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ABSTRACT 

There are 7 categories for the additive manufacturing (AM) technologies and a wide 

variety of materials that can be used to build a computer aided designed (CAD) 3-

Dimensional (3D) object. The present article reviews the main AM processes for 

polymers for dental applications: stereolithography (SLA), direct light processing (DLP), 

material jetting (MJ) and material extrusion (ME). The manufacturing process, accuracy 

and precision of these methods will be reviewed, as well as, their prosthodontic 

applications. 

 

Keywords: 3D printing, Additive manufacturing technologies, Direct light processing, 

Fused deposition modelling, Material extrusion, Material jetting, Multijet printing, 

Prosthodontics, Stereolitography. 

 

INTRODUCTION  

Additive manufacturing (AM) technologies has tremendously developed in the last years, 

allowing their integration on the digital workflow for prosthetic applications. AM are the 

computer aided manufacturing (CAM) technologies that consists on the fabrication of an 

object layer-by-layer building up process.1 The American Section of the International 

Association for Testing Materials (ASTM) international standard organization develops 

voluntary consensus of technical standards for a wide range of materials, products, 

systems, and services. The ASTM committee F42 on AM technologies has determined 

seven AM categories: stereolithography (SLA), material jetting (MJ), material extrusion 

(ME) or fused deposition modelling (FDM), binder jetting, powder bed fusion (PBF), 

sheet lamination and direct energy deposition.1 The current article review the main AM 

technologies used for polymer printing for dental applications.   
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Stereolithography (SLA) 

The SLA technology was conceived by Chuck W. Hull,2-4 where the building 

platform is immersed in a liquid resin that is polymerized by an ultraviolet laser. The laser 

draws a cross-section of the object to form each layer. After the layer is polymerized, the 

building platform descends by a distance equal to the layer thickness, allowing uncured 

resin to cover the previous layer. This process is repeated a number of times until the 

printed object is built.2-4 Almost at the same time of Prof. Hull research, Prof. André 

prepared different patent for SLA technology in France.5,6 

Laser based SLA 3D printing uses a UV laser to trace out the cross-sections of the 

object. The laser is focused using a set of lenses and then reflected off of two motorized 

scanning mirrors (galvanometer). The scanning mirror directs the precise laser beam at 

the reservoir of UV sensitive resin to cure the layer (Fig. 1). The depth of cure, which 

ultimately determines the z-axis resolution, is controlled by the photoinitiator and the 

irradiant exposure conditions (wavelength, power and exposure time/velocity) as well as 

any dyes, pigments or other added UV absorbers.7-9  

Generally, on the SLA process the layer thickness depends on the model of the 

printer which could range between 15 to 150 m with a superficial roughness of 

approximately 35-40 μm RA.10 The wavelength range of the UV light that polymerized 

the raw material depends on the printer, but it can range from 200 to 500 nm (Table 1). 

One advantage of SLA technology is the temperature resistance and freedom of 

complex geometries that can print; whereas the main limitation is the necessity of support 

structures to manufacture objects that consumes additional material and increase the 

production and post-processing time.11  
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Direct Light Processing (DLP) 

Larry Hornbeck of Texas Instruments created the technology for Digital Light Processing 

(DLP) in 1987.12 The DLP AM is very similar to SLA technology, as it is considering the 

same AM category by the ASTM.1  

The main difference between the SLA and DLP is the light source, where the 

image is created by and arc lamp or by a microscopically small mirrors laid out in a matrix 

on a semiconductor chip, known as a Digital Micromirror Device (DMD). Each mirror 

represents one or more pixels in the projected image. The number of mirrors corresponds 

to the resolution of the projected image.13  

A vat of liquid photopolymer is exposed to light from a projector under safelight 

conditions. The DLP projector displays the image of the 3D model onto the liquid 

photopolymer. In this system the physical object is pulled up from the liquid resin, rather 

than down and further into the liquid photopolymeric system. The radiation passes 

through a UV transparent window.13 The process is repeated until the 3D object is 

built.12,13 

 

Material Jetting (MJ, PP) 

The material jetting technology could be also called Polyjet Printing (PP) where a liquid 

resin is selectively jetted out of hundreds of nozzles and polymerized with ultraviolet 

light.7 The UV-curable polymers are applied only where desired for the virtual design 

and, since multiple print nozzles can be used, the supporting material is co-deposited. 

