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A B S T R A C T A R T I C L E   I N F O

Considering that the ageing of the population is not going to stop, the need for 

biocompatible materials is continuously increasing, especially in the field of 

bone substitutes as well as in the fabrication of surgery tools. The Optoform 

process is an additive manufacturing technology able to shape most of the 

common biocompatible ceramic materials such as hydroxyapatite (HA) and 

tricalcium phosphate (TCP). Those ceramic materials are largely studied to 

substitute bone defects or as voids fillers while stronger bioinert materials like 

alumina and zirconia can find applications in surgery tools or in dentistry. The 

Optoform process allows building a component, layer by layer, from CAD data, 

leading to significant advantages: 1) the manufacturing of elements with a 

complex geometry and with a controlled porosity that would be impossible to 

demold or to machine; and 2) short delays of production for customized part 

with the desired characteristics and design. The quality control of these parts 

is essential for medical use and is certified by the control of each step of the 

manufacturing process: synthesis of biocompatible ceramic powders, prepara-

tion of photo-curable resin based paste, shaping of the part by Optoform and 

subsequent thermal treatment for debinding and sintering. 
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1. Introduction

1.1 Bone defects and implants 

Traumas, tumours, infections, accidents, congenital malformations are many causes that might 

lead to bone defects. When the bone missing part has a critical size, the body cannot heal it by 

itself and the defect needs addition of bone graft material in order to fill the void. Surgeons can 

then consider many options such as autograft, allograft, or the use of synthetic materials [1]. 

Autologus materials can be considered as a paragon of excellence but they present several prob-

lems such as a limited availability and the necessity of several surgical incisions. Allografts, on 

their side, might lead to diseases transfer or tissue refusals. Alloplastics are not harvested from 

donors, neither from another place in the body and thus those risks are highly reduced and there 

is no availability limits. 

 Nowadays, many different materials are available for alloplastic bone replacement surgery 

such as titanium, polymers and ceramics. They have diverse properties fitting for various appli-

cations. Some of them are only biocompatible and stay inert in the body (such as alumina or zir-

conia), performing a mechanical reinforcement or protecting a vulnerable structure. Others are 

bioactive: a biological link is created with the material, facilitating the incorporation of the im-
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plant and the stresses transmission (like HA). Finally, others are absorbable and thus tend to be 

replaced by surrounding ingrowing bones (for example the β-TCP) [2]. 

1.2 Additive manufacturing of ceramics 

The most common techniques to shape ceramics are tooling and moulding but it is also possible 

to use an additive technology such as 3D printing or stereolithography. 

 Additive techniques offer the advantages to produce quickly customized part directly from 

CAD data. Such customized implant can have very complex geometries with, possibly, intercon-

nected porosity, without causing any additional difficulties to the production. Medical imagery 

can give information essential for the design of a tailored implant for a specific bone defect. 3D 

printing of implants or scaffolds using calcium phosphate is already in the focus of scientific re-

searches [1, 3]. 

 Stereolithography of ceramics has also already been experienced [4]. In this study, we are 

using an OPTOFORM machine. The OPTOFORM was developed in 2000 in order to carry out 

rapid prototyping with metal, ceramic or any materials. OPTOFORM is then a stereolithography 

machine especially well designed for experimenting new materials. The study presented below 

uses UV curable resins filled with ceramic powders. Once the suspension is prepared, it is spread 

on the working area thin layer after thin layer. The shape and size of the implant are directly 

transferred from a CAD file to the stereolithography machine where a UV laser beam polymer-

izes the resin layer after layer. Once the production is achieved, a thermal cycle is performed in 

order to pyrolyse all the organics components (the resin) and to sinter the ceramic. Indeed, if 

organics are still present in the final product, the physical properties and the biocompatibility 

will be altered. 

 Additive manufacturing offers a total freedom in the design of the manufactured parts. The 

implants may have an integrated structure of interconnected pores that would promote cells 

adhesion and facilitate subsequent bone ingrowth [5]. The porous structure (level of porosity, 

size, shapes and interconnectivity of the pores) has shown to have a net influence on the bone 

regeneration in the implants [6, 7]. 

