latham, K.; Xia, K.; Qian, M. Additive manufacturing of strong and ductile
Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015, 85, 74–84. [CrossRef]

222. Barriobero-Vila, P.; Gussone, J.; Haubrich, J.; Sandlöbes, S.; Da Silva, J.C.; Cloetens, P.; Schell, N.; Requena, G. Inducing stable α +
β microstructures during selective laser melting of Ti-6Al-4V used intensified intrinsic heat treatment. Materials 2017, 10, 268.
[CrossRef] [PubMed]

223. Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.A.; Maier, H.J. On the mechanical behavior of titanium
alloy Ti6Al4V manufactured by selective laser melting: Fatigue Resistance and Crack Growth Performance. Int. J. Fatigue 2013, 48,
300–307. [CrossRef]

224. Bai, H.; Deng, H.; Chen, L.; Liu, X.; Qin, X.; Zhang, D.; Liu, T.; Cui, X. Effect of heat treatment on the microstructure and
mechanical properties of selective laser-melted Ti64 and Ti-5Al-5Mo-5V-1Cr-1Fe. Metals 2021, 11, 534. [CrossRef]

225. Brown, D.W.; Anghel, V.; Balogh, L.; Clausen, B.; Johson, J.S.; Martinez, R.M.; Pagan, D.C.; Rafailov, G.; Ravkov, L.; Strantza, M.;
et al. Evolution of the microstructure of laser powder bed fusion Ti-6Al-4V during post-build heat treatment. Metall. Mater. Trans.
A 2021, 52, 5165–5181. [CrossRef]

226. Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In situ residual stress reduction martensitic decomposition and mechanical properties
enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695,
211–220. [CrossRef]

http://doi.org/10.1149/2.0101814jes
http://doi.org/10.1002/sia.5981
http://doi.org/10.1016/j.corsci.2018.11.038
http://doi.org/10.1016/j.jallcom.2018.03.062
http://doi.org/10.1016/S1003-6326(11)61092-3
http://doi.org/10.1149/2.002201eel
http://doi.org/10.1016/j.jallcom.2010.04.214
http://doi.org/10.3390/met9090976
http://doi.org/10.3390/met11020255
http://doi.org/10.3390/ma12020321
http://doi.org/10.1016/j.jmatprotec.2021.117366
http://doi.org/10.1007/s11837-017-2599-9
http://doi.org/10.1016/j.addma.2020.101433
http://doi.org/10.1016/j.matchar.2020.110238
http://doi.org/10.1007/s11661-014-2218-0
http://doi.org/10.1016/j.actamat.2018.05.044
http://doi.org/10.1007/s40964-017-0030-2
http://doi.org/10.1016/j.actamat.2014.11.028
http://doi.org/10.3390/ma10030268
http://www.ncbi.nlm.nih.gov/pubmed/28772630
http://doi.org/10.1016/j.ijfatigue.2012.11.011
http://doi.org/10.3390/met11040534
http://doi.org/10.1007/s11661-021-06455-7
http://doi.org/10.1016/j.msea.2017.04.033


Materials 2022, 15, 2047 80 of 84

227. Kaschel, F.R.; Vijayaraghavan, R.K.; Shmeliov, A.; McCarthy, E.K.; Canavan, M.; McNally, P.J.; Dowling, D.P.; Nicolosi, V.; Celikin,
M. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in-situ high temperature
XRD and TEM analyses. Acta Mater. 2020, 188, 720–732. [CrossRef]

228. Xing, L.-L.; Zhang, W.-J.; Zhao, C.-C.; Gao, W.-Q.; Shen, Z.-J.; Liu, W. Influence of powder bed temperature on the microstructure
and mechanical properties of Ti-6Al-4V alloys fabricated via laser powder bed fusion. Materials 2021, 14, 2278. [CrossRef]
[PubMed]

229. Sallica-Leva, E.; Caram, R.; Jardini, A.L.; Fogagnolo, J.B. Ductility improvement due to martensite’ decomposition in porous
Ti-6Al-4V parts produced by selective laser melting for orthopedic implants. J. Mech. Behav. Biomed. Mater. 2016, 54, 149–158.
[CrossRef]

230. Cao, S.; Chu, R.; Zhou, X.; Yang, K.; Jia, Q.; Lim, C.V.S.; Huang, A.; Wu, X. Role of martensite decomposition in tensile properties
of selective laser melted Ti-6Al-4V. J. Alloys Compd. 2018, 744, 357–363. [CrossRef]

231. Malý, M.; Höller, C.; Skolan, M.; Meier, B.; Koutný, D.; Pichler, R.; Sommitsch, C.; Paloušek, D. Effect of process parameters and
high temperature pre heating on residual stress and relative density of Ti6Al4V processed by selective laser melting. Materials
2019, 12, 930. [CrossRef]

232. Antonysamy, A.A.; Meyer, J.; Prangnell, P.B. Effect of build geometry on the β-grains structure and texture in additive manufacture
of Ti-6Al-4V by selective electron beam melting. Mater. Charct. 2019, 84, 153–168. [CrossRef]