Moreover, different variations in color or building materials with different properties can 

be designated including the formation or structures with spatially graded properties (Fig. 

2).15,16 
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Material Extrusion (ME, FDM) 

Also called Fused Deposition Modelling (FDM). It is a 3D printing method based on the 

extrusion of a thermoplastic material, material is drawn through a nozzle, where it is 

heated and is then deposited layer by layer. The nozzle can move horizontally and a 

platform moves up and down vertically after each new layer is deposited (Fig. 3).17 FDM 

was first developed by Stratasys, founded by Scott Crump in the early 1990’s.18 The 

patents originally held by Stratasys have expired-resulting in dozens of FDM brands for 

the consumer market. 

The FDM process has many factors that influence the final model quality but has 

great potential and viability when these factors are controlled successfully. Whilst FDM 

is similar to all other 3D printing processes, as it builds layer by layer, it varies in the fact 

that material is added through a nozzle under constant pressure and in a continuous 

stream. This pressure must be kept steady and at a constant speed to enable accurate 

results.19 Material layers can be bonded by temperature control or through the use of 

chemical agents. 

Additionally, the nozzle which deposits material will always have a radius, as it 

is not possible to make a perfectly square nozzle and this will affect the final quality of 

the printed object.20 Accuracy and speed are low when compared to other processes and 

the quality of the final model is limited to material nozzle thickness.21 When using the 

process for components where a high tolerance must be achieved, gravity and surface 

tension must be accounted for.19 Typical layer thickness varies from 0.178mm to 

0.356mm.22  

 

Manufacturing Process 
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The complete process of manufacturing an object with a 3D printer involves the following 

sequence: data acquisition, data processing, additive fabrication and post-processing 

procedures.15,16  

• Data acquisition can be performed by either non-contact or contact scanning 

devices. The most common techniques used are computerized tomography (CT), 

cone beam computed tomography (CBCT), magnetic resonance imaging (MRI) 

and laser digitizing (extraoral or intraoral scanning devices), (Fig. 4AB). 

• Data processing involves the virtual design of the object using a specific CAD 

software (Fig. 5AB). When the design of the object is completed, the 

stereolithography (STL) file is imported on the printer software where the 

specifying the build variables and parameters for slicing and adding the support 

structures to generate the information needed for control the 3D printer (Fig. 

6AB). 

• Additive fabrication means to build the object using the slice file on the 3D printer 

(Fig. 7AB). 

•  Post-processing, cleaning the object and post-curing to complete the polymerize 

process (Fig. 7C-F). Each technology and printer will have its own post-

processing recommendations provided by the manufacturer. 

 

Resolution, accuracy and repeatability of SLA, DLP, MJ and FDM 

The distinction between resolution, precision and trueness needs to be clarified. 

Resolution is the finest or smallest feature that the 3D printer can reproduce which is 

specific for each technology and printer (Table 1). The resolution of a 3D printer should 

be defined on each x, y and z-axes in m or Dots Per Inch (DPI), where z-axis corresponds 

normally to the layer thickness. Precision or repeatability is the ability of a 3D printer to 
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manufacture objects with exact same 3D-dimensions or how close repeated printed 

objects are to each other. Trueness refers to the discrepancy between the printed object 

and actual dimensions of the desired object. 23  

In the dental digital workflow, discrepancies can be incorporated on each step. 

Moreover, the technology selected, the 3D printer used as well as the material chosen for 

the additive manufacturing of the desired object (Table 1, 2). Not all the printers that 

manufacture an object with the same technology present the same resolution capabilities; 

so, each printer has a determined resolution which is provided by their manufacturer. 

Moreover, each material has its own activation range wavelength, power and exposition 

time for their manufacturing on 3D printers; so, not all the AM materials are compatible 

with all the AM printers. Furthermore, the manufacturer´s post-processing procedures 

need to be carried out carefully to avoid further distortions of the printed object. 

Different factors can affect the accuracy (precision and trueness) of the printed 

object as laser speed, intensity, angle and building direction,22-27 number of layers,22 

software,27 shrinkage between layers,25 amount of supportive material24 and post-

processing procedures. 

