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Abstract

For many different types of businesses, additive manufacturing has great potential for new

product and process development in many different types of businesses including automo-

tive industry. On the other hand, there are a variety of additive manufacturing alternatives

available today, each with its own unique characteristics, and selecting the most suitable

one has become a necessity for relevant bodies. The evaluation of additive manufacturing

alternatives can be viewed as an uncertain multi-criteria decision-making (MCDM) problem

due to the potential number of criteria and candidates as well as the inherent subjectivity of

various decision-experts engaging in the process. Pythagorean fuzzy sets are an extension

of intuitionistic fuzzy sets that are effective in handling ambiguity and uncertainty in deci-

sion-making. This study offers an integrated fuzzy MCDM approach based on Pythagorean

fuzzy sets for assessing additive manufacturing alternatives for the automotive industry.

Objective significance levels of criteria are determined using the Criteria Importance

Through Inter-criteria Correlation (CRITIC) technique, and additive manufacturing alterna-

tives are prioritized using the Evaluation based on Distance from Average Solution (EDAS)

method. A sensitivity analysis is performed to examine the variations against varying crite-

rion and decision-maker weights. Moreover, a comparative analysis is conducted to validate

the acquired findings.

1 Introduction

There are various alternatives for designing a product or conducting a particular manufactur-

ing process for any given production application [1]. Methodical consideration must be given

to the process selection for a given industrial task [2]. Decision-makers require a systematic

and precise procedure for analyzing material and manufacturing alternatives [3]. Additive

manufacturing (AM) provides tremendous promise for both product and process innovation

across a broad spectrum of business sectors [4]. Because of its unique characteristics, AM has

become an important methodology in modern production systems [5]. In contrast to subtrac-

tive manufacturing techniques, which involve cutting away material in the form of a block to

create a finished product, “AM” describes a method of production in which material is added
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layer by layer, materials are joined to construct a part from a 3D model [6]. According to the

American Society for Testing and Materials (ASTM) International, the different AM processes

are divided into seven categories: Vat Photopolymerisation (VAT), Powder Bed Fusion (PBF),

Material Extrusion (ME), Material Jetting (MJ), Binder Jetting (BJ), Sheet Lamination (SL),

and Directed-Energy Deposition (DED) [7]. These processes also have alternatives inside

themselves. All processes use an additive manufacturing technology to construct their parts,

which allows for complex geometries to be made in a single process without the need for

assembly [8].

AM’s layer-wise manufacturing method gives it unique advantages, such as more flexible

manufacturing, more freedom in design, reduction of raw material waste and less cost and

time spent on production [9, 10]. These experiences reveal the features of a disruptive innova-

tion, which may radically alter existing business models but also create new ones [11]. AM is a

solution that may give significant benefits, especially to the elimination of defects in products

and the shortening of lead times by manufacturing at or near the required location [12].

Additionally, several industries including aerospace, automotive, engineering, medical, and

biological systems have lately used various AM technologies to produce end-user tailored

products [13]. In 2021, the global market for additive manufacturing was worth USD 13.84 bil-

lion, and it is expected to grow at a rate of 20.8% per year from 2022 to 2030. There were 2.2

million 3D printers shipped worldwide in 2021, and that number is projected to rise to 21.5

million by the year 2030 [14]. Despite these findings, industrial applications of additive

manufacturing are still insufficient, hence study on the selection of AM processes relevant to

the industry and material is necessary [15].

In the automotive industry, AM’s tool-free nature helps to simplify supply chains and pro-

vide more agile and sustainable opportunities [16]. Besides the main benefits of AM men-

tioned above, the automotive industry can reduce the weight of a vehicle by replacing heavy

metal parts with AM fabricated composite materials that have stiffness and strength-to-weight

ratios. Moreover, the adoption of AM may significantly boost productivity, decrease lead time,

and lower the cost of manufacturing molds and dies [17]. Both internal and external factors

pose a significant risk to the automotive industry’s supply chain. Abrupt discontinuity of a

supplier, machine breakdown, quality problems, malfunction of digital technologies, and

delivery chain delays are all examples of internal risks. Also included among the external risks

are the possibilities of an accident, an import restriction, demand uncertainties, a natural

disaster, a pandemic, a labor strike, a rise in customs duties, fuel price increase and other eco-

nomic risks [18–21]. The automotive industry is one of the main industries for potential AM

applications because of its complex and long supply chain [22].

The objective of the research is to analyze the suitability of additive manufacturing pro-

cesses for the automotive industry, which has always played a significant role in national

growth, and to structure a general framework. Implementing AM can also result in reduced

manufacturing costs, lower shipping costs, and overall lower operating costs since the distrib-

uted fabrication of spare parts uses smaller, more automated equipment and can facilitate

mass customization. [23] reveal that there is interest in adopting additive manufacturing in

spare parts supply chains in order to shorten supply chains, improve response times, and opti-

mize inventory. In the automotive industry, research on the additive manufacturing produc-

tion of polymer [24] and metal [25] or composite components [17] has continued to widen.

Despite the success of AM of polymer composites in the automotive industry, the technology

is restricted by the size and number of parts produced because certain components are massive

in size and typically need mass production [26]. According to [27], alternative AM technolo-

gies that may be utilized for mass production of end-use parts in the automotive industry

should be evaluated from many aspects in future research. The selection of a suitable AM
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process or machine for the fabrication of an end-use product is a crucial aspect of AM design

[28]. As can be seen, limited research has been done on additive manufacturing in the automo-

tive industry.

The present study develops a hybrid framework that helps solve the following research

questions

• What are the criteria to be considered for the automotive industry within the scope of the

additive manufacturing process selection?

• How can the importance weights of the determined evaluation criteria be determined with

current approaches?

• What is the most suitable additive manufacturing process for the automotive industry in

general?

1.1 Motivation and contribution

In this study, the current MCDM methods CRITIC and EDAS were implemented in a Pythag-

orean fuzzy environment, allowing decision experts to more effectively express and assess their

judgments. This paper is significant in that combination of the aforementioned methodologies

in terms of evaluation of AM processes and within the perspective of the automotive industry

is studied as a contribution to the extant literature.

The primary motivating force behind this research can be seen from two points of view.

The first motivation is to establish a novel methodology that is not yet accessible in the litera-

ture, and the second one is to put the suggested methodology into practice by addressing a cur-

rent problem. In this context, the Pythagorean fuzzy CRITIC-EDAS is developed and used to

assess different additive manufacturing processes for the automotive industry. The following

are the primary contributions of this work, which may also be seen as its innovative points or

advantages:

• Our research first gives a broad framework for the selection of additive manufacturing pro-

cesses in the automotive industry.