233. Wu, S.Q.; Lu, Y.J.; Gan, Y.L.; Huang, T.T.; Zhao, C.Q.; Lin, J.J.; Guo, S.; Lin, J.X. Microstructural evolution and microhardness of a
selective-laser-melted Ti-6Al-4V alloy after post heat treatment. J. Alloys Compd. 2016, 672, 643–652. [CrossRef]

234. Wang, T.; Zhu, Y.Y.; Zhang, S.Q.; Tang, H.B.; Wang, H.M. Grain morphology evolution behaviour of titanium alloy components
during laser melting deposition additive manufacturing. J. Alloys Compd. 2015, 632, 505–513. [CrossRef]

235. Yang, J.; Yu, H.; Wang, Z.; Zeng, X. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted
Ti-6Al-4V alloy. Mater. Charact. 2017, 127, 137–145. [CrossRef]

236. Yang, X.; Barrett, R.A.; Tong, M.; Harrison, N.M.; Leen, S.B. Towards a process-structure model for Ti-6Al-4V during additive
manufacturing. J. Manuf. Proc. 2021, 61, 428–439. [CrossRef]

237. DebRoy, T.; Wei, H.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; De Willson-Heid, A.; Zhang, W. Additive
manufacturing of metallic components-process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–124. [CrossRef]

238. Saboori, A.; Gallo, D.; Biamino, S.; Fino, P.; Lombardi, M. An overview of additive manufacturing of titanium components by
direct energy deposition: Microstructure and mechanical properties. App. Sci. 2017, 7, 883. [CrossRef]

239. Fu, H.Z.; Lin, L. Progress of directional solidification in processing of advanced materials. Mater. Sci. Forum 2005, 475–479,
607–612. [CrossRef]

240. Bontha, S.; Klingbeil, N.W.; Kobrin, P.A.; Fraser, H.L. Thermal process maps for predicting solidification microstructure in laser
fabrication on thin-wall structures. J. Mater. Process. Technol. 2006, 178, 135–142. [CrossRef]

241. Boyer, R.; Welsch, G.; Colling, E.W. Materials Properties: Handbook; ASM International: Novelty, OH, USA, 1994.
242. Davis, W.J.; Chen, H.; Nomoto, K.; Wang, H.; Babu, S.; Priming, S.; Liao, X.; Brenn, A.; Ringer, S.P. Phase transformation pathways

in Ti-6Al-4V manufactured via electron beam powder bed fusion. Acta Mater. 2021, 215, 117131. [CrossRef]
243. Motyka, M.; Kubiak, K.; Sianiawski, J.; Ziaja, W. Phase transformation and characterization of α + β titanium alloys. In

Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 7–36. [CrossRef]
244. Yang, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; Zeng, X. Formation and control of martensite in Ti-6Al-4V alloy produced by selective

laser melting. Mater. Des. 2016, 108, 308–318. [CrossRef]
245. Haar, G.M.T.; Becker, T.H. Selective laser melting produced Ti-6Al-4V: Post-Process Heat Treatment to Achieve Superior Tensile

Properties. Materials 2018, 11, 146. [CrossRef] [PubMed]
246. Karimi, J.; Xie, M.S.; Wang, Z.; Prashanth, K.G. Influence of substructures on the selective laser melted Ti-6Al-4V alloy as a

function of laser re-melting. J. Mater. Process. Mater. 2021, 68, 1387–1394. [CrossRef]
247. Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser

melting of Ti-6Al-4V. Acta Mater. 2010, 58, 3303–3312. [CrossRef]
248. Welsch, G.; Bunk, W. Deformation modes of the α-phase of Ti-6Al-4V as a function of oxygen concentration and aging temperature.

Metall. Trans. A 1982, 13, 889–899. [CrossRef]
249. Gehlin, P.C. The Crystallographic Structure of Ti3Al; Jaffe, R.I., Ed.; Permogon Press: New York, NY, USA, 1970.
250. Williams, J.C.; Sommer, A.W.; Tung, P.P. The influence of oxygen concentration internal stress and dislocations arrangements in α

titanium. Metall. Mater. Trans. B 1972, 3, 2979–2984. [CrossRef]
251. Dear, F.F.; Konts, P.; Gault, B.; Ilavsky, J.; Rugg, D.; Dye, D. Mechanisms of Ti3Al precipitation in hpc α-Ti. Acta Mater. 2021, 212,

116811. [CrossRef]
252. Pushilina, N.; Panin, A.; Syrtanov, M.; Kashkarov, E.; Kudiiarov, V.; Perevalova, O.; Laptev, R.; Lider, A.; Koptyug. Hydrogen-

induced phase transformation and microstructure evolution for Ti-6Al-4V parts produced by electron beam melting. Metals 2018,
8, 301. [CrossRef]