Because of the disparities on the protocols, technology selected and parameters of 

the printers and the 3D polymer printed material used, it is very difficult to compare the 

results obtained on different studies. 

Alharbi et al25 evaluated the effect on the printing building direction on the 

mechanical properties of a cylinder-shaped hybrid composite resin printed specimens. 

Vertically printed specimens with the layers oriented perpendicular to load direction 

significantly presented a higher compressive strength than horizontally printed specimens 

with the layers oriented parallel to load direction.  
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Brain at al26 studied the manufacturing tolerance of four polymers AM printers 

(Formiga P110 from EOS, Projet MP 3510 from 3D Systems, Objet 30 and Object Eden 

from Stratasys) following the manufacturer´s parameters. Two geometries were analysed. 

The AM material was selected based on the print resolution, specification of the 

production unit, software and the manufacturing time; only 2 of the 4 printers used the 

same AM material. Differences on the production tolerance were founded between the 

different printers and technologies analysed. The results showed and accuracy from -61 

to 92 m.  

Ide et al27 analysed the capacity of the 3D printers to reproduce acute angles (60º, 

45º, 30º, 20º, 10º and 5º) considering the building printing direction on a six triangular 

prism-shaped specimens using one polyjet and two FDM AM printers. Each printer used 

different AM material. They concluded that the dimension production tolerance of the 

printers of geometry analysed was less than 1.00 mm in all the x, y and z-axes, but the 

acute angles could not be reproduced precisely. 

 

Prosthodontic applications 

There are a wide variety of available polymers for prosthodontics applications of 3D 

printing likewise printed casts (diagnostic casts, definitive casts for tooth-borne 

prostheses and definitive casts for implant-borne prostheses), complete dentures, printed 

castable patterns for casted or pressed restorations or custom impression trays.  

 

Printed Casts 

One of the first applications of the AM technologies was the materialization of the digital 

impression in order to obtain printed casts for diagnostic purposes or definitive casts to 

deliver a tooth-borne or implant-borne fixed dental prostheses (FDP), (Fig. 8A). 
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For the prosthodontic applications, where a digital impression is made, the most 

reasonable workflow includes two options for the manufacturing of the tooth-borne FDP: 

a milled monolithic full-contour restoration or a milled or additive manufacturing 

framework with a posterior ceramic application. On the first option, the marginal and 

internal fit, contact point and occlusal contact are defined on the STL file of the virtual 

design of the restoration, which its accuracy is the accumulation of the distortion from 

the digital impression, the parameters determined on the design software and the CAM 

processes to manufacture the restoration. In this case, the fabrication of the definitive cast 

can be avoided. On the other hand, on the second option only the marginal and internal 

fit is determined on the virtual design on the restoration; so, the manufacturing of the 

definitive cast is a necessary step to finish the restoration for the ceramic application 

where the contact point and occlusal contact will be created.  

The extraoral digitalization of the diagnostic cast for orthodontic purposes is 

widely analysed on the literature.28-32 The studies reported that the digital models are as 

reliable as traditional plaster casts, with high accuracy, reliability, and reproducibility. 

However, the reported limitation of these extraoral digitalization is the landmark 

identification, instead of the measuring system or the software employed. 31,32 

The intraoral digitalization of the patient´s mouth and the additive manufacturing 

of the Stereolithographic Tessellation Language (STL) file obtained has been also 

evaluated.33-37 In 2014, Patzelt et al34 digitalized a dental model with a laboratory scanner 

as a reference and three intraoral scanners (Lava Chairside Oral Scanner C.O.S, CEREC 

AC Bluecam and iTero) from which a 3D printed (SLA technology for the LAVA C.O.S 

and CEREC Bluecam digital impression) or milled (for the iTero digital impression) casts 

were manufactured and re-scanned with the same laboratory scanner. Using a specific 

CAD software, the casts were superimposed to analysed the distortion. The trueness 
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values reported for Lava C.O.S., iTero and CEREC AC Bluecam were 38, 49 and 332.9 

μm, respectively; and the precision values were 38, 40 and 99 μm, respectively. 

Moreover, the SLA-based casts presented a higher accuracy than milled casts. 

