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Abstract 

We present a framework for designing incremental 
learning algorithms derived from generalized en- 
tropy functionals. Our approach is based on the 
use of Bregman divergences together with the as- 
sociated class of additive models constructed us- 
ing the Legendre transform. A particular one-para- 
meter family of Bregman divergences is shown to 
yield a family of loss functions that includes the 
log-likelihood criterion of logistic regression as a 
special case, and that closely approximates the ex- 
ponential loss criterion used in the AdaBoost al- 
gorithms of Schapire et a/., as the natural param- 
eter of the family varies. We also show how the 
quadratic approximation of the gain in Bregman 
divergence results in a weighted least-squares cri- 
terion. This leads to a family of incremental learn- 
ing algorithms that builds upon and extends the re- 
cent interpretation of boosting in terms of additive 
models proposed by Friedman, Hastie, and Tibshi- 
rani. 

1 Introduction 

Logistic regression is a widely used statistical methodology 
for classification problems based upon maximum likelihood. 
Boosting is a popular technique for combining several simple 
yet “weak’ learners into an accurate classifier using a voting 
scheme, where the learners and votes are chosen to minimize 
an exponential loss criterion. A recent paper of Friedman, 
Hastie and Tibshirani [ 161 presents a statistical interpretation 
of the AdaBoost algorithms of Freund and Schapire [ 151 and 
Schapire and Singer [23]. In particular, Friedman et al. show 
how boosting algorithms result from building additive mod- 
els using Newton updates of the exponential loss function, 
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making a comparison between boosting and stepwise logis- 
tic regression methods, which are formalized in the “Logit- 
Boost” algorithm. 

The perspective and some of the main conclusions of 
[ 161 can be summarized graphically. When predicting a ran- 
dom variable Y E { - 1, +l} in the two-class case, the Ad- 
aBoost and LogitBoost algorithms each fit a model of the 

However, the AdaBoost’ algorithms use the exponential loss 
function E [e-YF(s)] while logistic regression uses the log- 
likelihood criterion, given by E [log (1 + e-2YF(Z))], where 
E [.I denotes expectation with respect to the empirical sam- 
ple. A plot of these loss functions as a function of yF(z), is 
shown in Figure 1, together with the error and mean-squared 
error. 

We note that the plot corresponding to Figure 1 is shown 
in [ 161 using log (1 + e-yFcz)) rather than the log-likelihood 
log (1 + e- 2@‘(Z)) for the log-likelihood loss, resulting in 
the log-likelihood curve falling below the exponential crite- 
rion in the error region -1 < yF(z) < 0, whereas it lies 
above the exponential criter& in this region in our plot. 
While the two additive models differ only by a constant mul- 
tiplicative factor, the plot given in Figure 1 is compares the 
two loss functions for the same additive model specified by 
F(z) = f log $$-&. The curves are shown for the re- 
gion -1 < yF(z) < 1, which is the appropriate domain for 
using confidence-rated predictions that are probabilities. Of 
course, the exponential curve lies above the log-likelihood 
for sufficiently large negative values of yF(z). 

While the exponential and log-likelihood loss functions 
have similar properties, there is a significant gap between 
them in the region -1 < yF(z) < 1, which could lead 
to qualitatively and quantitatively different behavior on real 
data. Indeed, the experiments carried out in [ 161 demonstrate 
that the LogitBoost and AdaBoost algorithms can yield sig- 
nificantly different models. The main result of the current 
paper is to show how this gap can be bridged within a uni- 
fied framework for statistical inference. In particular, we 
show how a family of incremental learning algorithms de- 
rived from Bregman divergences can be constructed to in- 
clude stepwise logistic regression (and the LogitBoost al- 
gorithm) as a special case, and to closely approximate the 
AdaBoost algorithm as the natural parameter of the family 
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Figure 1. Lossfunctions for additive models: The ex- 
ponential criterion, log-likelihood, and squared error: 

varies. For appropriately chosen divergences in this fam- 
ily, we expect that the resulting learning algorithms and Ad- 
aBoost would be indistinguishable in practice. We also show 
how these learning algorithms have an interpretation in terms 
of weighted least squares regression, which sheds additional 
light on how AdaBoost differs from more standard likelihood- 
based approaches. 