253. Leyens, C.; Peters, M. Application of titanium and titanium alloys. In Titanium Alloy, 1st ed.; Moiseyev, V.N., Ed.; Taylor & Francis
Group: Abingdon, UK, 2005; p. 12. [CrossRef]

http://doi.org/10.1016/j.actamat.2020.02.056
http://doi.org/10.3390/ma14092278
http://www.ncbi.nlm.nih.gov/pubmed/33924888
http://doi.org/10.1016/j.jmbbm.2015.09.020
http://doi.org/10.1016/j.jallcom.2018.02.111
http://doi.org/10.3390/ma12060930
http://doi.org/10.1016/j.matchar.2013.07.012
http://doi.org/10.1016/j.jallcom.2016.02.183
http://doi.org/10.1016/j.jallcom.2015.01.256
http://doi.org/10.1016/j.matchar.2017.01.014
http://doi.org/10.1016/j.jmapro.2020.11.033
http://doi.org/10.1016/j.pmatsci.2017.10.001
http://doi.org/10.3390/app7090883
http://doi.org/10.4028/www.scientific.net/MSF.475-479.607
http://doi.org/10.1016/j.jmatprotec.2006.03.155
http://doi.org/10.1016/j.actamat.2021.117131
http://doi.org/10.1016/B978-0-08-096532-1.00202-8
http://doi.org/10.1016/j.matdes.2016.06.117
http://doi.org/10.3390/ma11010146
http://www.ncbi.nlm.nih.gov/pubmed/29342079
http://doi.org/10.1016/j.jmapro.2021.06.059
http://doi.org/10.1016/j.actamat.2010.02.004
http://doi.org/10.1007/BF02642403
http://doi.org/10.1007/BF02652870
http://doi.org/10.1016/j.actamat.2021.116811
http://doi.org/10.3390/met8050301
http://doi.org/10.1201/9781420037678-10


Materials 2022, 15, 2047 81 of 84

254. Grabovetskaya, G.P.; Helnikova, E.N.; Kolobov, Y.R.; Chernov, I.P.; Naidenkin, E.V.; Nikitenkov, N.N.; Mishin, I.P. Evolution
of the structural and phase states of Ti-6Al-4V alloy in forming submicroscopy crystalline structure with use of temporary
hydrogenation. Russ. Phys. J. 2006, 49, 442–447. [CrossRef]

255. Zhu, T.; Li, M. Lattice variations of Ti-6Al-4V alloy with hydrogen content. Mater. Charact. 2011, 62, 724–729. [CrossRef]
256. Yu, J.; Rombouts, M.; Maes, G.; Motamans, F. Materials properties of Ti6Al4V parts produced by laser metal deposition. Phys.

Procedia 2012, 39, 416–424. [CrossRef]
257. Takase, A.; Ishimoto, T.; Morita, N.; Ikeo, N.; Nakano, T. Comparison of phase characteristics and residual stress in Ti-6Al-4V

alloy manufactured by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques. Crystals
2021, 11, 796. [CrossRef]

258. Huang, S.; Sing, S.L.; de Looze, G.; Wilson, R.; Yeong, W.Y. Laser Powder bed fusion of titanium-tantalium alloys: Compositions
and Designs for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020, 108, 103775. [CrossRef]

259. Xie, Z.; Dai, Y.; Ou, X.; Ni, S.; Song, M. Effects of selective laser melting build orientations on the microstructure and tensile
performance of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2020, 776, 139001. [CrossRef]

260. Flißner-Rieger, C.; Tunes, M.A.; Gammer, C.; Jörg, T.; Pfeifer, T.; Musi, M.; Mendez-Martin, F.; Clemens, H. On the existence of
orthorhombic martensite in a near-α titanium base alloy used for additive manufacturing. J. Alloys Compd. 2022, 897, 163155.
[CrossRef]

261. Katantseva, N.; Krakhmalev, P.; Thuvander, M.; Yadroitsev, I.; Vinogradova, N.; Ezhov, I. Martensitic transformation in Ti-6Al-4V
(ELI) alloy manufactured by 3D printing. Mater. Charact. 2018, 146, 101–112. [CrossRef]

262. Requena, G.; Cloetens, P.; Altendorfer, W.; Poletti, C.; Tolnai, D.; Warchomicka, F.; Degischer, H.P. Sub-micrometer synchrotron
tomography of multiphase metals using Kirkpatrick-baez optics. Scripta Mater. 2009, 61, 760–763. [CrossRef]

263. Li, C.; Li, G.; Yang, Y.; Varlioglu, M.; Yang, L. α” martensitic twinning in α + β Ti-3.5Al-4.5Mo titanium alloy. J. Metall. 2011, 2011,
924032. [CrossRef]

264. Zhang, H.; Liu, X.; Yang, S.; Jiang, H.; Shi, Z.; Yang, M.; Wang, C. The clarification of the α” phase precipitate from β phase in
Ti-15Mn alloy by mismatch theory. Mater. Letter. 2017, 202, 138–141. [CrossRef]

265. Huang, Q.; Liu, X.; Yang, X.; Zhang, R.; Shen, Z.; Feng, Q. Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical
applications. Front. Mater. Sci. 2015, 9, 373–381. [CrossRef]

266. Yadroitsev, I.; Yadroitsava, I.; Plessis, A.D.; MacDonald, E. Fundamentals of Laser Powder Bed Fusion of Metals, 1st ed.; Elsevier:
Amsterdam, The Netherlands, 2021; pp. 245–276.