• The CRITIC integrated EDAS methodology is provided in a Pythagorean fuzzy setting. The

paper describes the Pythagorean fuzzy CRITIC approach, a contemporary and objective

weighting method. Combining this weighting approach with the Pythagorean fuzzy EDAS

method yields a hybrid model. For an additive manufacturing process in the automotive

industry, the combination of these methods is novel.

• Within a comprehensive fuzzy MCDM framework, additive manufacturing processes for the

automobile industry are evaluated for the first time.

• The suggested methodology offers a rapid and precise ranking of alternatives while also

addressing the need for objective criteria weighting. The suggested approach does not need a

distinct weight assignment for each criteria, which may make the outcomes more dependent

on the subjective judgements of decision experts.

• Through this study, we intend to enlighten practitioners on the current state of the art in this

subject and highlight the significance of MCDM application in determining the optimal

additive manufacturing solutions for the automobile industry. In addition, the set of criteria

that may be applied to the evaluation of additive manufacturing options within the scope of

the study, along with their respective weights, can be viewed as a useful guide for academics

and professionals working in this field.

PLOS ONE Additive manufacturing process selection for automotive industry using pythagorean fuzzy CRITIC EDAS

PLOS ONE | https://doi.org/10.1371/journal.pone.0282676 March 9, 2023 3 / 23

https://doi.org/10.1371/journal.pone.0282676


• We undertake a sensitivity analysis for criteria and decision-maker weights to assess the con-

sistency of our methodology. A comparative study is also presented to validate the

methodology.

The rest of the paper is organized as follows: Sect. 2 summarizes the related work, Sect. 3

provides the methodology, Sect. 4 illustrates the proposed methodology through a numerical

application and Sect. 5 finalizes the paper with conclusion.

2 Literature review

Multi-criteria decision making (MCDM) methods are often used to analyze complicated deci-

sion-making problems including many and conflicting criteria and a set of alternatives, and

are applied to a wide range of problems e.g. prioritization of renewable energy projects [29],

assessment of information system governance [30], selection of ideal structural system [31],

evaluation of seismic strengths of educational and hospital buildings [32, 33], performance

ranking of brands [34], logistics quality analysis [35] and even pandemic readiness analysis

[36].

MCDM methods are intended to assist decision-makers in overcoming complex AM pro-

cess selection issues [37]. In the literature, there are various studies within the scope of AM

process assessment. [38] discussed stereolithography (SLA), selective laser sintering (SLS),

fused deposition modeling (FDM), and 3D printing (3DP) processes in their study. Research-

ers using Graph theory and matrix approach (GT MA) and Technique for order of preference

by similarity to ideal solution (TOPSIS) methods examined car tail lamp housing, car front

grill, and car fuel cap assembly gauge products. Within the scope of the specified products,

the processes were evaluated using the criteria of accuracy, surface finish, tensile strength,

elongation, heat deflection temperature, part cost, and build time. They claimed that the SLA

and SLS processes produced better manufacturing results. Using the fuzzy multicriteria opti-

mization and compromise solution (VIKOR) approach, [39] attempted to choose the AM

process most suited to pump impellers. Twenty criteria were used to assess the SLA, SLS, and

FDM processes. According to the findings of the research, FDM is the most efficient AM

process.

[40] evaluated seven main options using the Analytic Hierarchy Process (AHP) method in

their AM process selection study. Technology, materials, size, multicolor feature, resolution,

layer thickness, accuracy, speed, power specs, weight, and price were used as evaluation criteria

in the study, which examines the 3D printers on the market as well as the process. The

machine parts considered in the study are the turbine blade, building scale model and bearing

holder. As a result of their analysis, they stated that direct metal laser sintering (DMLS) for tur-

bine blades, colorjet printing (CJP) for building scale models, and FDM processes for bearing

holders are suitable. [41] evaluated five different AM processes using Fuzzy AHP and TOPSIS

methods. In the study, the laser-induced forward transfer method emerged as the most suitable

option. The most important evaluation criteria were material compatibility, geometric com-

plexity, and minimum feature size.

[42] evaluated four different AM processes using the AHP, Fuzzy AHP, and Preference

ranking organization method for enrichment evaluation (PROMETHEE) methods in their

study. Dimensional accuracy, surface roughness, mechanical properties, process cost, process

time, and post-processing criteria were used. The researchers, who made an assessment on a

part whose virtual CAD description was presented, chose the photopolymer jetting process as

the most suitable solution. [43] evaluated various AM processes under the main criteria of

function, cost, and environment. As an industrial case study, they evaluated the drilling grid

with AHP and SAW methods in their studies, in which they handled items such as materials,
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data, and 3D-printer manufacturers in an integrated manner. Using Fuzzy Analytic Network

Process (ANP) and Fuzzy TOPSIS methodologies, [44] assessed SLA, SLS, laser engineered net

shaping (LENS), and 3DP choices. In order to construct a conceptual framework as opposed

to a product-based study, researchers used environmental criteria in addition to the traditional

ones. In accordance with the main criteria of mechanical qualities, process capability,

manufacturing efficiency, cost, footprint, process emission, and resource use, it was deter-

mined that SLA was the most suitable process.

[45] calculated the importance of the evaluation criteria with the help of an expert deci-

sion-making group consisting of technical experts and users. They stated that the important

criteria to be considered while evaluating AM processes are accuracy, elongation, and maxi-

mum build size. Researchers using the AHP method stated that AM processes can be evalu-

ated with different methods in future studies. [46] utilized AHP and cost calculation

methodologies. In consideration of many components, such as the exhaust gas duct, the AM

process and machine were selected. As a consequence of the assessment, selective laser melt-

ing (SLM) was determined as the best appropriate process. [47] compared four different AM

processes for a spur gear using the Best-Worst Method (BWM) and proximity indexed value

(PIV) methods. The researchers found that the material jetting process was the best choice

based on the accuracy of the dimensions, the roughness of the surface, the tensile strength,

the percentage of elongation, the heat deflection temperature, the cost of the process, and the

time it takes to build.

[15], using the AHP method, made process selection within the scope of overhangs, bridg-

ing, bores and channels, thickness, size, and surface roughness criteria. Vat polymerization,

material jetting, extrusion, binder jetting, laser powder bed fusion (LBFM), electron beam

melting (EBM), DED, and SL processes were evaluated for gas turbine blade manufacturing.