Informally, the Bregman divergence D,#,(p, Q) of a con- 
vex function &J measures the convexity of 4 between points 
p and q relative to its linear approximation at Q. Bregman di- 
vergences include the Kullback-Leibler divergence as a spe- 
cial case, and a rich theory is associated with them based 
upon convex duality. In particular, the fundamental results 
of information geometry and the maximum entropy method 
generalize to Bregman divergences [9, 111. They have re- 
cently been used in the machine learning literature in the 
work of Warmuth and his colleagues, as a means of obtaining 
loss bounds for a broad class of on-line learning algorithms 
[17, 191. As we indicate in this paper, many of the bounds 
and techniques one can obtain for maximum likelihood esti- 
mation, based upon the Kullback-Leibler divergence for ex- 
ponential families, have analogues for general Bregman di- 
vergences. 

The use of statistical inference techniques based on the 
Bregman divergences is attractive for several reasons. This 
framework has been given a strong axiomatic justification by 
Csisz5r [9]. It applies not only to inference of probability dis- 
tributions, but also to inference of unnormalized measures, 
which can be useful in applications such as image process- 
ing. It enables a principled treatment of missing or hidden 
data. Since the mathematical framework of Bregman diver- 
gences draws on the geometry of convex duality [21], famil- 
iar from the theory of exponential families [ 1,4], the method 
of alternating projections [ 1 l] can be exploited, which can 
be useful for establishing convergence properties. 

On a historical note, our use of stepwise learning algo- 
rithms in the maximum entropy framework, and their exten- 
sion to Bregman divergence minimization, began in the early 

1990s at the IBM Watson Research Center. While some 
of this work was published [3, 121, much of the research 
was either unpublished or only briefly described in IBM in- 
vention disclosures, and was carried out without knowledge 
of boosting-style classification procedures in the machine 
learning literature. While the resulting feature selection al- 
gorithms for exponential models that were developed bear a 
strong resemblance to AdaBoost and LogitBoost, there are 
some important differences. Some of the relevant issues are 
mentioned briefly in the discussion that concludes this ex- 
tended abstract. 

In the following section we show how the “gain” in log- 
likelihood for logistic regression is approximated to quadratic 
order, rederiving and summarizing some of the results of 
Friedman et al. [16]. Section 3 introduces the notion of 
Bregman divergence, and Section 4 shows how the Legen- 
dre transform for a Bregman divergence defines a family of 
additive models. Section 4 also discusses the special case of 
a one-parameter family of divergences shown by Csisz5r to 
have an axiomatic justification, and how the loss functions 
for this family closely approximate the exponential criterion. 
Sections 5 and 6 show how to estimate to quadratic order the 
gain due to adding a single feature, leading to a family of 
boosting-style algorithms that helps bridge the gap between 
logistic regression and the AdaBoost algorithms. Section 7 
concludes with a brief discussion and directions for future 
work. 

2. Approximate Gains 

In this section we briefly discuss the relevant results of [ 161, 
introducing the notation and perspective that we will use 
throughout. Let the random variable Y denote the class la- 
bel, which is to be predicted based upon a feature vector rep- 
resented by a random variable X E E@. We first consider 
exponential models of the form 

p(Y=y)X=e)= 
$f(w) 

c v’ e 
X.f(w’) 

where X . f(z, y) = Cy=i XJi(s, y). We will refer to the 
functions fi(z, y) E Iw as features, understanding that they 
may be compound features that are built up from more ele- 
mentary features using decision trees, for instance. We de- 
note by $(z, y) the empirical distributiondetermined by a col- 
lection of training examples { (zi, yi)}&, so that pl(z, y) = 
k C& 6(zi, z) 6(yi, y). Let D(p ]I q) denote the average 
Kullback-Leibler divergence between two conditional distri- 
butions p (y 1 Z) and q(y 1 z) with respect to F(z): 

We will use the notation p [f] to denote the expectation of f 
with respect top. In particular, F[f = C,,y F(z, y) f(z, y) 
denotes the expectation with respect to F, q[f ) Z] denotes 
the conditional expectation q[f ( z] = C, q(y 1 z) f(z, y), 
and q[f] = C, F(Z) q[f ( Z] is the expectation with respect 
toS(z) dY 1x1. w e use ,@, q) to denote the log-likelihood 
G,q) = C,,,5(~~YHW(Y 1%). 
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Now, let q be a reference model, which in general need 
not be an additive model, and let f be a feature. We define 
the gain Q(f; p, q) of the feature f with respect to q to be 
the largest improvement in likelihood that can result : from 
adding-f to q:- 

where qx(y ( x) = $$$ q (y 1 z). The normalizing 

2x(x) is given by 2x(z) = &, e’j(‘~Y’)q(y’ I ST). 

term 

The following result shows how the change in log-likeli- 
hood C(F, qx) - L(F, q) has a simple interpretation when it 
is approximated to quadratic order in )r. We will derive an 
analogous result for Bregman divergences in Section 5. 

