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ABSTRACT

An ‘‘additive noise’’ method for initializing ensemble forecasts of convective storms and maintaining

ensemble spread during data assimilation is developed and tested for a simplified numerical cloud model (no

radiation, terrain, or surface fluxes) and radar observations of the 8 May 2003 Oklahoma City supercell.

Every 5 min during a 90-min data-assimilation window, local perturbations in the wind, temperature, and

water-vapor fields are added to each ensemble member where the reflectivity observations indicate pre-

cipitation. These perturbations are random but have been smoothed so that they have correlation length

scales of a few kilometers. An ensemble Kalman filter technique is used to assimilate Doppler velocity

observations into the cloud model. The supercell and other nearby cells that develop in the model are

qualitatively similar to those that were observed. Relative to previous storm-scale ensemble methods, the

additive-noise technique reduces the number of spurious cells and their negative consequences during the

data assimilation. The additive-noise method is designed to maintain ensemble spread within convective

storms during long periods of data assimilation, and it adapts to changing storm configurations. It would

be straightforward to use this method in a mesoscale model with explicit convection and inhomogeneous

storm environments.

1. Introduction

Several recent studies have evaluated ensemble

Kalman filter (EnKF) techniques for determining the

atmospheric state on the scale of individual convective

storms through assimilating radar observations into

numerical cloud models (e.g., Snyder and Zhang 2003;

Dowell et al. 2004a,b; Caya et al. 2005; Tong and Xue

2005; Aksoy et al. 2009). The EnKF uses the statistics of

a forecast ensemble to estimate the background-error

covariances needed for data assimilation (Evensen

1994; Houtekamer and Mitchell 1998). Initial tests of

the EnKF method for atmospheric data assimilation

were for large-scale, quasigeostrophic flows. Snyder and

Zhang (2003) later applied the EnKF technique to

smaller-scale, unbalanced flows, specifically convective

storms.

For ensemble forecasting and data assimilation at any

scale, it is difficult to produce an ensemble with statistics

that appropriately represent actual forecast uncertainty.

For applications that involve short periods of data as-

similation, it is challenging to construct an initial en-

semble that spans a reasonable subspace of possible

atmospheric states and that will promote efficient state

estimation as the initial sets of observations are assim-

ilated (Snyder and Zhang 2003; Zhang et al. 2004).

More generally, it is challenging to maintain ensemble

spread in the appropriate locations and model variables

so that the assimilation continues to be successful.

Model bias errors, which are pervasive in numerical

meteorological prediction (Dee and da Silva 1998),

particularly lead to inconsistency between ensemble

statistics and forecast errors. Furthermore, assimilating

observations typically reduces the ensemble spread too

much because covariance estimates from finite-sized

ensembles are noisy (Hamill et al. 2001).
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Ensemble prediction on the storm scale1 is a relatively

new endeavor, and researchers have just begun to ex-

plore some of the possibilities for ensemble design.

Since convective storms are localized disturbances that

are sampled with incomplete observations, ensemble

design is particularly difficult. Nevertheless, some of the

ad hoc storm-scale ensemble techniques that have been

developed so far have proved to be useful for data as-

similation (Snyder and Zhang 2003; Zhang et al. 2004;

Dowell et al. 2004a,b; Caya et al. 2005; Tong and Xue

2005). For their ‘‘perfect model’’ supercell experiments,

Snyder and Zhang (2003) and later Tong and Xue

(2005) initialized ensembles with different realizations

of random, Gaussian noise added to the idealized base

state. Snyder and Zhang added noise throughout the

domain to the three velocity components and to the

liquid-water potential temperature and then advanced

the ensemble 20 min before assimilating the first ob-

servations. The subsequent data-assimilation procedure

utilized the background-error covariances associated

with different realizations of incipient convective storms

thathaddevelopedwithin theensembleduring the20-min

integration. Snyder and Zhang (2003) then compared

these experiments to a set of experiments in which the

initial noise was confined horizontally to a 20 km3 20 km

subdomain centered on the approximate storm location

in the reference simulation. They found that the local-

ized noise method was preferable, owing to fewer spu-

rious convective cells within the domain overall.

