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Abstract—Concentrated wound, open slot, permanent magnet
electrical machines are an attractive topology for automotive and
aerospace applications as they exhibit compact end-windings,
resulting in high power-density, facilitate fault tolerant operation
through, physical, thermal, magnetic and electrical isolation of
phase windings, and the open slot structure eases manufacture.
However, a significant disadvantage of this topology is the
interaction between the armature reaction field and winding
conductors leading to elevated AC losses. A common mitigation
technique is to reduce the height of the winding in the slot
to minimise this interaction, however, the conductor cross-
sectional area is consequently reduced which compromises low-
speed performance. This paper investigates the use of additive
manufacturing to produce shaped profile windings which exhibit
minimal AC loss whilst maximising the utilisation of the slot area,
thereby improving low-speed performance while maintaining
high-speed performance.

I. INTRODUCTION

Concentrated wound, open slot, Permanent Magnet (PM)

electrical machines are an attractive topology for automotive

and aerospace applications as they exhibit compact end-

windings when compared to distributed wound machines, re-

sulting in high power-density and efficiency, [1], [2], facilitate

fault tolerant operation through, physical, thermal, magnetic

and electrical isolation of phase windings, and the open

slot structure eases manufacture, [1]–[3]. Typical operating

requirements in these application areas include, [4], [5]:

• high torque- and power-density (minimal mass/volume)

• wide speed range operation

• wide constant power operation

• high efficiency across the operating range

• high torque at low speed (starting)

• high intermittent overload capability

• reliability and robustness

• low acoustic noise and vibration

With appropriate choice of pole-slot number and design,

all these requirements can be addressed by an open-slot PM

machine, however in high-frequency machines a significant

disadvantage lies in the elevated AC winding losses due to

a large exposure of the conductors to high magnetic fields

around the slot opening, [6]. Where the hot-spot temperature

of the windings ultimately dictates the electrical loading and

hence torque capability of the machine as the winding current
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must be limited to ensure that the temperature rating of the

electrical insulation system is respected, [7].

A common AC loss mitigation technique is to reduce

the height of the winding in the slot to minimise the field

impinging on the conductors which results in improved high-

frequency AC performance and lower peak-to-mean winding

temperatures, however, the low-frequency DC performance is

compromised since the slot area utilisation is poor, [8].

An alternative approach is to shape the profile of the

conductors in the slot to minimise the interaction with the

armature reaction field while maximising slot area utilisation.

Shaped windings have been achieved using round wire wound

on to forming bobbins, [9], by the use of pre-cut foil windings,

[10], [11], through stacking a series of Printed Circuit Boards

(PCBs) which are electrically connected in the end-winding

or using solid busbar arrangements, [12]–[14]. More recently

metal casting techniques have been explored, [15], [16], and

the use of metal Additive Manufacturing (AM) methods have

been demonstrated which offer unparalleled geometric free-

dom in conductor shape and layout, Fig. 1, and can allow

additional features such as cooling channels and terminals to

be built directly into the part, [17]–[21].

Fig. 1. Example of a shaped profile copper winding manufactured using
Direct Metal Laser Sintering for a filter inductor application, [19].

In this paper, a method of determining an optimal shaped

profile winding is presented which maximises slot area util-

isation to achieve improved low-speed performance while

maintaining low AC loss. The conductor shaping algorithm

is demonstrated by the re-design of the windings of a 48V

Integrated Starter Generator (ISG), [6] and aims to lay the

foundation for design tools which can take advantage of the

geometric freedom offered by present and future metal AM

technologies.



II. DEVELOPMENT OF THE CONDUCTOR SHAPING

ALGORITHM

The electrical machine topology under consideration, Sec-

tion IV, features open stator slots and a PM rotor resulting in

significant exposure of the concentrated windings to the slot

leakage and rotor induced fields, Fig. 12. Hence, proximity

to an external magnetic field is the dominant AC winding

loss mechanism and is the focus of the conductor shaping

algorithm, [22].