Proposition2.1. To quadratic order, the gain B(f;p,q) is 
approximated by 

(2.1) 

Corollary 2.2. Let C&,j be the one-parameter family of ex- 
ponen tiaJ models given by 

Ql>f = 
& (Z,Y) 

cLix(Y Ix> = z,(x) Q(Y Ix> ; x EEfh 

and Jet 7r(X I Q,,f) be the non-conjugate prior distribution 
on the parameter X which is Gaussian with mean zero and 
variance & < a2 5 00. Then the Jog-probability of N 

events d = {(xi, yi)}& is given by 

= logp(dlq) -NGz(f;F,d +WgW 

Corollary2.3. Fixingq(y ) z), considerp(z, y) to be the em- 
pirical distribution of a sample of size N drawn from q (x, y) = 
g(z) q (y I x). Then the quadratic approximation is distributed 
as 

Proof. Sincelogqx(y(z) = Xf(z,y) -logzx(z) + 
logq(y ( x), we have that C(F, qx) - G, q) = @VI - 
F [log Zx]. Calculating the Taylor expansion of log 2x(z) 
around X = 0, we see that 

log 2x(x) = 

= hPIfIxl+~(s[~21~l-4~f/~12)+~~~3~. 

As a result, 

Jw, 4x) - G, d = 

= Wfl - dfl) - ;F [df” I Xl - 4[f I xl”] + 0(X3> 

= NF[f - 4m - $I[P - df Id”] + 0(X3>. 
This is maximized by taking 

A* = iwl - dfl 
a2 - df Id”1 ’ 

and for this choice of X, 

yielding the statement in (2.1). 1 
This approximation can be reformulated as a large de- 

viations result for estimating the change in likelihood due 
to adding a feature, and to a chi-square interpretation of the 
gain. These facts are perhaps well-known in the statistics 
literature; we first learned them from Stephen and Vincent 
Della Pietra. The chi-square interpretation gives a useful 
significance test for feature selection. The simple proofs of 
these statements are given in an appendix. 

where 
4 [(f - 4VN21 

y = Q [(f - 4[f I 4121 
and x2 is the chi-squared distribution with one degree of 
freedom. 

An important special case is the two-class problem, where 
y E { - 1, + 1) . We first consider the restriction to binary fea- 
tures f(z,y) = -yf(z) E {-l,+l}. In this situation the 
analysis is particularly simple and intuitive. 

Following some of the notation of [16], we set q(z) = 
q(1 Ix) = 1 - q(-1 1 z), and let y* = (y + 1)/Z E (0, 1) be 
the representation of y as an indicator variable. Then we can 
express the quadratic approximation of the gain in terms of 
the variance q(x)(l - q(x)): 

Relaxing our restriction to binary features and minimizing 
pointwise for f(x) E IR yields 

&) = 1 F[Y* - a(x) I4 
2 iG(xc)(l - Q(X))1 

which is equivalent to a weighted least squares criterion. This 
analysis leads directly to the LogitSoost algorithm of [ 161. 

A similar analysis leads to the discrete AdaSoost algo- 
rithm of Freund and Schapire [ 151. In this case we consider 
unnormalized models of the form 

Hx(Y Ix> = ex j(z~Y)q(y I x) 

where q(y I x) is a reference measure. The objective func- 
tion now used to judge an additive model is the exponen- 
tial criterion: E(F,q,) = Cs,y F(2,y) q(y \ CC) ef(sly). We 
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again assume that the features are binary, taking the form 
f(z,y) = -ylf(z) with f(z) E {-l,+l}. Then 

G,d-E@,8d =CF(X~Y)~(YIX) (l-emxYf(‘)) 

Maximizing this quadratic approximation as a function of X, 
we find that 

The gain in the exponential criterion is thus estimated to be 

G5@;f,d = mAy&(F,s) -G,%,) 