For EnKF data-assimilation experiments with real

radar observations of a supercell, Dowell et al. (2004a)

initialized a 50-member ensemble with smooth pertur-

bations rather than gridpoint noise. Ellipsoidal pertur-

bations several kilometers wide and tall were added to

the model fields (horizontal wind components, liquid-

water potential temperature, rainwater, and total wa-

ter), and the ensemble was advanced 20 min before the

first data assimilation. The initial perturbations were

localized around the observed storm location, as sug-

gested by Snyder and Zhang (2003). Dowell et al.

(2004a) obtained better results for the initialization with

smooth perturbations than for an initialization with

gridpoint noise, noting that the smooth perturbations

resulted in more rapid updraft development and greater

ensemble spread throughout the assimilation period.

Whereas Snyder and Zhang (2003) and Dowell et al.

(2004a) manually selected rectangular subdomains for

the initial perturbations, Caya et al. (2005) developed a

more automated procedure for adding smooth, random,

localized perturbations to the initial ensemble. This tech-

nique uses high-reflectivity observations as indicators of

convective cells and thus locations where perturbations

are needed. The Caya et al. technique, described in

detail in the following section, is the foundation for the

‘‘additive noise’’ method developed in the current

study.

The techniques just described mainly concern how to

generate the initial ensemble. A relatively unexplored

but arguably more important topic in storm-scale en-

semble data assimilation is how to maintain ensemble

spread during the assimilation, to counteract the ten-

dency for the distribution to converge on a solution

different from the truth (Jazwinski 1970; Anderson and

Anderson 1999). A common approach for dealing with

this problem of filter divergence is to multiply the prior

deviations of the ensemble members from the mean by a

factor g (.1) before each observation set is assimilated

(Anderson and Anderson 1999; Anderson 2001; Hamill

et al. 2001). This technique for artificially broadening

the prior distribution is often called ‘‘covariance infla-

tion.’’ Experimentation and/or adaptive methods that

use recent innovation statistics (e.g., Anderson 2009)

are required to determine the inflation factor g that

provides the most favorable results for a particular ap-

plication.

Attempts to tune the EnKF for storm-scale data as-

similation have included constant covariance inflation

(Snyder and Zhang 2003; Dowell et al. 2004a; Tong and

Xue 2005), but results have been mixed. Snyder and

Zhang (2003) found that inflation degraded their results,

owing to its enhancement of spurious cells in the en-

semble. Dowell et al. (2004a) reported only minor im-

provement (2% reduction in root-mean-square innova-

tion) through the use of covariance inflation. Another

approach for maintaining ensemble spread during

storm-scale data assimilation is the ‘‘relaxation’’ method

of Zhang et al. (2004). This method, which is essentially

local inflation, restores a specified fraction of the en-

semble spread that was lost when observations were

assimilated.

Our goal here is to develop a method for initializing

storm-scale ensembles andmaintaining ensemble spread

throughout periods of data assimilation with the fol-

lowing characteristics: 1) the perturbed regions are se-

lected automatically from observations rather than

manually; 2) the perturbations are spatially smooth2; 3)

1 ‘‘Storm-scale’’ forecasting refers here to using numerical

models with grid spacings ;1 km to predict convective storm

features ;10 km wide/tall.

2 Perturbations that have correlation length scales comparable

to those of the simulated convective storms seem physically rea-

sonable and have proven useful in storm-scale data-assimilation

experiments (Dowell et al. 2004a).
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the perturbation magnitudes are relatively large in and

near convective storms and relatively small in the envi-

ronment far away from the storms; and 4) the method can

be applied throughout the assimilation window, rather

than just at the beginning. The method we propose is to

add random, smooth perturbations to selected model

fields at regular intervals throughout the assimilation

window in and near convective storms, as identified by

high-reflectivity observations. This additive-noise method

is similar to that proposed by Caya et al. (2005), except

the current method adds perturbations every few minutes

throughout the data-assimilation period, rather than only

at the initial time when the ensemble is populated.