Considering the research criteria and the product examined, it was stated that laser powder

bed fusion is the best process to be used. One of the studies conducted in recent years belongs

to [37]. Using the certainty pairwise comparison (CPC) and BWM, various AM processes

were evaluated for the production of investment casting patterns and an adjustable pasta dry-

ing rack. ME, VAT, BJ, MJ, DED, and PBF processes were examined in their studies carried

out within the framework of the main criteria of dimensional accuracy, printing speed, surface

finish, and cost. As an outcome of the analysis, it was determined that the VAT method yielded

successful results. Existing studies are summarized in Fig 1.

Pythagorean fuzzy (PF) sets, represented by membership degree and non-membership

degree, are a more effective way of expressing uncertainty [47]. This approach provides more

robust, flexible, and ultimately more practical expressions of membership functions by deci-

sion-makers [48]. Since it is a relatively new method, studies on Pythagorean fuzzy CRITIC

(PF-CRITIC) are also very limited. There are several published papers in the literature regard-

ing the PF-CRITIC, such as assessment of 5G mobile communication technology [47], agricul-

ture crop selection [49], developing business model innovation for sustainability [50],

cybersecurity framework prioritization for healthcare organizations [51], supplier selection

[52], evaluate the barriers of blockchain technology adoption in sustainable supply chain man-

agement [53], cache replacement policy selection in fog computing [54].

EDAS is an MCDM method for identifying solutions from a collection of criteria and alter-

natives based on the idea that the best alternative is above and farthest from the average solu-

tion. Compared to many other decision-making techniques, EDAS is simpler, follows a clear

logic that is easy for practitioners to understand, and the mathematical process is relatively

basic. Integration of EDAS and Pythagorean fuzzy sets (PF-EDAS) is a recently developed

approach that has swiftly attracted attention, having been applied in different fields, including

car selection [55], sustainable circular supplier selection in the manufacturing sector [56],
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evaluating investment projects for highways [57] selecting an optimal drug to treat the Coro-

navirus ailment [58], supplier selection for coal thermal power plant [59], ship navigation envi-

ronment safety assessment [60], selection of waste management techniques [61], loan

evaluation for banking customers [62], analysis of metaverse integration of freight fluidity

assessment solutions [63], evaluation of alternatives for mobility sharing [64] and ranking of

use cases for energy blockchain [65].

The aforementioned studies presented their works in a crisp environment, or some authors

employed triangular fuzzy sets, which offer a limited area for modeling the fuzziness in the

problem. In this study, however, a more extensive fuzzy MCDM is established. Unlike other

approaches, the suggested methodology enables calculating criteria weights, ranking alterna-

tives, and modeling the uncertainty in a more comprehensive manner. On the other hand, pre-

vious works may offer a limited number of alternatives and criteria. This study provides a

satisfactory set of alternatives and criteria with respect to previous approaches.

3 Methodology

In this section, the methodology is presented. In Section 3.1, the basic operators of Pythago-

rean fuzzy sets are summarized, and in Section 3.2, the flowchart and details of the proposed

methodology are provided.

3.1 Preliminaries of Pythagorean fuzzy sets

Definition, basic operators, aggregation operator and defuzzification operator developed for

Pythagorean fuzzy sets [66, 67] are given below:

Definition [66, 67].

~XP ¼ fu;m ~XP
ðuÞ; n ~XP

ðuÞ j u 2 [g ð1Þ

Fig 1. Evaluation of AM processes with MCDM methods in the literature.

https://doi.org/10.1371/journal.pone.0282676.g001
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where m ~XP
ðuÞ : [ ! ½0; 1�, n ~XP

ðuÞ : [ ! ½0; 1�,and

0 � m2
~XP
ðuÞ þ n2

~XP
ðuÞ � 1 j 8u 2 [ ð2Þ

where m ~XP
ðuÞ and n ~XP

ðuÞ are the degrees of membership and non-membership degrees.

p ~XP
ðuÞ is the hesitancy of u to ~XP .

p ~XP
ðuÞ ¼ ð1 � m2

~XP
ðuÞ � n2

~XP
ðuÞÞ1=2

ð3Þ

Addition [66].

~XP � ~YP ¼ fðm2
~XP
þ m2

~YP
� m2

~XP
m2

~YP
Þ

1=2
; n2

~XP
n2

~YP
g ð4Þ

Multiplication [66].

~XP � ~YP ¼ m ~XP
m ~YP

; ðn2
~XP
þ n2

~YP
� n2

~XP
n2

~YP
Þ

1=2
g ð5Þ

Multiplication by a scalar. (λ> 0) [66]

l � ~XP ¼ fð1 � ð1 � m2
~XP
Þ
l
Þ

1=2
; nl~XP
g ð6Þ

Power of ~XP . (λ> 0) [67]

~XP l ¼ fml~XP ; ð1 � ð1 � n
2
~XP
Þ
l
Þ

1=2
g ð7Þ

Pythagorean weighted geometric mean operator PWGM [68].

PWGMwð
~XP1 ; . . . ; ~XPnÞ ¼ ~XP1

w1 þ ~XP2
w2 þ . . . :þ ~XPnwn ¼

f
Yn

i¼1

m
wi
~XPi
; ½1 �

Yn

i¼1
ð1 � n2

~Xi
Þ
wj �

1=2
g

ð8Þ

where w ¼ ðw1;w2; . . . ;wnÞ;wi 2 ½0; 1�;
Pn

i¼1
wi ¼ 1

Defuzzification operator i.e. score function [69].

Sð ~XPÞ ¼ m2
~XP
� n2

~XP
ð9Þ

Normalized Euclidean distance D [70].

Dð ~XP ; ~YPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n

Xn

i¼1

ðm ~XP
� m ~YP

Þ
2
þ ðn ~XP

� n ~YP
Þ

2
þ ðp ~XP

� p ~YP
Þ

2

s

ð10Þ

3.2 Proposed methodology

Prior to describing the proposed methodology in detail, the flowchart is given in Fig 2 to pro-

vide the reader a general notion of the methodology.

Phase 1. Construction of the MCDM problem.

Phase 2. Evaluate criterion weights with Pythagorean fuzzy CRITIC.

Step 2.1 The decision-experts evaluate the alternatives with respect to the criteria by utiliz-

ing the linguistic terms that is given in Table 1.

Step 2.2 Linguistic evaluations of decision-experts are converted to Pythagorean fuzzy num-

bers through Table 1. Then, all matrices are aggregated to obtain one unique collective matrix
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which we call Pythagorean fuzzy alternative assessment matrix ~M . The structure of ~M is given

in Eq 11.