M 1 (C,,y7(x,Y)q(YI:C)Yfo)2 

-i cz,yF(x7 Y> dY Ix> * 

Choosing f(z) pointwise to maximize this approximation 
leads to the choice 

(C,,yi;(z~Y)4(Yl~)Yf(“))2 

cs,y F(x, Y> Q(Y I x> 

EC arg min 
cz,y 5(x7 Y> Qb I x> (Y - f(xN2 

f(z) cs,y 5(x, 31) Q(Y I x> 
using the facts that y2 = f(~)~ = 1. In boosting-style al- 
gorithms, ? is selected using a regression technique such as 
decision trees, and the weight X* is then chosen to maximize 
the full gain I (F ; f, q) - & (5; f, gx), rather than its quadratic 
approximation, leading to 

qbw Yfb)>l 
x* = ii log 1 - q[6(1,yf(z))] 

which specifies the discrete AdaBoost algorithm. In the fol- 
lowing sections we will show how this analysis can be ex- 
tended to a broad class of loss functions, allowing us to “rec- 
oncile” the AdaBoost and LogitBoost algorithms. 

3. Generalized Divergences 

If 4 : P -+ IR is a strictly convex Cl function, the Breg- 
man divergence D&(p, q) between discrete measures p(z) 
and q(z) is defined by 

DdPT4) = C~@(x))-~(q(x))-Q(s(x))(P(x)-q(x)). 
2 

When $(z) = x2, we obtain the mean-squared error 

Dzz (Pt 4 = c (P(X) - qw2 
I 

and when 4(z) = z log x we obtain the I-divergence, or ex- 
tended Kullback-Leibler divergence 

More generally, if @ : EV -+ IR is strictly convex and C’, 
the Bregman divergence D@ (p, q) is defined as 

D&+d = ‘p(P) - @(cd - V@(q) . (P - 4 

where p = (PI,. . . ,p,.). 

The Kullback-Leibler divergence between models in an 
exponential family can be interpreted as a Bregman diver- 
gence defined on the parameter vector. That is, if pe (z) is an 
exponential model of the form PO(Z) = 2(0)-l es’f(Zl then 
the divergence D(pel 1) pe,) is equal to the Bregman diver- 
gence for 4(O) = - log Z(e): 

D(Ps~ II fez) = (4 -e2).~s,[f-(i0g~(e1)-i0g~(e2)). 

For a tutorial introduction to these generalized entropy 
measures we refer to [Ill. An elementary proof of the ba- 
sic duality theorem and Pythagorean property for Bregman 
divergences was given in [13], following the proof in the 
case of the I-divergence that was given in [12]. A practical 
algorithm for minimizing Bregman divergences subject to 
linear constraints-and therefore solving generalized maxi- 
mum entropy problems-was presented in [ 141. In this paper 
a framework for incremental, or “stepwise” learning using 
these divergences was also presented. 

4. Legendre Transforms and Additive Models 

The basic tool in our analysis is the Legendre transform. This 
transform defines the class of additive models that we work 
with for a given Bregman divergence. It is central to con- 
vex optimization for these divergences, since it provides the 
link between the primal and dual problems [21]. The trans- 
form will be defined with respect to a set S c IV which is 
either the collection of probability distributions on T events, 
denoted by A,, or the set of all positive measures, denoted 
by li%;. Before proceeding, we need to be more precise in 
our use of the term additive model. 

Definition3.1. Let S c IF? be a set of measures. An ad- 
ditive model for S is defined by an action 7 : IR? x S + 
S satisfying the homomorphism property y(rl + 7-2, s) = 
y(rl , y(r2, s)) for all ~1, rg E R’ and s E S. 

Lemma3.2. Given a convex function @ : IR’ -+ IF& let 
D+ be the Bregman divergence defined on measures p = 
(P1,... , pp) E S C Rf . Define the Legenbre transform v o,q 

by 
v w = ayFs. v . P - Da (P, d. 

Then the map (v, q) I+ v o*q defines an additive model for 
S=A,andS=R;. 

To help clarify notation, we should point out that when p 
is a probability distribution, the dot product v-p with a vector 
(VI, ‘u2 . . . , v,) E !I%’ is the same as the expectation &[v] = 
p[v] viewing v as the random variable V(Q) = vi. 