Additive noise has proven useful for ensemble fore-

casting and data assimilation at larger scales. Mitchell

and Houtekamer (2000) attempted to account for

model error in a three-level quasigeostrophic model by

estimating parameters in a simple representation of

model error and adding random, smooth perturbations

to the ensemble members to increase the spread in a

manner reflecting the estimated model error. The

Mitchell and Houtekamer (2000) technique is adaptive

in that the perturbation magnitudes and length scales

are based on innovation statistics from the data assim-

ilation. This approach for parameterizing model error

was later implemented successfully in an operational

global model (Houtekamer and Mitchell 2005). Al-

though there are a number of similarities to the addi-

tive-noise technique used in the current study, a key

difference is that the perturbations are localized here (in

and near convective storms), whereas the model-error

parameterization of Houtekamer and Mitchell (2005)

has statistics that are horizontally homogeneous.

For data-assimilation and forecasting experiments

with a two-layer primitive equation model, Hamill and

Whitaker (2005) considered various methods for ac-

counting for model error owing to unresolved scales.

They obtained significant improvement in their results

by adding spatially smooth random perturbations to

each ensemble member. The characteristics of the ad-

ditive noise were based on samples of model error from

a time series of differences between model forecasts at

two different resolutions. Hamill and Whitaker (2005)

noted that an ensemble modified through additive noise

could ‘‘span a somewhat different subspace’’ than an

unmodified ensemble or an ensemble modified through

covariance inflation.

An additive-noise approach for storm-scale ensemble

forecasting and data assimilation is demonstrated here

for the 8 May 2003 Oklahoma City supercell (Fig. 1)

(Dowell et al. 2004b; Romine et al. 2008). For this study,

only Doppler radial-velocity observations from a 10-cm

radar are assimilated into a numerical cloud model.

Reflectivity observations are used to determine where

noise is added to model fields. Results of experiments

with different magnitudes of additive noise are com-

pared. An additive-noise experiment is then compared

to experiments initialized as in previous studies (e.g.,

Dowell et al. 2004a,b). The additive-noise technique is

successful in producing and maintaining ensemble

spread within the observed convective storms while

producing minimal spurious convection.

2. Experiment design

a. Numerical cloud model

The numerical cloud model employed in this study is

the National Severe Storms Laboratory (NSSL) Col-

laborative Model for Multiscale Atmospheric Simula-

tion (NCOMMAS) (Wicker and Skamarock 2002;

Coniglio et al. 2006), which is a nonhydrostatic, com-

pressible model designed for simulating convective

storms in a simplified setting. Like the Klemp and

Wilhelmson (1978) model, NCOMMAS includes the

following simplifications: a flat lower boundary, no

surface fluxes, no radiative transfer, and a base state that

is assumed to be uniform at each vertical level. Al-

though the simplified framework is sufficient for devel-

oping and testing the additive-noise technique here, it

would also be straightforward to implement the tech-

nique in a mesoscale model with full complexity, which

would presumably be more suitable for forecasting

convective storms.

The prognostic variables in NCOMMAS are u (west-

erly wind component); y (southerly wind component); w

(vertical wind component); p (Exner function); Km

(mixing coefficient); u (potential temperature); q1 5 qv
(water-vapor mixing ratio); q2 5 qc (cloud water mixing

ratio); and q3. . .n (hydrometeor mixing ratio), where n,

the number of water substance categories, depends on

which of several options in NCOMMAS are chosen for

the precipitation-microphysics scheme. For this study,

we use the Gilmore et al. (2004) version of the Lin et al.

(1983) precipitation-microphysics scheme, which is a

typical single-moment bulk scheme for cloud modeling.