Consider an idealised rectangular conductor exposed to

a uniform time varying external magnetic flux density, B,

perpendicular to the surface, as illustrated in Fig. 2, where the

conductor length, l, is assumed large compared to the width,

w, and height, h, [23], [24]. The skin depth is assumed to be

comparable to the conductor thickness such that the internal

magnetic field is uniform, [25]. Faraday’s law states that the

magnetic flux, Φ, penetrating the loop P1 → P2 → P3 → P4

will set up an electromotive force (EMF), e, according to, (1).

h l 
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dx 

dB/dt 

x 

P1 

P2 
P3 

P4 

Fig. 2. Rectangular conductor exposed to a uniform time-varying external
field, dB/dt, perpendicular to the surface.
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In turn the EMF induces an eddy current loop traversing

the differential element, dx, with area, dxh, and length, l, into

the page along P1 → P2 and returning along P3 → P4. The

resistance of the eddy current loop, Rel, is given by (2) where,

σ, is the electrical conductivity of the conductor. The power

loss in the loop, Pel, is determined by (3) which yields the

conductor power loss per unit length, Pcond, when integrated

over the conductor surface, (4).

Pel =
e2

Rel

= 2x2lσh

(

dB

dt

)2

dx (3)

Pcond = 2

∫ w

2

0

2x2σh

(

dB

dt

)2

dx =
w3

6
hσ

(

dB

dt

)2

(4)

From inspection of (4), the per unit length power loss in

the conductor, Pcond, is related to the cube of the exposed

conductor width, w, and linearly to the exposed conductor

height, h. Hence, the simplified model, Fig. 2, suggests that

thin conductors (w << h) shaped to remain perpendicular to

the external magnetic field will exhibit minimal loss. Therefore

the conductor shaping algorithm must comprise:

• an electromagnetic slot model accounting for leakage

and armature reaction fields capable of predicting AC

conductor losses

• a method of determining magnetic flux direction infor-

mation across the slot

• a method of distributing conductors and maintaining

consistent conductor cross-sectional area

• a thermal model to account for the temperature depen-

dence of electrical conductivity

A. Electromagnetic Slot Model

Although highly computationally efficient, analytical meth-

ods of estimating the armature reaction field, [26], [27],

and AC losses within conductors, [8], [28], tend to require

reformulation when the machine topology changes, assume

linear magnetically permeable materials or are restricted to

regular, repeated conductor shapes. Therefore a 2D Finite

Element (FE) modelling approach is adopted which allows

arbitrary shaped conductors to be easily represented and lends

well to changes in machine topology.
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(a) Magnetic vector potential time-domain waveform observed at
regular points along the slot opening.
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(b) Magnitude of frequency content of a magnetic vector potential
time-domain waveform, Fig. 3a.

Fig. 3. Time and frequency domain magnetic vector potential at the slot
opening, evaluated for a winding current of 75A and electrical frequency of,
felec = 1000 Hz.

A time-stepping FE (TSFE) model would require a numer-

ical field solution accounting for each shaped conductor to

be calculated at each time-step as the rotor rotates within the

stator, representing a significant computational overhead. As

an alternative, a computationally efficient approximation based

on a time-harmonic FE (THFE) model for the slot region

can be used. Here, the armature reaction field is represented

as a boundary condition by specifying the magnetic vector



potential, A, at regular points along the slot opening. The mag-

nitude and phase of A at each point is obtained by extracting

the time-domain A waveform, Fig. 3a, from corresponding

points along the slot opening of a simplified (only lumped

windings are modelled and symmetry is exploited) TSFE

model, as illustrated in Fig. 3. Each waveform is decomposed

into fundamental magnitude and phase components using a

Fourier transform, Fig. 3b, and applied to the slot boundary

of the THFE model. The TSFE model is evaluated for varying

winding current and the resulting dataset interpolated to allow

appropriate boundary conditions to be applied to the THFE

model over the range of winding current and electrical fre-

quency of interest without repeating the TSFE model analyses.

The THFE model operates at a single frequency, felec, hence

only the fundamental of the A waveform is accounted for,

however, in this case the magnitude of the harmonics are

negligible, Fig. 3.

Slot opening, prescribed A 
boundary condition  

Slot  
periphery 

Winding  
window 

Fig. 4. Illustration of slot periphery and winding window with magnetic vector
potential, representing the armature reaction field, plotted as a surface and as
contours, winding current of 137.5 A, electrical frequency, felec = 480 Hz.