Proof of Lemma 3.2. We use a calculus of variations 
argument to characterize v oeq. First suppose that S = lRr , 
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the collection of all measures. Let p(t) E Iw” be a one-para- 

meter family of measures with p(0) = u O,Q and g 
I 

= 

Sp. From the definition of the Legendre transform w?$ave 
that 

v .6p - vqv o*q) * sp + VQ(q) * sp = 0. 

Since the derivative Sp is arbitrary, we see that the distribu- 
tion v ooq is uniquely determined by the condition 

vqv o*q) = Vcp(q) + v. 

It follows that 

V(v o*(w o*q)) = vqw 0*q) + v 
= W(q)+w+v 
= V@((v + w) 0.q) 

showing that (v + w) o*q = v O,(W o*q). 
If now S = A1, is the collection of all probability distri- 

butions, we need to carry out a constrained maximization; a 
similar calculation will apply for S = lRt. Introducing a La- 
grange multiplier T,!J(v, q) for the constraint p. i = 1, where 
i denotes the vector of all Is, we see that the following equa- 
tion must be satisfied at the maximum: 

showing that v oipq is now uniquely determined by the con- 
dition V@(v O.q) = V@(q) + v - $(v, q)i. 

To prove the homomorphism property, it suffices to show 
that d(vr + VZ,Q) = $J(VZ,Q) + $(oI,v~ ooq). For this pur- 
pose, let us distinguish the constrained and unconstrained 
problems by temporarily denoting the unconstrained action 
by v o,q, and the constrained action, which determines a 
probability distribution, by ‘u o*q. To simplify the notation, 
let $(vr + v2, q)i be denoted by 5. Then C is the unique 
constant vector such that (VI + 212 - C) o*q is a probability 
distribution. Thus, by the homomorphism property for the 
unconstrained problem, proved above, we have that 

(v1+'u2)w = (v1+v2 -C)o*q 

= (W - c + ti(v2, q) i + v2 - ti(v2, d 1) 0d 
= (vl - (c - ti(v2, d 1)) o. ((v2 - 4(v2, 4) i) 04 
= b1 - (c - 7~+~, q) i)) O* Cu2 4 . 

As aresult, $J(VI, 02 w) = $J(VI +w, q)-$(w, q), proving 
the homomorphism property for the constrained problem. 1 

The normalizing term Q(v, q) will be referred to as the 
cumulant generating function, to be consistent with the stan- 
dard terminology for exponential families. We now focus 
on a particular collection of Bregman divergences, which we 
call the Bregman-Csisza’r divergences (or BC divergences). 
This collection will be seen to be easy to work with compu- 
tationally, leading to learning algorithms that are as practical 
as logistic regression and boosting. 

Let 4, (z) be the family of convex functions defined for 
a E P, 13 by 

2 - logz - 1 a!=0 
4a(x) = Zlogx-x+1 a:=1 

q&q (-zQ+ax-cu+1) O<a<l. 

Figure 2. Lossfunctions: log-likelihood, the exponen- 
tial criterion, and Bregman-Csiszdr divergences D,, 
for several values of (Y in the interval (i, l), chosen 
in increments of Aa = 0.02. The curves were gener- 
ated by numerically estimating the cumulant generat- 
ing functions +( f, q) using Newton’s method. 

The associated family of Bregman-Csisz6r divergences D, (p, q) 
on discrete distributions p, q is given by 

WP, d = 

~~40(?/)-P’I(Y)+aP(Y)()-l(p(Y) -Q(Y))* 

For (II = 0 this specializes to the Itakura-Saito distortion 

and for Q = 1 it yields the extended Kullback divergence 

P(Y) 
&(p,Q) = cp(YPw&jj -P(Y) +q(y) 

I 

Using the fact that lima-,0 9 = log Z, it is simple to 
verify that this constitutes a continuous family of Bregman 
divergences. This family is given a strong axiomatic justifi- 
cation by Csisziu: in [9]; however, it is out of the scope of the 
current paper to review this axiomatic formulation. 

Using Lagrange multipliers, it is a simple calculation to 
determine the Legendre transform f 0-q associated with the 
Bregman-Csisz6r divergence D,, acting on the set of prob- 
ability distributions A,.. This determines the family of addi- 
tive models that we work with. 