Hazeveld et al36 investigated the accuracy and reproducibility of physical dental 

casts reconstructed from digital data by three different AM techniques: DLP, MJ and a 

powder based polymer (PBP) printer. The mean systematic differences for the 

measurements of the height of the clinical crowns were 40, -20 and 40 m for the DLP, 

MJ and PBP printed casts respectively. For the width of the teeth, the mean systematic 

differences were -50, 80 and -50 m for the DLP, MJ and PBP groups. The dental models 

manufactured with the CAM tested could be a reliable option for orthodontic purposes, 

however it may be not enough accuracy for prosthodontic applications.  

When an implant-borne prostheses is delivered through the digital workflow, the 

exact same two options mentioned above for the tooth-borne FDP are likely. In the best 

knowledge of the authors, the is no report of the clinical adjustments needed for the first 

and second options mentioned above neither for tooth- nor implant-borne FDP; or studies 

that evaluate the accuracy of the additive manufactured definitive casts for both tooth- 

and implant-borne FDP.  

Revilla-León et al37 analysed the position accuracy of implant analog on 3D 

printed polymer versus conventional dental stone casts measured using a coordinate 

measuring machine (CMM). Additive manufacturing technologies evaluated were 

capable to duplicate conventional definitive implant cast with the same accuracy than 

conventional procedures. 

 

 

Complete Dentures 
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The development of the digital systems allows the manufacturing of complete dentures 

(CD) through CAD-CAM procedures38-47 where a denture base can be milled or both the 

denture base and the denture teeth can be mill in one piece.41, 42, 45, 46  

Maeda et al41 was the first scientific report in English where CAD-CAM technique 

was described to fabricate a CD. The digitalization of the conventional impression is 

completed and followed by the CAD design of the CD. The manufacturing of the denture 

base or the whole CD was described by either a milling process or a SLA 3D printer.  

Sun et al47 described a technique that combine analogic and digital procedures 

where the individual flasks were fabricated using AM technologies. The digitalization of 

the conventional working edentulous maxillary and mandibular casts, wax rims and 

maxillomandiular record was completed with an extraoral scanner. A software was 

developed by the authors, which was used to set-up the denture teeth, to design the 

artificial gingiva, the base plate and the virtual flasks.  

In 2015, Bilgin et al48 also described a combination of conventional and digital 

procedures where the DLP AM technology was used to fabricate the denture teeth in one 

piece with a micro-hybrid nano-filled resin. Similarly than previous authors, the 

digitalization of the working edentulous plaster casts mounted on the articulator and the 

wax rims was obtained using a laboratory dental scanner.  

Inokoshi et al49 compared the teeth try-in for a maxillary and mandibular CD 

obtained from conventional and AM technologies on ten patients. By conventional 

procedures, a base plate and denture teeth wax-up was prepared and digitalized using a 

CBCT. A complete denture teeth try-in design was completed using a CAD software and 

manufactured using a polyjet 3D printer. According to patient ratings, both techniques 

were evaluated equally in terms of aesthetics, predictability of final denture shape, 

stability, comfort of the dentures and overall satisfaction. However, from the 
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prosthodontists rating, chair time was, try-in stability and overall satisfaction were 

significantly higher with the AM than with the conventional method. 

When manufacturing a CD, a complete digital workflow would include the digital 

impression of the completely edentulous arch that includes challenging areas for the 

intraoral devices like the registration of mobile areas as the non-queratinized tissue or 

smooth surfaces covered by saliva.39,40 Pazelt et al39 developed an in-vitro study which 

aim was to analyse the capability of the intraoral scanners to reproduce accurately 

edentulous arches. The authors concluded that these digital impressions appear to be 

feasible, although the accuracy of the scanners differs significantly. The results of this 

study showed that only one scanner was sufficiently accurate to reproduce the edentulous 

jaw. However, the master edentulous cast used on this in-vitro study is a silicone model 

that may not represent precisely the clinical oral conditions. 

The systematic review of Brida et al,44 concluded that the use of computer-aided 

technology to fabricate CD has been studied since 1994 by multiple investigators using 

CAD/CAM as well as rapid prototyping methods. Significant advancements in this 

technology have been made since its inception, but currently no clinical trials or clinical 

reports are available in the scientific literature. 