~Mmxn ¼

~r11
~r12 . . . ~r1n

~r21 ~r22 . . . ~r2n

. . . . . . . . .

~rm1 ~rm2 . . . ~rmn

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð11Þ

where ~rij ¼ mij; nij are the elements of ~M ; the evaluation of alternative Xi(i = 1, 2, . . .,m) with

respect to criterion Cj(j = 1, 2, . . ., n) is donated by ~M ¼ CjðXiÞmxn and μij and νij are the mem-

bership and non-membership degrees for the ith alternative and jth criterion.

Step 2.3 ~M is normalized by utilizing Eqs 12 and 13 for positive (benefit) and negative (cost)

attributes respectively.

xij ¼
~rij � ~r �i
~rþi � ~r �i

; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n ð12Þ

xij ¼
~rij � ~rþi
~r �i � ~rþi

; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n ð13Þ

where xij is the normalized value of rij; rþi ¼ maxðr1; r2; . . . ; rmÞ; r�i ¼ minðr1; r2; . . . ; rmÞ.
rþi and r�i are obtained based on the defuzzified values by utilizing Eq 10.

Fig 2. Flowchart of the proposed methodology.

https://doi.org/10.1371/journal.pone.0282676.g002

Table 1. Linguistic scale for Pythagorean fuzzy numbers [71].

Linguistic term Pythagorean fuzzy number (μ, ν)

Very Low (VL) (0.25, 0.90)

Low (L) (0.30, 0.85)

Medium Low (ML) (0.35, 0.75)

Medium (M) (0.45, 0.65)

High (H) (0.70, 0.35)

Very High (VH) (0.80, 0.30)

https://doi.org/10.1371/journal.pone.0282676.t001
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Normalized Euclidean distance that is given in Eq 10 is used to obtained the nominator and

denominator parts of the above equations.

Step 2.4 The correlation coefficient ρjk between each attribute pair is calculated by utilizing

Eq 14.

rjk ¼

Pm
i¼1
ðxij � �xjÞðxik � �xkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1
ðxij � �xjÞ

2Pm
i¼1
ðxik � �xkÞ

2
q ð14Þ

where �xj and �xk are the mean values of jth and kth attributes, and �xj is obtained by utilizing Eq

15. �xk is also obtained in the same way.

�xj ¼
1

n

Xn

j¼1

xij; i ¼ 1; 2; . . . ;m ð15Þ

Step 2.5 The standard deviation σj of each criterion is calculated as given in Eq 16.

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

j¼1

ðxij � �xjÞ
2
Þ

s

; i ¼ 1; 2; . . . ;m ð16Þ

Step 2.6 The Cj index of each criterion is calculated as given in Eq 17.

Cj ¼ sj
Xn

k¼1

ð1 � rjkÞ; j ¼ 1; 2; . . . ; n ð17Þ

Step 2.7 Criterion weights wj are obtained as given in Eq 18.

wj ¼
Cj

Pn
j¼1
Cj

ð18Þ

Phase 3 Rank the candidates with Pythagorean fuzzy EDAS.

Step 3.1 Pythagorean fuzzy decision matrix ~D is obtained by multiplying ~M by the criterion

weights wj calculated with the CRITIC approach in the previous phase. Pythagorean fuzzy

multiplication by a scalar function that is given in Eq 6 is used for this task.

Step 3.2 The average solution ~X� is obtained by utilizing Pythageoran fuzzy geometric mean

operator that is given in Eq 8.

Step 3.3Determine the positively positioned alternatives and negatively positioned alterna-

tives based on the crisp values calculated by utilizing the defuzzification operator that is given

in Eq 10 For each criterion, the alternatives with a higher score value than the average solution

is assigned as positively positioned alternative. In the same way, the alternatives with a lower

score value than the average solution is assigned as negatively positioned alternative.

Step 3.4 Calculate the positive and negative distances of each alternative to average solution

~X� by utilizing Eq 10. Note that the theory of the EDAS technique suggests that the best alter-

native is the one that has maximum total positive distance to average solution PDA and mini-

mum total negative distance to average solution NDA.

Step 3.5 Closeness ratio CR i.e. appraisal score for each candidate is obtained as in Eq 19.

Rank all candidates according to the descending values of their appraisal scores. The candidate
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with the highest appraisal score is the most critical.

CR ¼
PDAð~Xi;

~X�Þ
PDAð~Xi;

~X�Þ þ NDAð~Xi;
~X�Þ

ð19Þ

Step 3.6 The candidates are ranked according to appraisal scores. The one with highest

appraisal score is the most critical.

Phase 4 Sensitivity analysis.

Phase 5 Comparative analysis.

4 Application

In this section, the application of the proposed methodology is exemplified by an issue involv-

ing the selection of an additive manufacturing process for the automotive industry. To do this,

seven additive manufacturing processes are assessed based on eight literature-derived criteria.

The decision-experts are industry specialists with comparable levels of expertise; therefore,

their opinions carry equal weight (1/3) This section is structured as follows: In Section 4.1, the

criteria and alternatives are described in depth. The numerical solution to the problem is pre-

sented in Section 4.2. Section 4.3 offers sensitivity analysis for criteria and decision-expert

weights, whereas Section 4.4 performs a comparison analysis.

4.1 Alternatives and criteria

The descriptions of alternatives and criteria are given below.

A1 Vat photopolymerization. This is one of the most widely used procedures for 3D print-

ing. In this method, the use of ultraviolet light helps to solidify liquid light-curable resin by

forming chains between the molecules of the resin, which then cause the molecules to cross-

link with one another [72].

A2 Material extrusion. In the additive manufacturing process known as material extrusion,

material is distributed selectively via a nozzle in order to create a desired shape. Fused deposi-

tion modeling, is one of the most prevalent processes for extruding materials. This method

requires high working temperatures to successfully fuse materials [73].

A3 Material jetting. The method of material jetting is one kind of additive manufacturing

that includes applying UV light and droplets of material over a specific region in order to selec-

tively cure the components. The material may be jetted either on demand or constantly,

depending on the nature of the item that is to be manufactured using the 3D printer [74].

A4 Binder jetting. This is a two-phase additive manufacturing process that uses powder

beds. To create the cross section of each layer during printing, liquid binding agents are first

selectively put into the powder bed using the CAD model as a guide. The printed portion is

next subjected to curing and depowdering. The printed pieces are then put in a uniform heat

environment throughout the debinding and sintering operations to improve their mechanical

integrity [75, 76].