This scheme includes two liquid categories and three ice

classes: q2. . .65 qc (cloud droplets), qr (rain), qi (cloud ice

crystals), qs (snow), and qh (hail/graupel). The moist

processes represented in the model are cloud condensa-

tion, cloud and rain evaporation, autoconversion of cloud

to rain, ice-crystal initiation, vapor deposition and sub-

limation for ice species, freezing, melting, accretion, ag-

gregation, rain shedding by wet hail/graupel, and precip-

itation fallout (Gilmore et al. 2004). The cloud water and

ice-crystal distributions in the model are monodispersed,
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whereas the rain, snow, and hail/graupel categories have

inverse exponential distributions. For this study, the

intercept parameters for the rain and hail/graupel size

distributions are 8.0 3 106 and 4.0 3 104 m24, respec-

tively, and the hail density is 900 kg m23 (Gilmore et al.

2004).

For our experiments with the 8 May 2003 Oklahoma

City supercell (Fig. 1), the model domain is 100 km wide

in both horizontal directions, is 18 km tall, and moves at

U 5 14 m s21, V 5 8 m s21, following the storm of

interest. The constant grid spacing is 1.0 km (0.5 km) in

the horizontal (vertical) coordinate. The boundary

conditions for the simulations are free slip at the top and

bottom, and the lateral boundaries are open and per-

meable. The prognostic equations are advanced with

third-order Runge–Kutta time integration and fifth-

(third-) order horizontal (vertical) spatial differencing

(Wicker and Skamarock 2002). Other model details are

described by Coniglio et al. (2006). We do not include a

Coriolis force in our simulations. The initial background

u, v, u, and qv profiles in the raw 0000 UTC 9 May 2003

Norman, Oklahoma, sounding (Fig. 3 of Romine et al.

2008) are interpolated to model grid levels in order to

initialize the base state in the model (Fig. 2). The model

time step is 5 s, which is sufficient to maintain compu-

tational stability.3

b. Data assimilation

The test case for this study is the 8 May 2003 supercell

that produced a violent tornado in Oklahoma City

(Burgess 2004; Dowell et al. 2004b; Romine et al. 2008).

Observations of this storm are available from multiple

radars, including the KOUN radar (a 10-cm prototype

dual-polarization radar in Norman, Oklahoma) and the

KTLX radar [the operationalWeather SurveillanceRadar-

1988 Doppler (WSR-88D) southeast of Oklahoma City]

(Fig. 1). Only Doppler velocity observations from KOUN

are assimilated into NCOMMAS in this study; reflectivity

from KOUN and Doppler velocity from KTLX are used

for verification.

The KOUN radar obtained volumetric scans (14 dif-

ferent elevation angles) of the Oklahoma City supercell

approximately every 6 min, including the period of in-

terest in the current study from ‘‘first echoes’’ of the

Oklahoma City storm at 2046 UTC to the beginning

of the tornadic phase at 2210 UTC. The Doppler ve-

locity data that are assimilated into NCOMMAS have

been edited manually (which involves unfolding aliased

Doppler velocities and removing ground clutter, range

folding, and other spurious data) and objectively ana-

lyzed. The quality-controlled observations are located

in precipitation regions throughout the domain and in

‘‘clear air’’ at low levels relatively close to the radar

(Fig. 1). We objectively analyze each radar sweep sep-

arately to grid points on the conical scan surfaces (Sun

and Crook 2001; Dowell et al. 2004a). The grid points

are 2000 m apart in each horizontal direction, and the

radius of influence for the Cressman objective analysis is

1000 m. The grid spacing for the objective analysis is

FIG. 1. (left) Doppler velocity (m s21) and (right) effective reflectivity factor (dBZ) from the KOUN

radar at 3.58 elevation angle at 2205 UTC 8 May 2003. Range rings are every 10 km. The locations of the

KOUN and KTLX radars are shown.

3 While a larger time step would generally be permissible for

simulations with the given grid spacing and flow parameters, our

data-assimilation experiments have often become unstable when a

larger time step is used. The numerical instability appears to occur

near storm top, where the data assimilation results in significant

local deviations from anelastic incompressibility.
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roughly the same as the mean observation spacing for

the more distant radar observations.