Fig. 4 illustrates the two stator slots occupied by a sin-

gle concentrated winding along with the effective winding

window area, accounting for slot liner and insulation. The

magnetic vector potential obtained from the THFE slot model,

accounting for slot leakage and rotor induced effects is plotted

as a surface and as a series of contours for a winding

current of 137.5A (60 Nm) and felec = 480 Hz (2400 RPM),
Section IV. The contours shown are equipotentials of magnetic

vector potential, A, the direction of which are parallel to the

magnetic flux, Φ, [25], hence, the contours of A can be used

to shape the profile of the conductors for minimum loss as

illustrated in, Fig. 2 and (4).

The active-winding loss, Paw, is estimated using the THFE

model, showing close agreement with the TSFE model, as

illustrated in Fig. 5. The end-winding loss, Pew, is assumed

to be DC only, (5), where IRMS , N , l̄ew, Āc and σT are

the RMS winding current, number of turns, the average end-

winding length, average conductor cross-section and electrical

conductivity at temperature, T , respectively.
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Fig. 5. Conductor AC loss estimates from the TSFE and THFE models,
I = 75 A and felec = 1000 Hz.

Pew = I2RMSRew = I2RMS

2Nl̄ew

σT Āc

(5)

B. Thermal Slot Model

The electrical conductivity and hence the induced losses

of the conductor material are temperature dependent. The

electrical conductivity, σT , at temperature, T , is given by (6)

where T0 = 20 oC, σT0
, and α are the reference temperature,

electrical conductivity at the reference temperature and the

temperature coefficient of resistance respectively.

σT =
σT0

1 + α (T − T0)
(6)

A 2D thermal conduction FE model, Fig. 6, is coupled with

the electromagnetic THFE model, Section II-A, to iteratively

calculate the conductor losses and temperature until a steady

state is reached. As with the electromagnetic model, a 2D FE

approach is favoured for the ease in which the stator and con-

ductor geometry can be accurately represented. Temperature

and loss calculations are performed at the conductor level to

account for the variation in conductor loss and temperature

resulting from the proximity to the electrical machine air-

gap, [29]. The thermal model simulates a liquid cooled casing,

Section IV, with a fixed temperature boundary condition on

the stator outer diameter, Tcoolant = 60 oC. The remaining

boundaries are assumed to be adiabatic. The total winding

loss, Paw + Pew, is assumed to be extracted through the

active length of the winding in contact with the stator. The

conductor insulation coating is neglected in the model to

reduce computation time, rather, the material properties of the

encapsulant and slot liner, Table I, are proportionally reduced

from the manufacturer stated values to emulate the effect

of contact conductance, conductor insulation and imperfect

encapsulation, [7].
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Fig. 6. Steady state thermal FE slot model.

TABLE I
MATERIAL THERMAL PROPERTIES

Material Thermal Adjusted Thermal
Conductivity Conductivity
[W/m.K] [W/m.K]

Conductor, CuCr1Zr 320 320†

Slot liner 0.2 0.1‡

Stator No20 SiFe 30 30

Encapsulant 0.85 0.4*

* Reduced to emulate conductor insulation and imperfect
impregnation.

† Likely reduced by the AM process.
‡ Reduced to emulate contact conductance.

C. Conductor Shaping Algorithm

The conductor shaping algorithm seeks to distribute the

conductors in such a way as to minimise the cross-sectional

area exposed to the magnetic flux, Fig. 2 and (4). An overview

of the algorithm is shown in Fig. 7. The THFE model is set

up to simulate the desired operating point frequency, felec,

and peak winding current, I . The conductors are initially

distributed uniformly along the slot, assuming a single full-

width column, as illustrated in Fig. 8a, which eases the man-

ufacturing and electrical insulation process, [19], Section IV.

The winding height, kwh, is a design variable normalised to

the slot dimensions, in this case kwh = 0.8 or 80%. The

electromagnetic slot model, Section II-A, is used to determine

the initial magnetic vector potential across the slots, Fig. 4.