A5 Powder bed fusion. This method is used to fabricate complicated lattice products from

metallic alloys. Difficulties exist in the general use of this approach owing to the propensity for

powder bed fusion produced components to acquire flaws and poorer physical qualities,

which may lead to failure in these particular applications. These flaws include a poor surface

finish, an increase in porosity, delamination, and cracking, which result in lower mechanical

performance and poor geometric conformance [77, 78].

A6 Direct energy deposition.With the use of a closed-loop control system to preserve

dimensional precision and material integrity, direct energy deposition is a method that creates

completely dense, functioning metal components by depositing metal particles. By
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reconstructing individual worn-out or broken components, this approach allows for both

component manufacturing and repair. Its high reflectivity presents one of the main difficulties

since it results in a poor rate of energy absorption, which encourages consolidation flaws such

as pores, fractures, and unmelted regions [79].

A7 Sheet lamination. The technique of sheet lamination is based on the fabrication of a

product by stacking and laminating sheets of different materials. For plastics or other chemi-

cally bonded materials, such as brazing or ultrasonic welding, each layer is laminated. After

fabrication is finished, the extra area is taken away layer by layer. The fabrication of laminated

objects and ultrasonic additive manufacturing are completely dependent on sheet lamination

[80].

C1 Surface roughness. This is commonly regarded as one of the most essential quality crite-

ria, along with surface attractiveness, resistance to corrosion, increased fatigue behavior, sur-

face concerns, and adequate purity of a significant surface. The mechanism of product surface

roughness generation is very dynamic, complicated, and manufacturing process-dependent

[81].

C2 Dimensional accuracy. In any manufacturing process, dimensional accuracy is essential

since it indicates how closely a dimension of the manufactured piece matches the nominal

dimension of the planned component [82].

C3 Build volume. It provides the largest print size possible. Build volume is considered to be

one of the most critical challenges presented by additive manufacturing technology. Huge

servings are often reduced in size or broken into smaller sections, both of which require a sig-

nificant investment of time and effort. In most cases, reducing the size of the model to a more

manageable proportion is neither feasible nor productive. When adhesives are utilized, the

assembly of component parts suffers a loss of strength. On the other hand, when mechanical

fasteners are used, the assembly grows in size and thickness [83].

C4 Mechanical resistance. The use of products or components in various applications is sig-

nificantly influenced by the strength and stiffness of the materials used. Typically, the physical

and mechanical qualities of the materials are taken into account when setting process parame-

ters for additive manufacturing. For instance, in aerospace applications, the strength-to-weight

ratio of the component is crucial in the development of better functioning products [84].

C5 Cost of the process. This criterion includes the total initial cost and support material

costs. The cost of additive manufacturing can be divided into two categories. The first is to

compare additive manufacturing technologies to conventional procedures like injection mold-

ing and machining. These types of analyses are carried out to determine the conditions under

which additive manufacturing is cost-effective. The second category is identifying resource use

at different additive manufacturing process phases. The objective of this sort of study is to

determine when and where resources are spent and if resource consumption may be reduced

[85].

C6 Print speed. Speed of printing is a crucial performance aspect in 3D printing and a

major obstacle that, in certain situations, precludes it from becoming a feasible method of pro-

duction. Even though 3D printing is often quicker than traditional production, it may still take

hours or even days to make a product [86].

C7 Thermal stability. The resistance of a material to irreversible changes in its properties

brought about purely by heat is referred to as its “thermal stability.” The capacity of a product

to maintain its temperature stability may be an important factor to consider when deciding

whether or not it is appropriate for a certain application [87].

C8 Chemical resistance. Along with having high mechanical qualities, 3D printed products

also need to have good chemical resistance. Making coolant inlet tubes, for instance, in the

automotive industry, which transfer coolant fluids to the cooling system of the car and require
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high mechanical quality and structural stability in continuous exposure to the chemicals in the

car coolant at high temperatures, is one potential application [88].

4.2 Numerical solution

Criterion weights with Pythagorean fuzzy CRITIC. Step 2.1 The linguistic evaluations of seven

AM processes (A1, . . ., A7) with regard to seven criteria (C1, . . ., C7) as decided by three deci-

sion experts (DE1, . . ., DE3) are shown in Table 2.

Step 2.2 Linguistic expressions of three decision-experts are converted to Pythagorean fuzzy

numbers and aggregated as in Table 3.

Steps 2.3 and 2.4 Correlation coefficients are calculated as in Table 4.

Step 2.5, 2.6 and 2.7 Standard deviation σj, C index and criterion weights wj are calculated

as in Table 5.

Table 2. Linguistic evaluations of alternatives.

Alternative C1 C2 C3 C4 C5 C6 C7 C8

DM1 A1 VH H ML L ML VH L M

A2 L M MH ML VL ML MH M

A3 H H M MH H ML H H

A4 MH H MH MH MH M MH MH

A5 MH H MH MH MH H H H

A6 MH ML H H VH M VH VH

A7 L L MH EL VL ML EL EL

DM2 A1 H MH ML ML MH MH VL L

A2 M MH VH VL ML VL MH ML

A3 MH ML VL H VH ML H H

A4 H VH MH MH MH M M MH

A5 M M VH M ML MH H H

A6 VH M H H M MH VH MH

A7 VL EL MH EL EL ML VL M

DM3 A1 MH VH ML M M VH L ML

A2 EL EL MH ML VL EL MH M

A3 H H ML ML H ML H H

A4 EL H M VL H M MH L

A5 EL ML ML MH M ML L H

A6 MH MH VH H M M MH VH

A7 EL L M M ML EL EL L

https://doi.org/10.1371/journal.pone.0282676.t002

Table 3. Pythagorean fuzzy alternative assessment matrix.

C1 C2 C3 C4 C5 C6 C7 C8

A1 (0.70;0.40) (0.70;0.40) (0.35;0.75) (0.36;0.77) (0.46;0.65) (0.73;0.38) (0.28;0.87) (0.36;0.77)

A2 (0.27;0.87) (0.34;0.81) (0.66;0.45) (0.31;0.82) (0.28;0.87) (0.24;0.89) (0.60;0.50) (0.41;0.69)

A3 (0.66;0.41) (0.56;0.55) (0.34;0.80) (0.53;0.58) (0.73;0.33) (0.35;0.75) (0.70;0.35) (0.70;0.35)

A4 (0.40;0.77) (0.73;0.33) (0.55;0.56) (0.45;0.72) (0.63;0.46) (0.45;0.65) (0.55;0.56) (0.48;0.68)

A5 (0.34;0.81) (0.48;0.63) (0.55;0.58) (0.55;0.56) (0.46;0.65) (0.53;0.58) (0.53;0.63) (0.70;0.35)

A6 (0.66;0.45) (0.46;0.65) (0.73;0.33) (0.70;0.35) (0.55;0.57) (0.50;0.61) (0.73;0.38) (0.73;0.38)

A7 (0.22;0.91) (0.24;0.90) (0.55;0.56) (0.22;0.91) (0.24;0.89) (0.26;0.86) (0.18;0.94) (0.27;0.87)

https://doi.org/10.1371/journal.pone.0282676.t003
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Phase 3 Ranking of alternative processes with Pythagorean fuzzy EDAS.