 The aim of this study is to master every step of OPTOFORM manufacturing process and to 

assess its dimensional accuracy. As the quality control of the produced parts is essential for its 

clinical use, it is also very important to be aware of the mechanical and physical characteristics 

of the productions. 

2. Materials and methods 

2.1 Optoform machine, data acquisition, CAD of the parts 

The Optoform (Fig. 1) is an experimental stereolithography machine. Starting from a 3D STL file, 

a part is built slice by slice from bottom to top, on a plate recovered with a polymer paste which 

hardens when scanned by a UV laser beam [8]. 
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Fig. 1  Optoform principle: 1: UV Laser, 2: paste supply, 3: recoater including a blade and 2 

rotating rods, 4: paste tank, 5: XY rotation, 6: galvanometrical mirror, 7: photosensitive 

paste, 8: polymerised prototype, 9: building  platform, 10: z control 
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Depending on the geometry of the part and on the material, the building speed is around 375 

cm3/h and up to 750 cm3/h and there is no waiting time during the recoating. Unlike usual 

stereolithography, the UV scanning is immediate after the passage of the blade [9]. 

 Supports are needed because of the scraper stress. The layer thickness is a function of the 

material reactivity to UV and of the application, but it is always in the range of 35–120 µm. The 

maximum size of the prototype is 250 mm × 350 mm × 500 mm but there are also smaller plat-

forms more suitable to process expensive material or to build small implants. Actually, no ce-

ramic parts of the size of the biggest platform have ever been produced because of ceramic brit-

tleness. 

 The STL file of the part can be obtained through different ways depending on what is to pro-

duce. Surgical tool parts or any mechanical component are obtained via CAD while cranial flap or 

other biological volumes are often the result of a medical imagery. The patient’s skull is scanned 

and the virtual generation of the implant is obtained by performing a mirror function of the 

healthy part of the skull [1]. Implants can be designed with CAD software if their geometry is not 

too complex and/or if their size is to be standardized. 

 Once a computer file of cranial flap is available a porous structure can be synthesizes on its 

contours to promote bone regeneration around and inside the implant. The porous structure is 

created with “SolidWorks” (© Dassault Systems 1995–2012) and is then subtracted from the 

implant file with the software “Magics” by Materialise.  

 To avoid having marks from the supports on the part an “under-part” is created. Using Magics 

again, the lower surface of the implant is copied and extruded on a very thin thickness. This 

newly created volume consists of the under-part. It is positioned fractions of millimeter below 

the implant having no contact with it. The supports will hold the under-part in place on the 

building platform. During the fabrication, the implant and the under-part are interdependent 

thanks to the surface tension induced by the non-polymerized paste that is spread between the 

two parts.  

 The STL files of the supports and the implant are then transferred in “Optovue” (© OptoForm 

1997–2001), a slicing software dedicated to Optoform. Slices of the desired thickness are then 

created representing sections of the implant. The laser tracks are also defined at this point. The 

file containing the sliced volume is introduced in “Optobuild” (© OptoForm 1997–2001), the 

machine program and the fabrication can be launched. 

2.2 Optoform machine, data acquisition, CAD of the parts 

Every material developed for the Optoform machine must comply with specific criteria. Each 

material includes some resin, fillers (from 20 % up to 70 % in volume) and a photo-initiator [10, 

11]. In addition, it could contain rheological agent, thixotropic additives and wetting agent. The 

ceramics used for the OptoForm are bought to Valutec SA (Valenciennes, France). HA and β-TCP 

powders are prepared by the aqueous precipitation technique, using diammonium phosphate 

solution (NH4)2HPO4 and calcium nitrate solution Ca(NO3)2 4H2O.  Temperature and pH are ad-

justed depending on what is to produce, HA or β-TCP powder. After filtering the solution and 

drying the precipitate at 70 °C, the powders exhibit a very high specific surface area (> 60 m2/g), 

that does not permit to obtain good paste for OptoForm process. Particle size of β-TCP and HA 

precipitates are increased by a thermal treatment at an adapted calcinations temperature in 

order to obtain the desired grain size. After this step, powders are ground to break up agglomer-

ates formed during calcinations and to reduce the powder to its ultimate particle size [12]. 