 

Printed castable patterns 

There are multiple available castable polymers for the different 3D printing technologies 

(Fig. 8B) which can be process through conventional procedures and thus, obtained casted 

metal or pressed lithium disilicate restorations.50-60  

Williams et al50 reported the fist dental CAD-CAM clinical case description for 

fabricating a castable 3D printed pattern for a metal framework of a removable partial 

denture (RPD). The digitalization of the master cast was completed with an extraoral 
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scanner, the undercuts were electronically identified on surveyed virtual cast and the 

digital design of the RPD was done with a CAD software. The castable pattern was casted 

through conventional procedures. Later, a technique for the CoCr RPD framework 

manufacturing using metal AM technologies was reported.51, 52 

Kattadiyil et al,54 in a case report article, described a technique that combine 

analogic and digital procedures for the RPD fabrication. The digital impression was made 

with an intraoral scanning device (iTero, Cadent) to obtain the virtual master cast, a total 

of 56 scans were needed to capture the maxillary and mandibular arches and the 

interoclusal record and another 25 scans for the rests seats. The framework of the RPD 

was created using a CAD software and manufactured additively. The RPD was finished 

using the conventional procedures.  

A castable printed pattern can be also used to manufacture pressed lithium 

disilicate ceramic restorations. However, on the best knowledge of the authors, only few 

studies evaluated the marginal and internal fit considering the fabrication method of the 

patterns (handmade, milled or printed). Fathi et al58 measured the internal and marginal 

gap of the crowns fabricated from handmade, milled and AM patterns using the replica 

and sectioning technique. The restorations presented with a clinically acceptable marginal 

gap between 11128 m and 12643 m, furthermore the crown obtained from a 3D 

printed pattern showed a significant better marginal and internal gap in both measurement 

techniques. 

Mai et al59 analyzed the marginal and internal gap and the accuracy of the 

proximal contact of the crowns fabricated from three different manufacturing processes: 

compression molding, milling and 3D PP technology (Object Eden, Stratasys). The fit 

was evaluated with the silicone-replica and the image superimposition techniques. No 

differences were found on the proximal point obtained between the 3 techniques, however 
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the compression molding technique also presented specimens with a deficient proximal 

contact. The smallest absolute marginal gap was obtained on the 3D PP group (9919 

m) and the highest was for the molding group (16386 m). Moreover, the 3D PP group 

presented a better internal gap, being at the occlusal measurement the most evident.  

Kim et al60 evaluated the reproducibility and marginal discrepancy of resin 

copings fabricated using a SLA printer by repeating 1, 3, or 6 arrays to give a total number 

of 18.    

  

Custom impression trays 

Custom trays can be also manufactured through AM technologies (Fig. 8CD).61,62 The 

CAD design of the custom tray allows the control of a homogeneous space for the 

impression material and reduces the manual procedures. In the best knowledge of the 

authors, it has been reported the fabrication of 3D printed custom trays for a completely 

edentulous patient59 and for a complete arch implant impression technique.61 

Nevertheless, this manufacturing process can be used in any clinical procedure where a 

custom tray is needed. 

 

FUTURE PRESPECTIVES AND CONCLUDING REMARKS 

The integration and development of protocols for a complete digital workflow are still 

needed. A promising future is ahead for the prosthodontic applications of the AM 

technologies, where a complete digital workflow could be systematically applied on our 

daily work.  

 The continuous development and improvement of the AM technologies are 

unstoppable as well as the variety of materials that can be printed. The future is 

challenging our dental needs. The main challenge, in the opinion of the authors, could be 
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to face the rapid obsolescence of the new technologies that needed an important 

economical investment for the dental laboratories and private practices, the complete 

digital integration that requires a different methodologies caused by the different tools 

where a learning curve is needed and the resistance to change when incorporating new 

processes because of the command of the conventional ones.  
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TABLES 

 

Table 1: Summary of some of the available AM printers available on the market for dental applications. 