267. Cotulo, A.; Elangeswaran, C.; de Formanoir, C.; Muralidharan, G.K.; Van Hooreweder, B. Effect of heat treatments on fatigue
properties of Ti-6Al-4V and 316L produced by laser powder bed fusion in as-built surface condition. In TMS 2019 148th Annual
Meeting & Exhibition Supplemental Proceedings; Springer: Cham, Switzerland, 2019. [CrossRef]

268. Eshawish, N.; Malinov, S.; Sha, W.; Walls, P. Microstructure and mechanical properties of Ti-6Al-4V manufactured by selective
laser melting after stress relieving, hot isostatic pressing treatment, and post-heat treatment. J. Mater. Eng. Perform. 2021, 30,
5290–5296. [CrossRef]

269. ASTM F3301-18a; Additive Manufacturing—Post Processing Methods—Standard Specification for Thermal Post-Processing
Metals Part Made via Powder Bed Fusion. ASTM International: West Conshohocken, PA, USA, 2018.

270. Bartsch, K.; Herzog, D.; Bossen, B.; Emmelmann, C. Material modelling of Ti-6Al-4V processed by laser powder bed fusion for
application in macro-scale process simulation. Mater. Sci. Eng. A 2021, 814, 141237. [CrossRef]

271. Longhitano, G.A.; Larosa, M.A.; Jardini, A.L.; de Carvalho Zavaglia, C.A.; Filipini Ierardi, M. Correlation between microstructure
and mechanical properties under tensile and compression test heat-treated Ti-6Al-4V ELI alloy produced by AM for biomedical
application. J. Mater. Process. Technol. 2018, 252, 202–210. [CrossRef]

272. Meyer, L.W.; Krüger, L.; Sommer, K.; Halle, T.; Hockanf, M. Dynamic strength and failure behavior of titanium alloy TI-6Al-4V for
a variation of heat treatments. Mech. Time-Depend. Mater. 2008, 12, 237–247. [CrossRef]

273. Lin, Y.C.; Tang, Y.; Jiang, Y.-C.; Chen, J.; Wang, D.; He, D.-G. Precipitation of secondary phase transformation behavior of a
solution-treated Ti-6Al-4V alloy during high-temperature aging. Adv. Eng. Mater. 2020, 22, 1901436. [CrossRef]

274. Liu, C.; Yu, L.; Zhang, A.; Tian, X.; Liu, D.; Ma, S. Beta heat treatment of laser melting deposited high strength near β titanium
alloy. Mater. Sci. Eng. A 2016, 673, 185–192. [CrossRef]

275. Kent, D.; Wang, G.; Wang, W.; Dargusch, M.S. Influence of ageing temperature and heating rate on the properties and microstruc-
ture β Ti alloys, Ti-6Cr-5Mo-4Al. Mater. Sci. Eng. A 2012, 531, 98–106. [CrossRef]

276. Muhammad, M.; Pegeus, J.W.; Shamsei, N.; Haghshenas, M. Effect of heat treatments on microstructure/small-scale properties of
additive manufactured Ti-6Al-4V. Int. J. Adv. Manuf. 2019, 103, 4161–4172. [CrossRef]

277. Jamshidi, P.; Aristizabal, H.; Kong, W.; Villapun, V.; Cox, S.C.; Grover, L.M.; Attallah, M.M. Selective laser melting of Ti-6Al-4V:
The impact Post-Processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials 2020, 13,
2813. [CrossRef]

278. Cox, S.C.; Jamshidi, P.; Eisenstein, N.M.; Webber, M.A.; Burton, H.; Moakes, R.J.; Addison, O.; Attallah, M.; Shepherd, D.E.; Grover,
L.M. Surface finish has a critical influence of biofilm formation and mammalian cell attachment to additively manufactured
prosthetics. ACS Biomater. Sci. Eng. 2017, 3, 1616–1626. [CrossRef]

http://doi.org/10.1007/s11182-006-0123-8
http://doi.org/10.1016/j.matchar.2011.04.019
http://doi.org/10.1016/j.phpro.2012.10.056
http://doi.org/10.3390/cryst11070796
http://doi.org/10.1016/j.jmbbm.2020.103775
http://doi.org/10.1016/j.msea.2020.139001
http://doi.org/10.1016/j.jallcom.2021.163155
http://doi.org/10.1016/j.matchar.2018.09.042
http://doi.org/10.1016/j.scriptamat.2009.06.025
http://doi.org/10.1155/2011/924032
http://doi.org/10.1016/j.matlet.2017.05.032
http://doi.org/10.1007/s11706-015-0315-7
http://doi.org/10.1007/978-3-030-05861-6_36
http://doi.org/10.1007/s11665-021-05753-w
http://doi.org/10.1016/j.msea.2021.141237
http://doi.org/10.1016/j.jmatprotec.2017.09.022
http://doi.org/10.1007/s11043-008-9060-y
http://doi.org/10.1002/adem.201901436
http://doi.org/10.1016/j.msea.2016.07.027
http://doi.org/10.1016/j.msea.2011.10.040
http://doi.org/10.1007/s00170-019-03789-w
http://doi.org/10.3390/ma13122813
http://doi.org/10.1021/acsbiomaterials.7b00336