 The paste must have the firmness of toothpaste which does not flow with the gravity. The 

viscosity and the flow behaviour can be interpreted with the Bingham’s model. Thanks to the 

paste consistency, no tank is needed to build a model.  

 The mixture has to be stable in time and the filler should not deposit sediment. Basic curing 

resins of those materials are generally acrylates, methacrylates or epoxy [10, 11]. 

In any case, after building, the parts require a cleaning step. This task issue will be undertaken 

by a wise choice of solvent, which will dissolve the paste and not the part. 
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2.3 Ceramics 

In this project, the paste filler is always a biocompatible ceramic. Several pastes with different 

ceramics have been developed to offer various characteristics intrinsic to each material and pro-

viding solution to different needs. The ceramics paste developed here are HA, β-TCP, alumina, 

and more recently a mixture of HA/β-TCP and zirconia. HA, hydroxyapatite is a bioactive mate-

rial promoting bone ingrowth, offering a good resistance in compression and with a very slow 

rate of bioabsorption. It is suitable for long term implantation. β-TCP, beta tricalcium phosphate 

is a biocompatible ceramic that can be resorbed within a few weeks in the body for the smaller 

parts, it also promotes bone ingrowth very efficiently. Alumina is a biocompatible material with 

really strong mechanical properties but no bioactivity has ever been reported. HA/β-TCP is a 

mixture of two different ceramic powders. The purpose of this biphasic compound is to adapt 

bioresorption rates to the speed of bone ingrowth. Zirconia is known for its particularly high 

mechanical resistances as well as a good tenacity and wear resistance in comparison with other 

bioceramics. 

2.4 Production 

Important parameters of scaffolds and implants for bone replacement are the compression 

strength and the Young modulus of the material [13]. HA samples have been produced in order 

to receive 3 points bending tests, compressive tests, and densification rates tests. For all devel-

oped materials, parts 15 mm thick without porosity were produced in order to check the ability 

to debind and sinter parts of different size and thickness. Implant parts of various geometries of 

small and large dimension were produced with high, low and evolving porosity degree to make 

sure the machine parameter are versatile enough to produce any kind of geometry. To observe 

the minimal pore size achievable by the Optoform we produced parts with various pore dimen-

sions from 0.7 mm to 0.3 mm. Prototypes of cranial flap implant and tibial osteotomy wedge 

(with an external ring dense and the inner part imitating cancellous bone) have been manufac-

tured among others in HA and in HA/β-TCP. 

 Some geometry and dimensional tests were performed on the most complex shapes in order 

to verify the accuracy of the process. 

2.5 Debinding and Sintering 

Debinding and sintering cycle is one of the key steps of this entire process. Pyrolysis is very im-

portant as it removes organics from the green preceramic and makes it a pure biocompatible 

ceramic.  

 These cycles were defined at the BCRC following weight loss (TGA) during the pyrolysis of 

organics. The cycles are performed under air. The sintering part of the cycle occurs at higher 

temperature but always below melting point [14]. During sintering, ions and atoms move and fill 

up open channels between the grains of ceramic powder (organics evacuation leaves a lot of 

voids in the parts), Fig. 2. 

 

 

Fig. 2  Different steps (A, B & C) of sintering process, the grains are filling up the void channels left by the debinding 
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 This mechanism comes with a high degree of shrinkage but in general the shape is conserved. 

This shrinkage gives the piece its density and so its mechanical properties. The sintering tem-

peratures depend on the studied ceramic material while heating rates, dwell temperature and 

holding times depend on the organics used in the paste. 