Proposition 3.3. The Legendre transform f 0-q is given by 

(f v?)(Y) = (Q(YY1 + (a - lM(Y) - dJ(fd)) sr 

forO<a<l.Fora!=O,lwehavethat 

Q(Y) 
(f O” q)(y) = 1 - Q(Y)(f(Y) - $l(f, 4)) 
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and 
(f 0% q)(y) = q(y)ef(Y)--@(f,q) 

Consider now conditional models q(y 1 XT) for the two- 
class case y E (-1, +I.}, and let f(z, y) = -yf(z), as in 
the boosting and logistic regression models discussed ear- 
lier. We are interested in the behavior o:f the gain D, (p, q) - 
Da (p, f O, q), as CY varies. Fixing x, we want to consider how 
the loss varies as a function of f(x). For (Y = 1 we know that 
this is given by the scaled curve log (1 + e-2yf(z)) plotted 
in Figure 1. For cr < 1 we cannot compute the normaliza- 
tion $J explicitly, but it is easily computed numerically using 
Newton’s method. The resulting family of loss functions is 
plotted in Figure 2 for several values of CY E (4 , 1). The BC 
divergences very closely approximate the exponential crite- 
rion near the decision boundary when (Y M $. 

5. Duality and Information Geometry 

In [ 121 an elementary proof was given of the fundamental du- 
ality between maximum likelihood and minimum divergence 
for exponential models. This simple proof extends to Breg- 
man divergences quite easily. This fundamental fact allows 
us to view the same learning problem is two very different 
ways. 

Let f E JR? and let qo E ES’ be an initial measure. Define 
P and & by 

P = {P E A, I PVI = MI 
Q = {qEAjq= (xf)o,qoforsomeXER}. 

a will denote the closure of & (in the Euclidean topology). 

Theorem4.1. Suppose DO@, qo) < co. Then there exits a 
unique q* E A satisfying 

(1) q* E P f-l c? 

(2) hhq) = D&,q*) + h(q*,q) foravpep am’ 
qEz2 

(3) qk = arg min, E a Da (8, d 

(4) q* = w min, E p WP, m). 

Moreover, any of these fourproperties determines q* uniquely. 

Our proof of this duality relies on the following compu- 
tational lemma for Bregman divergences. This same lemma 
will be used to derive the quadratic approximation to the 
gain. 

Lemma 4.2. Fix f E IR”, and consider the one-parameterfam- 
iJy ofmodels given by q(t) = (tf) o-q, wjith cumulant gen- 
erating functions +(t). Then 

@I &I,=, G(P, q(t)) = f * (q -P) = q[fl - dfl 

(4 &Jt=pd~, q(t)) = (f -Qv) V H&q) (f -7w) 1) 

where HQ. (q) is the Hessian V2 a(q). 

Proof. From the proof of Lemma 3.2 we have that 

b(q) $ (tf) oaq = 
t=cl 

= $ v@((tf) 0-q) 
t=o 

= $1 (wq)+tf +(t)i) 
t=0 

= f -#(op. 
Equality a) now follows from g (q(t) . i) = ($q(t)) . i = 
0. To derive the second equality, note that 

$WP, q(t)> = 

= g WP) - @ (q(t)) - V@(q(t)) * (P - q(t))1 

= - (-$el0)) -cP--q’(t)) 

= (f - +‘(t) i) . (q(t) -P) 
= f * (q(t) - P) 

where the last equality is a consequence of q(t) . i = p * i. 
Finally, using the above calculation we have that 

= $ (f - 4’(t) 1) . (q(t) -P> 
t=o 

= (f - e’(o) 1) . -$I q(t) 
t=0 

= (f - TW) i)T 42(q) (f - #(o) I) 
where the second equality follows from property a). 1 

The remainder of the proof of Theorem4.1 follows the 
same steps as the proof for the Kullback-Leibler divergence 
given in [12]. 

As a very special case of duality, we can reinterpret the 
explanation of boosting as adjusting the weight of the current 
weak learner ft so that it is uncorrelated with the labels pi 
[23]. That is, at the t-th round AdaBoost adds the feature ft 
with weight a! to the additive model, so &at the probability 
assigned to the i-th sample is given by 

1 
Qt+1(4 = zt(cy) -~e-“Y’f&dQt(~) 

The weight cr is chosen to minimize the exponential loss 
criterion xi e--cuY;ft(si) qt(i) = &(a). Using the notation 
yft(x) = ht(z,y), let p(s,y) be any distribution satisfying 
P[ht] = 0 which assigns nonzero probability to each of the 
training samples. Then by Theorem 4.1, we have that 

p: p$tyzo WP II qt) = “2 D@ II a+1 > = min log zt (4 
This relationship is further developed in [20]. 