Materials 2022, 15, 2047 82 of 84

279. Chafino, J.A.; Yamanaka, K.; Mercier, F.; Rivory, P.; Balvoy, S.; Hartmann, D.J.; Chiba, A.; Fabregue, D. The influence of temperature
during water-quench rapid heat treatment on the microstructure, mechanical properties and biocompatibility of Ti-6Al-4V ELI
alloy. J. Mech. Behav. Biomed. Mater. 2019, 96, 144–151. [CrossRef]

280. SAE AMS-H-81200C-2010; Heat Treatment of Titanium and Alloys. SAE International Group: Warrendale, PA, USA, 2010.
281. Ji, Y.; Heo, T.W.; Zhang, F.; Chen, L.Q. Theoretical assessment on the phase transformation kinetic pathways of multi-component

Ti alloys: Application to Ti-6Al-4V. J. Phase Equilibria Diffus. 2016, 37, 53–64. [CrossRef]
282. Lu, S.L.; Qian, M.; Tang, H.P.; Yan, M.; Wang, J.; StJohn, D.H. Massive transformation in Ti-6Al-4V additively manufactured by

selective electron beam melting. Acta Mater. 2016, 104, 303–311. [CrossRef]
283. ASTM F1580-12; Standard Specification for Titanium and Titanium-6 Aluminium-4 Vanadium Alloy Powders for Coatings of

Surgical Implants. ASTM International: West Conshohocken, PA, USA, 2012.
284. Malinov, S.; Sha, W.; Guo, Z.; Tang, C.C.; Long, A.E. Synchrotron X-Ray diffraction study of the phase transformation in titanium

alloys. Mater. Charact. 2002, 48, 279–295. [CrossRef]
285. Etesami, S.A.; Fotovvati, B.; Asadi, E. Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: Process,

Microstructures, and Mechanical Properties Correlations. J. Alloys Compd. 2021, 895, 162618. [CrossRef]
286. Losertová, M.; Kubeš, V. Microstructural and mechanical properties of selective laser melted Ti6Al4V alloy. IOP Conf. Ser. Mater.

Sci. Eng. 2017, 266, 012009. [CrossRef]
287. Li, C.-L.; Hing, J.-K.; Narayana, P.L.; Choi, S.-W.; Lee, S.W.; Park, C.H.; Yeom, J.T.; Mei, Q. Realizing superior ductility of selective

laser melted Ti-6Al-4V through a multi-step heat treatment. Mater. Sci. Eng. A 2021, 799, 140367. [CrossRef]
288. Cao, S.; Chen, Z.; Lim, C.V.S.; Yang, K.; Jia, Q.; Jarvis, T.; Tomus, D.; Wu, X. Defect, microstructure, and mechanical property of

Ti-6Al-4V alloy fabricated by high-power selective laser melting. JOM 2017, 69, 2684–2693. [CrossRef]
289. Cao, S.; Zou, Y.; Voon Samuel Lin, C.; Wu, X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, Post-Process

Treatment, Microstructure, and Property. Light Adv. Manuf. 2021, 2, 313–332. [CrossRef]
290. Haubrick, J.; Gussone, J.; Barriero-Vila, P.; Kürnsteiner, P.; Jägle, E.A.; Raabe, D.; Schell, N.; Requena, G. The role of lattice defects,

element portioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Mater. 2019, 167,
136–148. [CrossRef]

291. Callegari, B.; Marçola, J.V.; Aristizabal, K.; Soldera, F.A.; Müklich, F.; Pinto, H.C. Effect of microstructure on Ti3Al precipitation
during ageing of Ti-6Al-4V alloy. MATEC Conf. 2020, 321, 12014. [CrossRef]

292. Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A
1998, 243, 32–45. [CrossRef]

293. Schuster, J.C.; Palm, M. Reassessment of the binary aluminium-titanium phase diagram. J. Phase Equilibria Diffus. 2006, 27,
255–277. [CrossRef]

294. Bagot, P.A.J.; Radecka, A.; Magyar, A.P.; Gong, Y.; Bell, D.C.; Smith, G.D.W.; Moody, M.P.; Dye, D.; Rugg, D. The effect of oxidation
on the subsurface microstructure of a Ti-6Al-4V alloy. Scripta Mater. 2018, 148, 24–28. [CrossRef]

295. Sun, W.; Ma, Y.E.; Zhang, W.; Qian, X.; Huang, W.; Wang, Z. Effects of build orientation on mechanical performance of laser
powder bed fusion additively manufactured Ti6Al4V under different loadings. Adv. Eng. Mater. 2021, 23, 2100611. [CrossRef]

296. Moridi, A.; Demir, A.G.; Caprio, L.; Hart, A.J.; Previtali, B.; Colosimo, B.M. Deformation and failure mechanisms of Ti-6Al-4V as
built by selective laser melting. Mater. Sci. Eng. A 2019, 768, 138456. [CrossRef]

297. Rafi, H.K.; Starr, T.L.; Stucker, B.E. A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5PH stainless
steel parts made by selective laser melting. Int. J. Adv. Manuf. Technol. 2013, 69, 1299–1309. [CrossRef]

298. Vilardell, A.M.; Fredrksson, G.; Yadroitsev, I.; Krakhmalev, P. Fracture mechanisms in the as-built and stress-relieved laser powder
bed fusion Ti-6Al-4V ELI alloy. Opt. Laser Technol. 2019, 109, 608–615. [CrossRef]