At the top of the slot, away from the air-gap, the flux

traverses the slot in the x-direction almost parallel to the

slot base, as shown in Fig. 4, hence the regular edge-wound

conductors, Fig. 8a, are appropriate. Further down the slot,

toward the air-gap, the flux ceases to be parallel to the slot

base and conductors must be shaped, this point is referred to

as the point of inflection, Ninf . In order to determine the shape

of the conductors, the magnetic vector potential is sampled,

Asn, at the upper and lower boundary of each conductor to

be shaped, coincident with a flux sampling line at ks = 0.95
or 95%, normalised to the slot dimensions, as illustrated in

Fig. 8b. The value of ks is a design variable which strongly

influences the overall winding shape. The contours of A are

extracted based on each sample Asn and used to construct a

closed polygon, representing each conductor, shaped to run

parallel to the flux lines. The change in winding shape alters
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Fig. 7. Overview of the conductor shaping algorithm.
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(a) Variant EW80%: Edge
wound conductors, kwh = 0.8.
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Fig. 8. Edge wound and shaped profile winding examples, evaluated for an
operating point of, I = 75 Apeak and frequency, felec = 480 Hz (2400 RPM
mechanical).

the magnetic field shape, hence, the process is repeated until

a steady state is achieved. It is important to maintain an

equal conductor cross-section throughout the winding so an

optimisation routine, in this case Particle Swarm Optimisation

(PSO), is used to perturb the y-coordinates of the magnetic

vector potential sampling points, maintaining a monotonic or-



der, with the objective of achieving a consistent cross-sectional

area, Fig. 8b. The performance of the resulting shaped profile

windings is evaluated using the coupled electromagnetic and

thermal models which are iteratively solved to yield the steady

state loss and temperature profile.

III. EXPERIMENTAL MEASUREMENT OF ADDITIVELY

MANUFACTURED MATERIAL SAMPLES

In order to provide accurate winding loss predictions, the

electrical conductivity of the proposed AM material is re-

quired. The windings are intended to be manufactured us-

ing a copper-chromium-zirconium (CuCr1Zr) powder material

through a Direct Metal Laser Sintering (DMLS) process.

The DMLS process uses a high intensity energy source to

selectively sinter powdered metal material in a succession of

2D scans, to incrementally build a 3D metal part, [30]. The

sintered layer is re-coated with metal powder between each 2D

scan. Once the part is complete, excess powder is removed

and recycled before the part is separated from the metallic

build platform using Electro Discharge Machining (EDM).

The process parameters, such as layer thickness, applied power

and build orientation along with post-processing steps, such as

heat treating, dictate the surface finish, density and material

properties of the part, [20].

65mm 

Fig. 9. Sample of CuCr1Zr manufactured using DMLS, with a cross-section
of 3× 4 mm and 378 mm length.
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Precision 
current shunt 

RS  
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Fig. 10. Experimental arrangement for the small signal and large signal
measurement of electrical resistance.

σ =
l

RelecA
(7)

TABLE II
AM COPPER SAMPLE RESISTANCE MEASUREMENTS

Electrical Resistance, Relec, [mΩ]
Sample Number RS RM-805 Norma 5000 % IACS [%]

1 0.71 0.70 77.7
2 0.69 0.69 78.3
3 0.70 0.71 76.8
4 0.71 0.70 77.6

Standard electrical wire grade copper (C11000) has a typical

electrical conductivity of σ = 58 MS/m representing 100

% International Annealed Copper Standard (IACS) whereas

CuCr1Zr (C18150) exhibits 76-90% IACS or σ = 44 - 52

MS/m, [31]. However, the electrical conductivity of built

parts must be experimentally measured to account for the

process parameters and any post-processing steps. Batches of

DMLS material samples were manufactured using differing

sets of process parameters and post-processing steps, Fig. 9,

with geometry in accordance with ASTM B193-16, [32]. The

electrical resistance of the material samples is measured using

a small signal (1 A) RS RM-805 4-wire Ohm meter and a

large signal (40 A) Norma 5000 with precision current shunt

and 4-wire terminal arrangement as shown in Fig. 10. All

measurements were performed at room temperature ( T0 = 21
oC ) with short measurement intervals to avoid self-heating of

the samples. The electrical conductivity is calculated from the

measured electrical resistance, Relec, sample cross-sectional

area, A, and mean path length, l, (7). Of the material sample

batches measured, the highest electrical conductivity is 77.6%

IACS averaged over the 4 material samples in the batch, with a

standard deviation of 0.6 %, Table II. A conservative σ = 75%

IACS is assumed throughout the remaining analysis.