6. Weighted Regression 

The lemma from the previous section allows us to approxi- 
mate the loss in Bregman divergence due to adding a feature 
to an additive model, using a quadratic approximation that 
extends the analysis given in Section 2. We will assume that 
the distributions are normalized, but similar results apply for 
positive measures that are not necessarily probability distri- 
butions. 

Proposition4.2. For a Bregman divergence Da., the quad- 
ratic approximation of the gain 

GO (13; f, q) = y.y Da (P, 4 - DQ (P, (V) -q> 

is given by 

i-h@ f, cl) M G; (17; f, Q) 

d&f 1 WI - m” 

5 (f - tiv) i)T fcii%) (f - 1clw 1) . 

Proof. From Lemma 4.2 we have that to second order 

WP> 4 - D+CP(P, (VI wd = Wfl - qVl> 

+ix2(f - #(o) iJT H.&q) (f - q’(o) i) + 0(x2) 

Maximizing with respect to X yields the statement of the 
proposition. 1 

While the quadratic approximation gives the most direct 
correspondence to the results of [16], we note that a prac- 
tical alternative for feature selection is to compute the fill 
gain Gcp@; f, q) using a generalized iterative scaling algo- 
rithm [8, 12, 141. While this is more computationally de- 
manding, it gives a more accurate assessment of the value of 
a feature. From the duality theorem, it also has an interpre- 
tation in terms of constrained optimization. 

Now, for the Bregman-Csisz5r divergences Da, we have 
that 4”(z) = x”-~. Thus Hi’(q) is a diagonal matrix with 
diagonal entries q( y ) x)~-~. Applying Proposition 4.2 to the 
two-class case, a simple calculation shows that the Newton 
updates to select the features f(x) result in the weighted 
least-squares criterion 

F(x) = arg min I&(,) ( 
1 Y* -q(x) - 

f(z) 2 w4x) 
- rc.,>’ 

with weights 

%(X> = 
q(xp--cr (1 - q(x>)2-” 

q(x)2--o! + (1 - q(x))2-” * 

When Q = 1 this results in weights ‘~1 (x) = q(x)(l -q(x)), 
which are the same as those used in the Log&Boost algo- 
rithm. As cx decreases, the weights place relatively more 
emphasis on the events for which the current model is less 
certain. A subset of this family of weights, for 0 < cx < 1 is 
shown in Figure 3. 

0.4 

4(X) 

Figure 3. Weights used in weighted least-squares re- 
gression derived from Bregman-Csiszdr divergences, 
for several values of 0 < (Y < 1, chosen in increments 
of Ao = $. 

7. Conclusions and Discussion 

We have presented a statistical framework for building in- 
cremental or stepwise classification algorithms using gener- 
alized divergences. Our approach is based upon the use of 
Bregman divergences as a similarity measure between prob- 
ability distributions, and uses the Legendre transform to de- 
fine a class of additive models. The Bregman-Csisziu diver- 
gences D, were shown to yield a one-parameter family of 
loss functions that includes the log-likelihood loss of logistic 
regression as a special case, and that closely approximates 
the exponential loss criterion used in the AdaBoost algo- 
rithms with confidence-rated predictions. We considered the 
gain due to adding a single feature to an additive model, and 
showed how this gain can be approximated to second order. 
This leads to a class of weighted stepwise regression proce- 
dures that includes the LogitBoost algorithm of Friedman, 
Hastie, and Tibshirani as a special case. 

The class of Bregman divergences enjoys a number of 
very useful qualities, and this recent addition to the machine 
learning literature may have many further applications. As 
exploited by Warmutb et al. and Della Pietra et al., these 
similarity measures have convexity properties that allow bou- 
nds and “auxiliary functions” to be easily derived [19, 17, 
141. Their use can often be given an interpretation in terms of 
a generalized maximum entropy principle [ 111, and the pro- 
jection operators that are defined for Bregman divergences 
can be useful for proving convergence of various learning 
algorithms and constrained optimization procedures. 