In Table 6, fuzzy decision matrix and average solution are expressed. In Table 7, the

appraisal score values of the alternatives and the final ranking were presented.

As a result of the analysis, in line with the opinions of the experts, “A6- Direct energy depo-

sition” has been identified as the most appropriate alternative.

Table 4. Correlation coefficients.

C1 C2 C3 C4 C5 C6 C7 C8

C1 1.000 0.620 -0.463 0.608 0.698 0.630 0.304 0.445

C2 0.620 1.000 -0.452 0.423 0.829 0.778 0.256 0.313

C3 -0.463 -0.452 1.000 0.104 -0.420 -0.284 0.193 -0.001

C4 0.608 0.423 0.104 1.000 0.699 0.485 0.705 0.921

C5 0.698 0.829 -0.420 0.699 1.000 0.548 0.569 0.652

C6 0.630 0.778 -0.284 0.485 0.548 1.000 -0.085 0.260

C7 0.304 0.256 0.193 0.705 0.569 -0.085 1.000 0.802

C8 0.445 0.313 -0.001 0.921 0.652 0.260 0.802 1.000

https://doi.org/10.1371/journal.pone.0282676.t004

Table 5. Standard deviation σj, C index and criterion weights wj.

C1 C2 C3 C4 C5 C6 C7 C8

j 0.438 0.363 0.356 0.341 0.375 0.354 0.405 0.419

C index 1.823 1.535 2.965 1.042 1.284 1.652 1.723 1.510

wj 0.135 0.113 0.219 0.077 0.095 0.122 0.127 0.112

https://doi.org/10.1371/journal.pone.0282676.t005

Table 6. Pythagorean fuzzy decision matrix and average solution.

C1 C2 C3 C4 C5 C6 C7 C8

A1 (0.29;0.88) (0.27;0.90) (0.17;0.94) (0.10;0.98) (0.15;0.96) (0.30;0.89) (0.10;0.98) (0.12;0.97)

A2 (0.10;0.98) (0.12;0.98) (0.34;0.84) (0.09;0.98) (0.09;0.99) (0.08;0.99) (0.24;0.92) (0.14;0.96)

A3 (0.27;0,89) (0.20;0.93) (0.16;0.95) (0.16;0.96) (0.26;0.90) (0.13;0.97) (0.29;0.87) (0.27;0.89)

A4 (0.15;0.97) (0.29;0.88) (0.27;0.88) (0.13;0.98) (0.22;0.93) (0.17;0.95) (0.21;0.93) (0.17;0.96)

A5 (0.13;0.97) (0.17;0.95) (0.28;0.89) (0.16;0.96) (0.15;0.96) (0.20;0.94) (0.20;0.94) (0.27;0.89)

A6 (0.27;0.90) (0.16;0.95) (0.39;0.79) (0.22;0.92) (0.18;0.95) (0.18;0.94) (0.30;0.89) (0.28;0.90)

A7 (0.08;0.99) (0.08;0.99) (0.27;0.88) (0.06;0.99) (0.07;0.99) (0.09;0.98) (0.06;0.99) (0.09;0.98)

A � (0.17;0.96) (0.17;0.95) (0.26;0.89) (0.12;0.97) (0.15;0.96) (0.15;0.96 (0.18;0.95) (0.18;0.95)

https://doi.org/10.1371/journal.pone.0282676.t006

Table 7. PDA, NDA, appraisal score and final ranking of alternatives.

PDA NDA Appraisal score Final ranking

A1 0.078 0.049 0.615 5

A2 0.038 0.055 0.411 6

A3 0.091 0.039 0.698 4

A4 0.057 0.012 0.820 2

A5 0.047 0.014 0.764 3

A6 0.097 0.003 0.972 1

A7 0.007 0.091 0.071 7

https://doi.org/10.1371/journal.pone.0282676.t007
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4.3 Sensitivity analysis

Sensitivity analysis is often used to evaluate the effectiveness of an MCDM procedure by mea-

suring the output in response to varying inputs [89]. In this study, the effect of the changes in

both criterion and decision expert weights on the output of the proposed methodology are

examined. The sensitivity analysis for criterion weights is carried out by generating different

scenarios based on the original scenario. For this purpose, the initial scenario w1 is systemati-

cally shifted, and six more scenarios w2, w3, w4, w6, and w7 are generated as shown in Table 8.

In Table 9, the numbers in parentheses next to the appraisal scores represent the ranking

value. When the results are analyzed, it can be said that the appraisal score values vary in vari-

ous criterion weight distribution scenarios, however the ranks remain the same, and the sug-

gested methodology yields balanced outcomes in response to the criterion weight changes.

Furthermore, for a more extensive sensitivity analysis, the impact of changing decision-

expert weight distributions on the outcomes is examined. In this setting, 10 different decision

expert weight distribution scenarios are generated as shown in Table 10.

Criterion weights calculated by the CRITIC phase of the methodology in this manner is

shown in Fig 3.

In accordance with various decision expert weight distribution scenarios, it can be seen in

in Fig 3 that the criterion weights do not generally alter. The third criterion remains the most

Table 8. Criteria weight distribution scenarios.