 

*UHD: Utra-high definition, HDX: High-definition smooth, HDP: High-definition plaster; HQ: High quality, HS: High speed. **NA: Not available

BRAND TECHNOLOGY PRINTER LIGHT SOURCE 
Min. LAYER 

THICKNESS (m)  
RESOLUTION (xyz) 

3D systems 

SLA ProJet 1200 UV Laser 30 56 m (XY), 585 DPI 

MultiJet ProJet MJP 3600 Dental UV Laser 29-32  
*UHD: 750x750x890 DPI 
*HDX: 375x450x790 DPI 
*HDP: 375x450x790 DPI 

SLA ProJet 6000 MP UV Laser 50-100 4000 DPI 

BEGO 
SLA 

Varseo UV Bulb (405 nm) 50-100 50m (XY) 

Varseo L UV Bulb (405 nm) 50-100 60m (XY) 

DLP Varseo S UV LED (405 nm) 50-100 60m (XY) 

DREVE DLP **NA UV LED **NA **NA 

Envisiontec 
SLA 

VIDA UV LED HD 1080x1920 25-150 73m (xy), 25-150m (z) 

VIDA Hi-Res UV LED HD 1080x1920 50-150 50m (xy), 50-150m (z) 
VIDA Hi-Res 
Crown-Bridge 

UV LED HD 1080x1920 
25-150 35m (xy), 25-150m (z) 

DLP DDDP 
UV LED 1400x1050 
Voxel size 71m 

25-150 71m (xy), 25-150m (z) 

Formlabs SLA 
Form1+ UV Laser 405nm, 120mW 25, 50, 100, 200 NA 

Form2 UV Laser 405nm, 250mW 25, 50, 100, 200 150 m (XY) 

RapidShape DLP (385nm) 
D30 UV LED HD 1080x1920 35, 50, 100 29 m (XY) 
D40 UV LED HD 1080x1920 35, 50, 100 29 m (XY) 

Stratasys PolyJet 

Object30 OrthoDesk UV Bul (200-400nm) 30 600x600x900 DPI 
Object260/500 Dental  UV Bul (200-400nm) 16,28 

*HQ:600x600x1600 DPI 
*HS: 600x600x907 DPI  Object30 Dental Prime UV Bul (200-400nm) 16,28 

ObjectEden 260VS UV Bul (200-400nm) 16,28 
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Table 2: Summary of some of the material available for AM printers, approved for 

dental applications.  

BRAND NAME DEFINITION PROVIDED WAVELENGTH 

(nm) 

3D systems 

VisiJet FTX Green Tough Castable plastic 

405 

VisiJet FTX Cast Wax and plastic hybrid 
VisiJet M3 DentCast Wax-up castable material 
VisiJet FTX Cast Wax-up castable material 
VisiJet FTX Green Wax-up castable material 
VisiJet M3 PearlStone Solid Stone appereance 
VisiJet M3 StonePlast USP Class IV capable, 

translucent or stone finish 
VisiJet M2R-TN Models, Tan color 
VisiJet SLe-Stone High-Contrast color, dental stone 
VisiJet SL Clear USP Class VI capable, crystal-

clear appearance, polycarbonate-
like 

Accura e-Stone High-contrast color, dental stone 
Accura ClearBlue USP Class VI capable, crystal-

clear appearance, polycarbonate-
like 

BEGO 

VarseoWax Splint Occlusal splint, clear 

405 
VarseoWax SG  Surg. Guide, transparent blue 
VarseoWax CAD/Cast Castable, opaque yellow 
VarseoWax Tray Custom trays, opaque blue 
VarseoWax Model Model, yellow-brown 

DeltaMed 

3Delta Model Models, apricot color 

385-405 
3Delta Model Ortho Orthodontic devices, beige color 
3Delta Cast Castable, brown color 
3Delta Cast P Castable, orange color 
3Delta Guide Surgical guides 

Detax 

Freeprint cast Castable, red color 

LED UV 405  
or 

378-388  

Freeprint tray Custom impression trays 
Freeprint splint Splints, surgical guides 
Freeprint Temp Provisional restorations. Color 