IV. ELECTRICAL MACHINE CASE STUDY

The conductor shaping algorithm is demonstrated through

the re-design of the N = 18 turn windings of a brushless

Permanent Magnet (PM) automotive ISG, Fig. 12, [6]. The

ISG is a variant of the 10 pole, p = 10, 12 slot, q = 12,

topology with a single-layer three-phase concentrated winding

and a quasi-Halbach PM array on the rotor. The ISG must

conform to a strict space envelope within the drivetrain, as

such the stator diameter to active length ratio is 9.4 with an

active length of 35mm. The torque-speed characteristic of the

baseline machine is illustrated in Fig. 11, additional design

data is given in Table III.
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Fig. 11. Continuous and transient torque-speed curves of the ISG, [6].



TABLE III
ISG SPECIFICATION

Parameter Value

Package volumetric envelope 3.6 L
Maximum rated rotational speed 5000 RPM
Continuous power/torque rating 7.5 kW / 30 Nm
Transient power/torque rating 15 kW / 60 Nm

Nominal voltage 48 V
Torque constant 0.4 Nm/A

Active length 35 mm

Open slot stator 

Compressed aluminium 
winding 

Aluminium 
casing 

Fig. 12. Image of a three-phase span of the ISG, rotor not present.

V. SHAPED PROFILE WINDING DESIGN

Three variants of the N = 18 turn ISG windings are

designed and compared in order to demonstrate the effect of

conductor location and shape on performance. The first variant,

EW80%, is edge-wound with a winding height of kwh = 0.8,

Fig. 8a, the second variant, EW50%, is edge-wound with a

winding height of kwh = 0.5, Fig. 13a, and the final variant,

Shaped, is a shaped profile winding, Section II, with a winding

height of kwh = 0.8, flux sampling point of ks = 0.95 and

inflection point of Ninf = 6, Fig. 13b. The windings are

designed for an operating point of, I = 137.5 Apeak, and

frequency, felec = 480 Hz (2400 RPM mechanical), Fig. 11.
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(a) Variant EW50%: Edge
wound conductors, kwh = 0.8.
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(b) Variant Shaped: Shaped pro-
file conductors, kwh = 0.8,
ks = 0.95, Ninf = 6.

Fig. 13. Edge wound and shaped profile winding variants, evaluated for an
operating point of, I = 137.5 Apeak and frequency, felec = 480 Hz (2400
RPM mechanical).

The variation of magnetic vector potential across each of the

slots, Fig. 4, leads to an asymmetric conductor profile, Fig. 14.

Hence, the winding loss is dependent upon the rotational

direction of the rotor shaft, however, many applications such as

generators, fans and traction drives primarily require rotation

in a single direction. The asymmetric conductor profiles must

be merged in the end winding to form a complete concentrated

winding as illustrated in Fig. 15 where the end-windings are

semi-square rather than semi-circular, [19], to minimise the

end-winding length, reduce losses and improve power-density.

Slot 1 
profile 

End- 
Winding with 

profile transition 

Slot 2 
profile 

Fig. 14. Active length profiles of the shaped winding variant, Fig. 13b.

Terminals 

Active-  
winding 

End- 
winding 

Fig. 15. Illustration of the complete shaped profile winding design.

VI. RESULTS AND DISCUSSION

In order to validate the assumption of DC loss in the end-

winding, Section II-A, 3D time-stepping FE is used to predict

the total loss of the shaped profile winding at 20 oC for the

four test cases given in Table IV and Fig. 11. The 3D TSFE

model and the 2D THFE model with DC end winding loss

show close agreement with a maximum deviation of < 10%,

Table V.

TABLE IV
MODEL VALIDATION TEST CASES

Test Shaft Shaft Electrical Peak Winding
Case Speed Torque Frequency Current

[RPM] [Nm] [Hz] [A]

1 1000 30 200 75.0
2 2400 30 480 75.0
3 5000 14 1000 35.0
4 2400 60 480 137.5

Fig. 16 shows the predicted winding loss of the three

winding variants over the operating frequency range evaluated

at I = 137.5 Apeak corresponding to 60 Nm shaft torque.