2.6 Mechanical and dimensional characteristics 

Different tests were performed in order to evaluate the quality of the manufactured parts. As 

mentioned in subsection 2.4, we have performed various mechanical tests on HA while other 

material except from zirconia (which is too recent) have only received dimensional and density 

tests. HA is the only material that has been mechanically characterised because in term of den-

sity it is the most accomplished with the alumina. Density is a key parameter in the physical and 

mechanical properties and thus it has been calculated for every used material but zirconia. Den-

sification rates have been calculated with the Archimedes’ principle. Accuracy of the process have 

been evaluated and improved with by different means: visual checking, microscope and 3D scan. 

2.7 Biocompatibility 

Beside mechanical and dimensional characteristics, an implantable object must comply with a 

biological environment. Porous sample of β-TCP were then tested in a human cell culture in or-

der to evaluate the cells reproduction around the specimen. Other samples have been screwed 

into the backbones of several rats in order to assess the biodegradation of the implant as well as 

the bone ingrowth in the implants. 

3. Results 

3.1 Production 

The CAD/CAM of the implants, tools elements and test parts went well. Delaminating systemati-

cally occurred between two layers on parts containing too many slices.  

 A paste with correct consistency has been found for every material. All the selected pastes 

spread correctly on the working platform without generating any difficulties and they all had the 

required viscosity to be able to build parts tall enough without observing any collapsing of the 

paste heap. 

3.2 Debinding and sintering 

Difficulties were met during the debinding cycles: cracks appeared when pyrolysis occurred too 

fast and the organics did not have the time to evacuate the green preceramic slowly. This prob-

lem was solved by adjusting the temperature rising rate. Using TGA, the most appropriate cycles 

have been found. As similar resins are used in every paste, the cycle always consists of three 

dwell steps at 180 °C, 400 °C and 430 °C plus a sintering period at a temperature depending on 

the material. 

 Between debinding and sintering, parts are very weak. As an example, the cranial flaps col-

lapsed (Fig. 3) during thermal cycle when not correctly supported due to their shape (a large 

proportion of the piece is in cantilever and needs to be supported). 

 For every paste composition the degrees of shrinkage were different. Also, shrinkage is al-

ways most significant in the vertical direction. Such a phenomenon is taken into account while 

designing the parts that are to be manufactured [15]. 

Not only the sintering is critical; the burning of the organics occurring during debinding is 

very sensitive; especially with HA/β-TCP specimens. If using the same speed with this material 

than with others, cracks can appear at only 90 °C. 

Fig. 4 shows microscopic views of β-TCP samples after a thermal cycle. It can be observed 

that after the first part of the cycle (until 600 °C) all the organics are gone away and the ceramic 

grains are easily identified, Fig. 4 (left). Fig. 4 (right) is the image of a similar sample after com-

pleting sintering cycle. A large grain growth occurs during the thermal treatment. 
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4.1 Geometry 

Integrated porous structure is a great plus on a bone implant. A recurrent problem with implant 

is the appearance of necrotic tissues on the centre of the scaffold due to the limited penetration 

of cells and nutriment in the implant [7]. When macro pores are interconnected, nutriments and 

cells migration into the centre of the implant is privileged. 

 Given the very small differences of fluid flow through the different pore geometries we 

should generally choose a circular geometry because, as mentioned in Table 3 as there is less 

stresses concentration, the compression strength is higher.  

 The dimensional accuracy (± 0.2 mm) is suitable for operatory guides, for most of the tools 

and for implants. Thanks to an operation guide a surgeon can operate a dissection or mill a hole 

in the patient bone at a desired position. With 0.2 mm of accuracy on the guide, a good position-

ing is obtained.  

 This accuracy is also enough for many mechanical parts as it allows the screwing of the ce-

ramic part on the fillet of a metallic tool. 

 Fig. 5 shows that fitting a flap on the cranial defect is almost perfect with such accuracy. 

4.2 Properties 

The density of a ceramic is the result of its sintering. It has to be noticed that densification rate is 

largely dependent on the grain size of the initial powder. Smaller is the powder easier is the sin-

tering [18]. In our case, we are unable to use very thin powder because of the dependence of the 

paste viscosity. Indeed, too thin powders also lead to a very viscous paste that would not be 

spreadable on the working platform. 