299. Benzing, J.; Hrabe, N.; Quinn, T.; White, R.; Rentz, R.; Ahlfors, M. Hot isostatic pressing (HIP) to achieve isotropic microstructure
and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V). Mater. Lett. 2019, 257, 126690. [CrossRef]

300. Li, P.; Warner, D.H.; Pegeus, J.W.; Roach, M.D.; Shamsaei, N.; Phan, H. Investigation of the mechanisms by which hot isostatic
pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. Int. J. Fatigue 2019, 120, 342–352. [CrossRef] [PubMed]

301. Wycisk, E.; Siddique, S.; Hergoz, D.; Walther, F.; Emmelmann, C. Fatigue performance of laser additive manufactured TI-6Al-4V
in very high cycle fatigue regime up to 109 cycles. Front. Mater. 2015, 2, 72. [CrossRef]

302. Hergoz, D.; Bartsch, K.; Bossen, B. Productivity optimization of laser powder bed fusion by hot isostatic pressing. Add. Manuf.
2020, 36, 101494. [CrossRef]

303. Kasperovich, G.; Hausmann, J. Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting. J.
Mater. Proc. Technol. 2015, 220, 202–214. [CrossRef]

304. Chong, Y.; Bhattacharjee, T.; Tian, Y.; Shibata, A.; Tsuji, N. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy:
The Effects on Interfacial Annealing Temperature and Constituent Hardness. J. Mater. Res. Technol. 2021, 71, 138–151. [CrossRef]

305. Sabban, R.; Bahl, S.; Chatterjee, K.; Suwas, S. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high
strength and toughness. Acta Mater. 2019, 162, 239–254. [CrossRef]

306. Zhao, Z.; Chen, J.; Tan, H.; Zhang, G.; Lin, X.; Huang, W. Achieving superior ductility for laser solid formed extra low interstitial
Ti-6Al-4V titanium alloy through equiaxial alpha microstructure. Scripta Mater. 2018, 146, 187–191. [CrossRef]

307. Mierzejewska, Z.A. Effect of laser energy density, internal porosity and heat treatment on mechanical behavior of biomedical
Ti6Al4V alloy obtained with DMLS technology. Materials 2019, 12, 2331. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jmbbm.2019.04.024
http://doi.org/10.1007/s11669-015-0436-9
http://doi.org/10.1016/j.actamat.2015.11.011
http://doi.org/10.1016/S1044-5803(02)00286-3
http://doi.org/10.1016/j.jallcom.2021.162618
http://doi.org/10.1088/1757-899X/266/1/012009
http://doi.org/10.1016/j.msea.2020.140367
http://doi.org/10.1007/s11837-017-2581-6
http://doi.org/10.37188/lam.2021.020
http://doi.org/10.1016/j.actamat.2019.01.039
http://doi.org/10.1051/matecconf/202032112014
http://doi.org/10.1016/S0921-5093(97)00778-8
http://doi.org/10.1361/154770306X109809
http://doi.org/10.1016/j.scriptamat.2018.01.015
http://doi.org/10.1002/adem.202100611
http://doi.org/10.1016/j.msea.2019.138456
http://doi.org/10.1007/s00170-013-5106-7
http://doi.org/10.1016/j.optlastec.2018.08.042
http://doi.org/10.1016/j.matlet.2019.126690
http://doi.org/10.1016/j.ijfatigue.2018.10.015
http://www.ncbi.nlm.nih.gov/pubmed/31595096
http://doi.org/10.3389/fmats.2015.00072
http://doi.org/10.1016/j.addma.2020.101494
http://doi.org/10.1016/j.jmatprotec.2015.01.025
http://doi.org/10.1016/j.jmst.2020.08.057
http://doi.org/10.1016/j.actamat.2018.09.064
http://doi.org/10.1016/j.scriptamat.2017.11.021
http://doi.org/10.3390/ma12142331
http://www.ncbi.nlm.nih.gov/pubmed/31336682


Materials 2022, 15, 2047 83 of 84

308. Swarnakar, A.K.; Van der Biest, O.; Baufeld, B. Thermal expansion and lattice parameters of shaped metal deposited Ti-6Al-4V. J.
Alloys Compd. 2011, 509, 2723–2728. [CrossRef]

309. Slater, J.C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3205. [CrossRef]
310. Tsai, M.-T.; Chen, Y.-W.; Chao, C.-Y.; Jang, J.S.C.; Tsai, C.-C.; Su, Y.-L.; Kuo, C.-N. Heat treatment effects on mechanical properties

and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. J. Alloys Compd. 2020, 816, 152615.
[CrossRef]

311. Gallaraga, H.; Lados, D.A.; Dehoff, R.R.; Kirka, M.M.; Nandwana, P. Effects of the microstructure and porosity on properties of
Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Add. Manuf. 2016, 10, 47–57. [CrossRef]

312. Lifshtz, M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50.
[CrossRef]

313. Liu, J.; Zhang, K.; Yang, Y.; Wang, H.; Zhu, Y.; Huang, A. Grain boundary α-phase precipitation and coarsening: Comparing
Laser Powder Bed Fusion with As-cast Ti-6Al-4V. Scripta Mater. 2022, 207, 114261. [CrossRef]