C1 C2 C3 C4 C5 C6 C7 C8

w1 0.135 0.113 0.219 0.077 0.095 0.122 0.127 0.112

w2 0.113 0.219 0.077 0.095 0.122 0.127 0.112 0.135

w3 0.219 0.077 0.095 0.122 0.127 0.112 0.135 0.113

w4 0.077 0.095 0.122 0.127 0.112 0.135 0.113 0.219

w5 0.095 0.122 0.127 0.112 0.135 0.113 0.219 0.077

w6 0.122 0.127 0.112 0.135 0.113 0.219 0.077 0.095

w7 0.127 0.112 0.135 0.113 0.219 0.077 0.095 0.122

w8 0.112 0.135 0.113 0.219 0.077 0.095 0.122 0.127

https://doi.org/10.1371/journal.pone.0282676.t008

Table 9. Appraisal scores and final rankings of candidates for different criterion weight distribution scenarios.

w1 w2 w3 w4 w5 w6 w7 w8

A1 0.615 (5) 0.664 (5) 0.651 (5) 0.601 (5) 0.592 (5) 0.691 (5) 0.623 (5) 0.619 (5)

A2 0.411 (6) 0.328 (6) 0.355 (6) 0.368 (6) 0.416 (6) 0.314 (6) 0.347 (6) 0.373 (6)

A3 0.698 (4) 0.790 (4) 0.790 (3) 0.755 (4) 0.760 (4) 0.745 (4) 0.762 (4) 0.754 (4)

A4 0.820 (2) 0.850 (2) 0.791 (2) 0.808 (3) 0.848 (2) 0.829 (2) 0.833 (2) 0.833 (2)

A5 0.764 (3) 0.791 (3) 0.732 (4) 0.844 (2) 0.780 (3) 0.781 (3) 0.774 (3) 0.800 (3)

A6 0.972 (1) 0.956 (1) 0.978 (1) 0.975 (1) 0.971 (1) 0.969 (1) 0.972 (1) 0.972 (1)

A7 0.071 (7) 0.039 (7) 0.044 (7) 0.050 (7) 0.050 (7) 0.050 (7) 0.053 (7) 0.048 (7)

https://doi.org/10.1371/journal.pone.0282676.t009

Table 10. Decision-expert (DE) weight distributions (DE1; DE2; DE3).

1 2 3 4 5 6 7 8 9 10

(0.33; 0.33;

0.33)

(0.20; 0.20;

0.40)

(0.20; 0.40;

0.20)

(0.25; 0.25;

0.50)

(0.25; 0.50;

0.25)

(0.50; 0.25;

0.25)

(0.15; 0.15;

0.70)

(0.15; 0.15;

0.70)

(0.15; 0.70;

0.15)

(0.70; 0.15;

0.15)

https://doi.org/10.1371/journal.pone.0282676.t010
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significant criterion, whilst the fourth criterion remains the least important criterion. It might

be claimed that other criteria typically maintain their position.

Appraisal scores and final rankings of candidates for different decision-expert weight distri-

bution scenarios obtained in the EDAS phase of the methodology are given in Table 11.

In a similar vein, it can be noticed that in various decision expert weight distribution sce-

narios, the alternative rankings are typically maintained. It is apparent that the sixth alternative

is ranked first in nine out of ten scenarios, while the seventh alternative is ranked last in every

single scenario. In this context, it is possible to conclude that the proposed methodology is typ-

ically stable across a variety of criterion and decision expert weight distribution scenarios.

4.4 Comparative analysis

In this subsection, a comparative study is performed to test and validate the applicability of the

proposed methodology. In this context, the identical problem is addressed via Pythagorean

fuzzy TOPSIS method [90], by using the criterion weights that are already calculated with the

CRITIC phase of the proposed methodology.

For a comprehensive understanding of the comparative analysis, the steps of the TOPSIS

approach are outlined below and following these steps, the solution to the problem is

presented.

Fig 3. Criterion weights for different decision-expert weight distribution scenarios.

https://doi.org/10.1371/journal.pone.0282676.g003

Table 11. Appraisal scores and final rankings of candidates for different decision expert weight distribution scenarios.

1 2 3 4 5 6 7 8 9 10

A1 0.615 (5) 0.649 (5) 0.553 (5) 0.604 (5) 0.660 (5) 0.565 (5) 0.616 (5) 0.701 (5) 0.505 (5) 0.615 (5)

A2 0.411 (6) 0.377 (6) 0.445 (6) 0.372 (6) 0.387 (6) 0.455 (6) 0.381 (6) 0.369 (6) 0.496 (6) 0.335 (6)

A3 0.698 (4) 0.739 (2) 0.636 (4) 0.697 (4) 0.748 (2) 0.646 (4) 0.706 (4) 0.800 (2) 0.601 (4) 0.722 (4)

A4 0.820 (2) 0.706 (3) 0.890 (2) 0.878 (2) 0.718 (3) 0.903 (2) 0.892 (2) 0.640 (4) 1.000 (2) 1.000 (1)

A5 0.764 (3) 0.689 (4) 0.780 (3) 0.817 (3) 0.706 (4) 0.789 (3) 0.827 (3) 0.643 (3) 0.825 (3) 0.942 (2)

A6 0.972 (1) 1.000 (1) 0.970 (1) 0.923 (1) 1.000 (1) 1.000 (1) 0.927 (1) 1.000 (1) 1.000 (1) 0.856 (3)

A7 0.071 (7) 0.046 (7) 0.086 (7) 0.072 (7) 0.049 (7) 0.090 (7) 0.075 (7) 0.023 (7) 0.110 (7) 0.079 (7)

https://doi.org/10.1371/journal.pone.0282676.t011
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After obtaining Pythagorean fuzzy decision matrix ~D, TOPSIS approach continues as

folows:

~D is defuzzified for calculating positive X+ and negative ideal X− solutions. Since crisp form

of fuzzy numbers can be used for ranking fuzzy numbers, it is also convenient to obtain posi-

tive and negative ideal solutions. ~Xþ has the highest score values for each criterion and ~X � has

the lowest. Defuzzification operator that is given in Eq 10 is used to calculate crisp values.

Pythagorean fuzzy positive ~Xþ and negative ideal solutions X− are determined based on the

defuzzified as in Eqs 20 and 21 respectively.

~Xþ ¼ Cj;max < SðCjð~XiÞ > jj ¼ 1; 2; . . . ; n ð20Þ

~X � ¼ Cj;min < SðCjð~XiÞ > jj ¼ 1; 2; . . . ; n ð21Þ

The distances of each alternative to ~Xþ and ~X � are calculated as in Eqs 22 and 23. Accord-

ing to theory of TOPSIS, the best alternative is the one that is closest to the ~Xþ and farthest

from the ~X � .

dð~Xi;
~XþÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n

Xn

j¼1

ðaij � a
þ

j Þ
2
þ ðbij � b

þ

j Þ
2
þ ðcij � c

þ

j Þ
2

s

ð22Þ

dð~Xi;
~X � Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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s
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where ai, bi and ci are the membership, non-membership and hesitancy degrees for the ith can-

didate and jth criterion; n is the number of criteria, and aþj , bþj and cþj are the parameters of

~Xþ. In the same way a�j , b�j and c�j are the parameters ~X � .

Closeness ratio CR i.e. appraisal score for each candidate is obtained as in Eq 24. Rank all

candidates according to the descending values of their appraisal scores. The candidate with the

highest appraisal score is the most critical.