A1, A2, A3 
Freeprint model Models. Color: ivory, grey, sand 
Freeprint model T Models for the thermoforming 

technique. Color: light blue 
Freeprint ortho Orthodontic devices. Color: Clear 

Dreve 

FotoDent Model Model, opaque beige 

405 
FotoDent Tray Custom impression trays 
FotoDent Guide Surgical guides 
FotoDent Gingiva Gingiva for models 

Envisiontec 

E-aapliance/3SP/M Ortho appliances 

365-405  

3SP Models, peach 

Ortho Tough 3SP/M Ortho models aligners, pink 

E-DentStone/M Models 

ClearGuide/M Surgical guides, clear 

E-Guard Occlusal splints, clear 

E-Partial Castable, RPD 
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E-Dent/M Microfilled provisionals. Color 
A1, A2, A3 

Press-E-Cast/M Castable, yellow 

FormLabs 

Dental SG  Surgical Guides, clear 

405 

Dental Model Models 

Dental LT Clear  Splints, retainers or orthodontic 
devices 

Castable  Castable 

Grey Resin Models, trays 

Nexdent 

Base Denture Base, pink 

Blue UV-A 
 (315-400) 

+ 
UV-Blue  
(400-550) 

SG Surgical Guide, transparent 
C&B Crowns & Bridge, class IIa 
C&B MFH C&B Micro filled hybrid, class 

IIa 
Ortho Clear Splint & retainers, class IIa 
Ortho IBT Ortho applications, class I 
Ortho Rigid Splints, class IIa 
Model Dental models, oker 
Model Ortho Dental models, beige 
Tray Tray, class I, blue and pink 
Gingiva Mask Gingiva mask models, Pink 
Cast Castable material, purple 

Shera 
SheraPrint gingiva mask Gingiva masks for models 

NA SheraPrint Models, splints, trays, surgical 
guides 

Stratasys 

Clear-Bio (MED610) Clear biocompatible 

200-400 
VeroGlaze (MED620) A2 color, provisional up to 24h 
VeroDent  (MED670) Models 
VeroDent Plus 
(MED690) 

Models 

*NA: Not available.  
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FIGURES 

 

Fig. 1AB. A, Stereolithography AM technology scheme. Illustration courtesy of Additively.com.  

 

 

Fig. 2. Material jetting 3D printing technology scheme. Illustration courtesy of Additively.com. 

 

 

Fig. 3. Material extrusion or fused deposition modelling additive manufacturing technology 

scheme. Illustration courtesy of Additively.com.  

 

A) B) 
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Figs. 4AB. A, Data acquisition with an intraoral scanner device (TRIOS 3 Color Pod, 3Shape); 

and B, Digital impression of the maxillary, mandibular and interocclusal record completed with 

the intraoral scanner device. A Data Mining Extensions (DMX) file is created. 

 

 

A) B) 

 

Figs. 5AB. Data processing example from the data acquisition with an intraoral scanner to the 

virtual design of the diagnostic models. A, The DMX file created from the digital impression is 

imported into the specific CAD software (Dental System, 3Shape); and B, Specific dental CAD 

software (Model Builder, Dental Systems, 3Shape) was used to create the STL file of a virtual 

maxillary and mandibular models. 

 

 

A) 

B) 
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Figs. 6AB. Data processing by the specific printer software (D30 RapidShape, RapidShape) for 

the objects. A, Positioning and orientation on the building platform and; B, Slicing, adding the 

supportive structures and volume calculation of the polymer resin needed. 

 

 

A) B) C) 

D) E) F)  

 

Figs. 7A-F. Example of the additive manufacturing process using a DLP printer (D30 

RapidShape, RapidShape). A, DLP printer manufacturing dental models; B, Building platform 

with the AM casts just printed; C, after the removal of the printed objects of the building tray, the 

AM objects are submerged on an cleaning solution (Isopropyl 96%) during 4 minutes in order to 

remove the non-polymerized resin; D, The models are placed inside a UV-light lamp (Otoflash, 

BEGO) to complete the light cure of the AM model; and, E, Removal of the supportive structures.  

 

 

 

 

A) B) 
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C) D) 

 

Figs. 8A-D Examples of different applications of polymers AM technologies for dentistry; A, 

AM dental casts fabricated with different technologies and polymers; B, 3D printed castable 

pattern of a full coverage restoration; C, 3D printed metal framework for a complete arch implant 

impression; and D) AM custom tray for a complete arch open tray implant impression. 

 