From a more practical and empirical standpoint, we be- 
lieve that there are many ways of using these methods to 
design more effective and practical feature selection algo- 
rithms. We have worked extensively with a closely related 
set of techniques for incrementally adding features to a max- 
imum entropy model, and have most recently applied these to 
the text segmentation problem 121. When evaluated against 
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the real AdaBoost algorithm using one.- and three-level deci- 
sion trees as weak learners, we found that the logistic regres- 
sion (maximum entropy) methods result in significantly bet- 
ter performance [7]. One particular difference between our 
stepwise techniques and those used in the LogitBoost and 
AdaBoost algorithms is that after a new feature is included 
in the additive model, all of the model’s feature weights are 
readjusted using a generalized iterative scaling algorithm [ 12, 
141. While this better accounts for the correlations between 
features, one might expect it to result in models that are 
more prone to overfitting than the corresponding algorithms 
that “freeze” each feature’s weight after it is included in the 
model. In practice, however, we have observed that this ap- 
proach is extremely robust to overfitting. We hope to gain a 
better understanding of this behavior through future research 
and experimentation. 

The main result of the current paper is to show how Breg- 
man divergences can be used to generalize and complement 
more standard statistical methods such as stepwise logistic 
regression. These observations build upon the correspon- 
dence between boosting and logistic regression that are es- 
tablished in [16], as well as on our experience using incre- 
mental maximum entropy and minimum divergence meth- 
ods for a range of practical problems. The empirical success 
of boosting algorithms calls for a better understanding of its 
properties, and we believe that a statistical and information- 
theoretic perspective complements boosting’s roots in error 
bounds and the PAC model of learning [22], and offers sev- 
eral advantages as well. While the classical techniques of 
logistic regression do not fully suffice to explain boosting, 
we have argued that Bregman divergences may enable the 
development of new variations on voting-style learning algo- 
rithms that may make such techniques even more effective in 
practice. 

Appendix A: Statistics of the Gain 

In this appendix we give proofs of the corollaries to Propo- 
sition 2.1, which describe the statistics of the quadratic ap- 
proximation of the gain due to adding a single feature with 
small weight to the additive model. Similar results can be 
derived for general Bregman divergences. 

Proposition2.1. To quadratic order, the gain B(f;$, q) is 
approximated by 

def 1 (q[fl - 8f)” 
G(f ; P, Q) = 62 (f; fi7 d = Yj q [f2’ _ q[f I42]. 

Corollary 2.2. Let Qq,f be the one-parameter family of ex- 
ponen tial models given by 

Q&f = Qx(Yl~) = 1 $f (w) 
------I(21 I x> ; x E IR 
zx (x) 1 

and let n(X ) C&f) be the non-conjugate prior distribution 
on the parameter X which is Gaussian with mean zero and 
variance -& < a2 5 oo. Then the log-probability of N 

events d = {(xi, yi)}zI is given by 

logs (d I Q,,r) = 

= log I dd I cd ~0 I Q,,f) dA 
= lw(dIq) -NGz~((f;z&d +WxW 

Proof. From our definitions, we have that p(d ] qx) = 
eNc@qx). Using the approximation in Proposition 2.1, this 
is approximately 

p(d ] qx) = p(d ] q)e-aX-~bX2 

where a = N(q[f] - fi[f]) and b = Nq[f2 - q[f ] x12]. 
Carrying out the integration, we find that 

P(dl Q%f) = -& I dd I d x(x I Qq,f) dX 

= ddlq)-$=-- I e -aX-;(b+;;i)X’ dx 

7ru 

= p(d]q)(b+o-2)-&p (-&) * 

Taking logarithms, we find that 

logAd I G&r> = 
= hdd I 4 

- Wfi13,q) 1+ Na2q[f2 y df l42l > 
+ O(log N) 

= log&d I 4 - NG(f;l?, 4 + Wg NI 
under the assumption that & < cr2 5 00. 1 

Corollary2.3. Fixingq(y ] x), considerfi(z, y) to be theem- 
pirical distribution of a sample of size N drawn from the 
distribution q(x, y) = P(Z) q(y ] CC), Then the quadratic ap- 
proximation is distributed as 

where 
Q [(f - df1)2] 

y = cl Kf - co I xl)“1 
and x2 is the chi-squared distribution with one degree of 
freedom. 

Proof. Let fi = f(zi, yi) be the value off on the i-th 
labelled example, and let 

fi - q[fl 
yi = Jcr [(f - 4m21. 

Then 

Since the yi are independent and identically distributed with 

mean zero and variance one, we have that (-& CE, yi) 2 N 

x2 for large N. 1 
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