314. Cao, S.; Hu, Q.; Huang, A.; Chen, Z.; Sun, M.; Zhang, J.; Fu, C.; Jia, Q.; Lim, V.C.S.; Boyer, R.R.; et al. Static coarsening behavior of
lamellar microstructure in selective laser melted Ti-6Al-4V. J. Mater. Sci. Technol. 2019, 35, 1578–1586. [CrossRef]

315. Stefansonn, N.; Semiatin, S.L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment. Metall. Mater. Trans. A
2003, 34, 691–698. [CrossRef]

316. Roy, S.; Suwas, S. Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of
Ti-6Al-4V alloy. Acta Mater. 2017, 134, 283–301. [CrossRef]

317. Sharma, G.; Ramanujan, R.V.; Tiwari, G.P. Instability mechanisms in lamellar microstructures. Acta Mater. 2000, 48, 875–889.
[CrossRef]

318. ASTM F2924-12; Standard Specification for Additive Manufacturing Titanium-6 Aluminium-4 Vanadium with Powder Bed
Fusion. ASM International: West Conshohocken, PA, USA, 2013.

319. Mertens, A.; Reginster, A.; Paydas, H.; Contrepois, Q.; Dormol, T.; Lemaire, O.; Lecomte-Beckers, J. Mechanical properties of alloy
Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: Influence of Out-of-Equilibrium Microstructure. Powder
Metall. 2014, 57, 184–190. [CrossRef]

320. Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropy tensile behavior of Ti-6Al-4V components fabricated with direct energy
deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [CrossRef]

321. Wilson-Heid, A.E.; Wang, Z.; McCornac, B.; Beese, A.M. Quantitative relationship between anisotropic strain to failure and grain
morphology in additively manufactured Ti-6Al-4V. Mater. Sci. Eng. A 2017, 706, 287–294. [CrossRef]

322. Ronnenberg, I.; Davies, C.M.; Hooper, P.A. Revealing relationships between porosity, microstructure and mechanical properties
of laser powder bed fusion 316L stainless steel through heat treatment. Mater. Des. 2020, 189, 108481. [CrossRef]

323. Cain, V.; Thijs, L.; Van Humbeeck, B.; Van Hooreweder, B.; Knutsen, R. Crack propagation and fracture toughness of Ti6Al4V
alloy produced by selective laser melting. Add. Manuf. 2015, 5, 68–76. [CrossRef]

324. Zafari, A.; Xia, K. High ductility in a fully martensitic microstructure: A Paradox in a Ti alloy Produced by Selective Laser Melting.
Mater. Res. Lett. 2018, 6, 627–633. [CrossRef]

325. Vilaro, T.; Colin, C.; Bartout, J.D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective
laser melting. Metall. Mater. Trans. A 2011, 42, 3190–3199. [CrossRef]

326. Muiruri, A.; Maringa, M.; du Preez, W. Validation of a microstructure-based model for prediction the high strain rate flow
properties of various forms of additively manufactured Ti6Al4V (ELI) alloy. Metals 2011, 11, 1628. [CrossRef]

327. Galindo-Fernàndez, M.A.; Mumtaz, K.; Rivera-Díaz-del-Castillo, P.E.J.; Galindo-Nova, E.I.; Ghadbeigi, H. A microstructure
sensitive model for deformation of Ti-6Al-4V describing cast-and-wrought and additive manufacturing morphologies. Materials
Des. 2018, 160, 350. [CrossRef]

328. Todaro, C.J.; Easton, M.A.; Qiu, D.; Zhang, S.; Bermingham, M.J.; Lui, E.W.; Brandt, M.; StJohn, D.H.; Qian, M. Grain structure
control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 2020, 11, 142–151. [CrossRef]

329. Qian, M.; Xu, W.; Brandt, M.; Tang, H.P. Additive manufacturing and post processing of Ti-6Al-4V for superior mechanical
properties. MRS Bull. 2016, 41, 775–784. [CrossRef]

330. Akram, J.; Pal, D.; Stucker, B. Establishing flow stress and elongation relationship as a function of microstructural features of
Ti6Al4V alloy processed using SLM. Designs 2019, 3, 21. [CrossRef]

331. Zheng, Z.; Waheed, S.; Balint, D.S.; Dunne, F.P.E. Slip transfer across phase boundaries in dual phase titanium alloys and the
effect on strain rate sensitivity. Int. J. Plast. 2018, 104, 23–38. [CrossRef]

332. Kohn, D.H.; Ducheyene, P. Tensile and fatigue strength of hydrogen-treated Ti6Al4V alloy. J. Mater. Sci. 1991, 26, 328–334.
[CrossRef]

333. Tan, C.; Fan, Y.; Sun, Q.; Zhang, G. Improvement of the crack propagation resistance in an α + β titanium alloy with a trimodal
microstructure. Metals 2020, 10, 1058. [CrossRef]

334. Hosseini, R.; Morakabarti, M.; Abbasi, S.M.; Hajari, A. Development of a trimodal microstructure with superior combined
strength ductility and creep-rupture properties in a near α titanium alloy. Mater. Sci. Eng. A 2017, 696, 155–165. [CrossRef]