 In our case of porous implants, it is very important to reach a high density in order to ensure 

sufficient mechanical resistance despite the high level of “macro” porosity. 

 The values obtained by stereolithography process in terms of compression and bending 

strengths are encouraging by comparison to values obtained by the 3D printing process of cal-

cium phosphate. The bending strength reached is between 3.9 MPa and 5.3 MPa [1] on dense 

samples against 26.1 MPa in Table 3. Under compression, 3D printed samples do not have higher 

strength than 21.2 MPa [12] while sample in this study reached 111 MPa. The good densification 

rate reached explains in itself the better mechanical characteristics. Densification rates obtained 

by 3D printing are around 65 % [1].  

 Mechanical properties are encouraging compare to other processes of additive manufactur-

ing of ceramic but it is still far from the valued obtained with HA sample shaped by moulding 

and fully densified thanks to a HIP post sintering operation. Those samples had a 105 MPa in 

bending strength. 

 HA has been developed with the purpose to be used as bone replacement so it is also interest-

ing to compare the strength the optoformed samples with strength of bone. According to litera-

ture tibia has an average compressive strength between 120 MPa and 150 MPa [19]. Those are 

average values and they have to be watched carefully as bone quality changes a lot from one 

individual to another. 

 Results of Table 2 regarding the strength variation in function of the direction of compression 

may be explained by a lower density on the surface between each layer so when compress per-

pendicularly to those layer a specimen might fail at this interstice while the strength is continu-

ous all along the sample when charge is applied in parallel with the layers.  

 Anyway densities such as the one reached in alumina and HA would allow a post sintering 

treatment such as HIP and thus give better densities and higher mechanical strength. 

 
4.3 Application 

Depending on the ceramic used we can reach many diverse activity fields with this technology. 

 The β-TCP offers application in bone scaffolds and temporary implants. Bone substitutes 

made of this material are highly biodegradable and thus have to be placed where bones have 

rapid growing abilities. It must above all be small dimension parts so that a new real bone can 

rapidly replace the bioresorbed prosthesis. 
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 HA is almost non-resorbable. It has a very low speed of biodegradation and it creates links 

with the biological surrounding tissues. As it stays in place much longer, this ceramic also offers 

a better long term resistance to the stress of the body on the implant. Such a material can thus be 

very suitable for cranial flaps for example. Unfortunately ceramics have low bending resistance 

and do not offer the possibilities for long bone such as a hip implants.  

 A mix of HA and β-TCP with each of the material in the appropriate proportion is being de-

veloped. This mix would have the feature to absorb at the same speed as the bone growths in the 

implant allowing to keep constantly a good resistance. 

 The method proposed in this paper is also very attractive in terms of costs:  the fabrication of 

a cranial flap is about 2 to 3 times cheaper by this method in comparison to the grinding of HA 

ceramic. 

5. Conclusion 

We showed in this study that with an appropriate technique, stereolithography of various ce-

ramics is possible and efficient. This technology has a great future in medical applications. In 

implantology it allows avoiding disadvantages caused by intraoperative manual modelling im-

plant. Despite the lowest strength of the materials compare to the same materials shaped with 

other technique, it permits to manufacture very complex and unique geometries such as an 

adapted controlled and variable macro porosity that can serve as bone scaffold. Rapid manufac-

turing gives a fast and cheap tailored implant with a great accuracy. Mixing of active and absorb-

able ceramics is possible and would allow adapting the bioresorption rate to the bone ingrowth 

rate. Because of the need of macroporous geometry for scaffolds, rapid manufacturing will 

maybe become a golden standard in bone implantology. The success in alumina production have 

applications in medicine for surgery guide or for tools parts manufacturing but it also opens 

doors of many other fields of activity. Whenever a unique and or complex geometry is needed in 

alumina, the stereolithography is a promising solution. 
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