Winding variant EW80% exhibits the lowest loss at DC due

to the high slot area utilisation, however, the proximity to

the high fields in the slot opening region induces large AC

losses which are a strong function of frequency leading to high

operating temperatures, Fig. 17, and a worst case variation

in conductor temperature of 82 oC. Winding variant EW50%

resides lower in the slot to minimise the interaction with the

armature reaction field, Fig. 13a, resulting in an AC loss profile

which is a weak function of frequency, however, the poor slot



TABLE V
MODEL VALIDATION RESULTS

Test Model Active Length End-Winding† Total Winding
Case Type Loss [W] Loss [W] Loss [W]

1
TSFE 3D N/A N/A 12.9
TSFE 2D 7.9 6.5 14.4
THFE 2D 7.8 6.5 14.3

2
TSFE 3D N/A N/A 17.1
TSFE 2D 11.7 6.5 18.2
THFE 2D 11.5 6.5 18.0

3
TSFE 3D N/A N/A 18.9
TSFE 2D 19.1 1.4 20.5
THFE 2D 18.5 1.4 19.9

4
TSFE 3D N/A N/A 46.3
TSFE 2D 25.4 22.0 47.4
THFE 2D 24.9 22.0 46.9

† Assumed to be DC loss, evaluated at the RMS winding current.

area utilisation compromises the DC performance leading to

relatively high winding loss across the operating frequency

range. Winding variant Shaped exhibits a 35% greater slot area

utilisation than EW50% giving a corresponding improvement

in DC performance. The shaped conductors conform to the

magnetic flux lines, minimising AC loss, however the AC loss

profile is a stronger function of frequency than EW50% as

shown by the difference in gradient. Nonetheless, the Shaped

winding exhibits lower loss and operating temperatures across

the frequency range.
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Fig. 16. Winding loss prediction of the three winding variants for I = 137.5
Apeak.

Fig. 18 shows the steady state current carrying capacity

and torque production capability of the winding variants

over the operating frequency range assuming a steady state

average winding temperature of 180 oC commensurate with

a class H electrical insulation rating. As expected, variant

EW80% exhibits the highest starting torque owing to the

lowest DC resistance, however, the performance drops rapidly

as frequency increases. It should be noted that this winding is

capable of meeting the baseline machine specification, Fig. 11.

Winding variant EW50% is capable of continuously operating

with an output torque of approximately 50 Nm, exceeding the

specification. Transient operation of 60 Nm is likely possible
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Fig. 17. Steady state average winding temperature prediction of the three
winding variants for I = 137.5 Apeak.
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Fig. 18. Predicted continuous operating envelope assuming a 180 o C average
absolute winding temperature.

for very short durations only since the thermal capacity of the

physically smaller winding is low and the DC resistance is

comparatively high. The Shaped winding offers a favourable

compromise between DC and AC performance enabling a

continuous average torque output of 60 Nm over the frequency

range representing a 20% improvement over winding variant

EW50% in spite of the AC losses being a stronger function of

frequency. In addition, the transient performance of the Shaped

winding is improved over the EW50% variant owing to the

larger volume and thermal capacity.

VII. CONCLUSION

This paper presents an algorithm intended to shape the

profile of winding conductors to minimise AC loss whilst

increasing slot area utilisation, thereby reducing losses and in-

creasing specific output across the operating frequency range.

The resulting winding shape is highly dependent upon the

design variables described in Section II-C and will be explored



in further work. In this case study, a 20% improvement in

continuous output capability is observed. Further, significantly

greater performance improvements were indicated for transient

operation over the operational torque-speed envelope. The

algorithm is applicable, but not limited to, open slot electrical

machine topologies. Present research is focused on solid

conductor windings with relatively few turns to take advantage

of good thermal performance (high conductor to insulation

ratio) and ease manufacture. Accurate DMLS material data

was obtained experimentally with the electromagnetic and

thermal winding performance results verified using 2D and 3D

FE. Further work includes the manufacture and experimental

test of the Shaped winding within the prototype electrical

machine, Fig. 12. Additive manufacturing of shaped profile

windings has been shown to be a promising technology in

the improvement of specific output of electrical machines and

this paper lays the foundation for design tools which can take

advantage of the unparalleled geometric freedom offered by

present and future metal AM technologies.
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