CR ¼
dð~Xi;

~XþÞ
dð~Xi;

~XþÞ þ dð~Xi;
~X � Þ

ð24Þ

Pythagorean fuzzy positive A+ and negative ideal A−+ solutions intrinsic to the TOPSIS

methodology is shown in Table 12.

Following the principles of the TOPSIS methodology, distances of alternatives to A+ and

A−; corresponding appraisal scores and final rankings are determined as shown in Table 13.

Fig 4 displays a graphical representation of the alternative rankings derived by the proposed

methodology and the TOPSIS method.

It can be noticed that results from a comparative research are consistent with the suggested

approach.

Table 12. Pythagorean fuzzy positive A+ and negative ideal A− solutions.

C1 C2 C3 C4 C5 C6 C7 C8

A+ (0.29;0.88) (0.29;0.88) (0.39;0.79) (0.22;0.92) (0.26;0.90) (0.30;0.89) (0.29;0.87) (0.29;0.87)

A - (0.08;0.99) (0.08;0.99) (0.16;0.95) (0.06;0.99) (0.07;0.99) (0.08;0.99) (0.06;0.99) (0.10;0.98)

https://doi.org/10.1371/journal.pone.0282676.t012
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The outcomes of comparative analysis are also subjected to statistical analysis. In order to

determine whether there is a substantial rank correlation between two sets of values, we use

the Spearman’s rank correlation technique, which is described in Eq 25.

rxy ¼ 1 �
6

mðm2 � 1Þ

Xm

i¼1

ðtxi � t
y
i Þ

2
ð25Þ

where x and y denote the xth and yth MCDM methods, respectively;m is the number of alter-

natives, txi and tyi are the rankings obtained from xth and yth MCDM methods. The coefficient

Fig 4. Comparative analysis results.

https://doi.org/10.1371/journal.pone.0282676.g004

Table 13. Comparative analysis results.

Distance to A+ Distance to A− Appraisal score Final ranking

A1 0.3143 0.3326 0.3695 5

A2 0.3166 0.3366 0.3689 6

A3 0.3113 0.3380 0.3770 2

A4 0.3110 0.3352 0.3761 3

A5 0.3114 0.3341 0.3750 4

A6 0.3068 0.3374 0.3847 1

A7 0.3213 0.3347 0.3619 7

https://doi.org/10.1371/journal.pone.0282676.t013

PLOS ONE Additive manufacturing process selection for automotive industry using pythagorean fuzzy CRITIC EDAS

PLOS ONE | https://doi.org/10.1371/journal.pone.0282676 March 9, 2023 17 / 23

https://doi.org/10.1371/journal.pone.0282676.g004
https://doi.org/10.1371/journal.pone.0282676.t013
https://doi.org/10.1371/journal.pone.0282676


ρmeasures the degree of consistency between them. The correlation coefficient value of the

rankings of the proposed methodology and the TOPSIS-based method is 0.89. These findings

indicate a strong correlation between the outcomes of the two methodologies.

5 Conclusion

Additive manufacturing has considerable promise for the creation of innovative products and

processes in a variety of industries, including the automotive industry. However, given the

wide range of alternatives to additive manufacturing that are now accessible, each with its own

distinctive features, choosing the best one has become essential for pertinent agencies. In this

study, the problem of selecting the best additive manufacturing process for the automotive

industry is addressed through a novel MCDM methodology by involving multiple experts, cri-

teria and alternatives.

In this context, the traditional CRITIC and EDAS approaches, both of which have previ-

ously been recognized in the literature for a range of problems, are integrated in a Pythagorean

fuzzy atmosphere. The Pythagorean fuzzy sets provide complete modeling of the problem’s

uncertainty; the CRITIC enables the user to objectively establish the criteria; and the EDAS

rates the alternatives. The approach described is exemplified with a numerical example for the

automotive industry, sensitivity and comparative analyses are provided to show the stability

and validity of the results.

Using the suggested Pythagorean fuzzy CRITIC EDAS technique, seven additive

manufacturing process alternatives are evaluated based on eight literature-derived criteria.

According to the provided numerical example, “build volume” is considered to be the most

essential evaluation factor for additive manufacturing alternatives. On the other hand, the

EDAS phase of the methodology ranks the alternatives based on their assessment scores, and

“direct energy deposition” is selected as the optimal process. This study offers practitioners

with a useful instrument for identifying the additive manufacturing solution most suited for

the automotive sector.

In the future, the suggested technique may be used in other projects to address a range of

additional problems e.g., supply chain model evaluation [91], interval-valued Pythagorean

fuzzy sets may be used to increase the fuzziness modeling capacity of the methodology; other

fuzzy sets, such as neutrosophic sets, may be used with the CRITIC integrated EDAS tech-

nique; other possible variants of this technique, such as WASPAS or DEMATEL integrated

CRITIC can be developed and applied to other sectors; and finally, the stability of the sug-

gested study against rank-reversal events may be assessed by other academics using the suitable

analytic techniques.

The limitations of the study can be summarized as follows: (i) Within the automotive indus-

try, there are several manufacturing areas, and the efficacy of various processes in these pro-

duction areas may be contested. In this study, the automotive industry is examined as a whole;

however, a more in-depth examination of its subdomains can be conducted. (ii) This study

does not use any pre-existing data sets thus the results exclusively rely on subjective evalua-

tions. An MCDM model can be developed that uses actual data by using machine learning

methods e.g., logistic regression, linear discriminant analysis, and decision trees. (iii) Pythago-

rean fuzzy sets allow users model the membership and non-membership parameters, and the

hesitancy parameter is directly derived from these values. However, in certain circumstances

user may prefer to set hesitancy parameters independently. (iv) The CRITIC approach’s inher-

ent characteristics require the calculation of correlation coefficients. Due to the inability to do

this computation in a Pythagorean fuzzy environment, the the problem is transferred to a

crisp environment, which may cause information loss.
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30. Menekşe, A., & Camgöz Akdağ, H. Information technology governance evaluation using spherical

fuzzy AHP ELECTRE. SIntelligent and Fuzzy Techniques for Emerging Conditions and Digital Transfor-

mation: Proceedings of the INFUS 2021 Conference, held August 24-26, 2021. Volume 2 (pp. 757–

765). Springer International Publishing.

31. Aghazadeh E., Yildirim H., & Kuruoglu M. A Hybrid fuzzy MCDM methodology for optimal structural sys-

tem selection compatible with sustainable materials in mass-housing projects. Sustainability, 14(20),

13559.
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