335. Zhang, S.; Zhang, Y.; Zou, Z.; Shi, Y.; Zhang, Y. The microstructure and tensile properties of additively manufactured Ti-6Al-2Zr-
1Mo-1W with a trimodal microstructure obtained by multiple annealing heat treatment. Mater. Sci. Eng. A 2022, 831, 142241.
[CrossRef]

http://doi.org/10.1016/j.jallcom.2010.12.014
http://doi.org/10.1063/1.1725697
http://doi.org/10.1016/j.jallcom.2019.152615
http://doi.org/10.1016/j.addma.2016.02.003
http://doi.org/10.1016/0022-3697(61)90054-3
http://doi.org/10.1016/j.scriptamat.2021.114261
http://doi.org/10.1016/j.jmst.2019.04.008
http://doi.org/10.1007/s11661-003-0103-3
http://doi.org/10.1016/j.actamat.2017.04.071
http://doi.org/10.1016/S1359-6454(99)00378-X
http://doi.org/10.1179/1743290114Y.0000000092
http://doi.org/10.1016/j.actamat.2014.12.054
http://doi.org/10.1016/j.msea.2017.09.017
http://doi.org/10.1016/j.matdes.2020.108481
http://doi.org/10.1016/j.addma.2014.12.006
http://doi.org/10.1080/21663831.2018.1525773
http://doi.org/10.1007/s11661-011-0731-y
http://doi.org/10.3390/met11101628
http://doi.org/10.1016/j.matdes.2018.09.028
http://doi.org/10.1038/s41467-019-13874-z
http://doi.org/10.1557/mrs.2016.215
http://doi.org/10.3390/designs3020021
http://doi.org/10.1016/j.ijplas.2018.01.011
http://doi.org/10.1007/BF00576523
http://doi.org/10.3390/met10081058
http://doi.org/10.1016/j.msea.2017.04.068
http://doi.org/10.1016/j.msea.2021.142241


Materials 2022, 15, 2047 84 of 84

336. Chen, L.-Y.; Zhang, H.-Y.; Zheng, C.; Yang, H.-Y.; Qin, P.; Zhao, C.; Lu, S.; Liang, S.-X.; Chai, L.; Zhang, L.-C. Corrosion behavior
and characteristics of passive films of laser powder bed fusion produced Ti-6AlV in dynamic Hank’s solution. Mater. Des. 2021,
208, 109907. [CrossRef]

337. Chin, T.-M.; Mahmudi, M.; Dai, W.; Elevany, A.; Liang, M.; Castaneda, M. Corrosion assessment of Ti6Al-4V fabricated using
laser powder-bed fusion additive manufacturing. Electrochem. Acta 2018, 279, 143–151. [CrossRef]

338. Zhao, B.; Wang, H.; Qiao, N.; Wang, C.; Hu, M. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated
by electron beam melting and selective laser for implantation in vivo. Mater. Sci. Eng. C 2017, 70, 832–841. [CrossRef] [PubMed]

339. Dai, N.; Zhang, J.; Chen, Y.; Zhang, L.-C. Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V
alloy. J. Electrochem. Cos. 2017, 164, C428–C434. [CrossRef]

340. Dai, N.; Zhang, L.-C.-; Zhang, J.; Chen, Q.; Wu, M. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution.
Corros. Soc. 2016, 102, 484–489. [CrossRef]

341. Chandramohan, P.; Bhero, S.; Obadele, B.A.; Olubambi, B.A. Laser additive manufactured Ti-6Al-4V alloys: Tribology and
Corrosion Studies. Int. J. Adv. Manuf. Technol. 2017, 92, 3051–3061. [CrossRef]

342. Pazhanivel, B.; Sathiya, P.; Sozhan, G. Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion
resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process. Opt. Laser Technol. 2020, 125, 106017. [CrossRef]

http://doi.org/10.1016/j.matdes.2021.109907
http://doi.org/10.1016/j.electacta.2018.04.189
http://doi.org/10.1016/j.msec.2016.07.045
http://www.ncbi.nlm.nih.gov/pubmed/27770961
http://doi.org/10.1149/2.1481707jes
http://doi.org/10.1016/j.corsci.2015.10.041
http://doi.org/10.1007/s00170-017-0410-2
http://doi.org/10.1016/j.optlastec.2019.106017

	Introduction 
	Laser-Powder Bed Fusion (L-PBF) Process 
	Process Parameters 

	L-PBFed AlSi10Mg: Microstructure 
	As-Built Microstructure 
	Heat-Treated Microstructure 

	L-PBFed AlSi10Mg: Mechanical Properties 
	L-PBFed AlSi10Mg: The Corrosion Resistance 
	L-PBFed Ti6Al4V: Microstructure 
	As-Built Microstructure 
	Heat-Treated Microstructure 

	L-PBFed Ti6Al4V: Mechanical Properties 
	L-PBFed Ti6Al4V: The Corrosion Resistance 
	Conclusions 
	Microstructure and Corrosion Resistance of AlSi10Mg 
	Mechanical Properties of AlSi10Mg 
	Microstructure and Corrosion Resistance of Ti6Al4V 
	Mechanical Properties of Ti6Al4V 

	Future Trends and Prospective 
	Acronyms 
	References