The data-assimilation experiments proceed as follows:

1) create an initial ensemble of model states; 2) advance

the ensemble to the first observation time; 3) assimilate

all observations within 60 s of the current time; 4) ad-

vance the ensemble 60 s, or to the time of the next ob-

servation that has not yet been assimilated, whichever is

later; and 5) repeat steps 3 and 4 until all observations

have been assimilated. For the Oklahoma City supercell

case, the number of Doppler velocity observations as-

similated during each 60-s period ranges from 100 to

5500, depending on the current number of convective

storms, their sizes, and the heights of the radar scans.

The EnKF method we use to assimilate observations

[described in more detail by (Dowell et al. 2004a)] is

commonly called an ensemble square root filter (EnSRF)

(Whitaker and Hamill 2002). Each time an observation is

assimilated, the ensemble mean and members are up-

dated according to the following equations:4

K5

1

N � 1
�
N

n51
(xfn � �xf )[H(xfn)�H(xf )]

s2 1
1

N � 1
�
N

n51
[H(xfn)�H(xf )] 2,

(2.1)

b5 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

s2 1
1

N � 1
�
N

n51
[H(xfn)�H(xf )] 2

v

u

u

u

u

t

2

6
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�1

, (2.2)4

FIG. 2. Skew T–log p diagram for the base state in the assimilation experiments, obtained by

interpolating the 0000 UTC 9 May 2003 Norman, OK, sounding to model grid levels. The solid

black and gray lines indicate the temperature and dewpoint profiles, respectively. The dashed

line indicates temperature for a lifted surface parcel. Wind barbs (flags) represent 10 m s21

(50 m s21).

4 The corresponding equation in Dowell et al. (2004a) contains

an error (a missing square root symbol).
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�xa 5 �xf 1WK[ yo �H(xf )], (2.3)

xan 5 �xa 1 (xfn � �xf )1WKb[H(xf )�H(xfn)], (2.4)

whereK is the Kalman gain;N is the number of ensemble

members (50 in our experiments); n is an index that

identifies a particular ensemble member; x represents a

particular model field at a particular grid point; x repre-

sents the entiremodel state; superscript f indicates a prior

estimate (i.e., before the observation is assimilated); su-

perscript a indicates an analysis estimate (i.e., after the

observation is assimilated); an overbar indicates an en-

semble mean;H is the observation operator, which maps

themodel state to the observation type and location; s2 is

the observation-error variance [assumed to be (2.0 m

s21)2 for Doppler velocity observations in our experi-

ments, as in Dowell et al. (2004a)]; b is the reduced-gain

factor (Whitaker and Hamill 2002); yo is the observation;

and W is a localization factor (Houtekamer and Mitchell

2001), which decreases from 1 at the observation location

to 0 at and beyond a specified distance from the obser-

vation. Observations are assimilated serially (one after

the other), which is an approximation based on an as-

sumption that observation errors are uncorrelated in

space and time. We use trilinear interpolation to com-

pute point estimates of model fields at observation lo-

cations. Thus, the H operator approximates the method

used to objectively analyze the observations.

The functional form ofW is taken from the compactly

supported fifth-order correlation function in Eq. (4.10)

of Gaspari and Cohn (1999). We specified 6 km as the

radius (same in horizontal and vertical directions) at

which W 5 0; this choice follows Dowell et al. (2004a)

and was confirmed through experimentation as appro-

priate for the current study. Assimilating an observation

involves computing the Kalman gain and reduction

factor [Eqs. (2.1) and (2.2)], updating the ensemble

mean [Eq. (2.3)], and then updating each ensemble

member [Eq. (2.4)] for each model variable at each grid

point within 6 km of the observation. After the current

observation is assimilated, the analysis state estimate

becomes the new prior state estimate before the next

observation is assimilated with the same procedure.

During the early stages of this work, we noticed that

we obtained comparable assimilation results whether

the filter was allowed to update p and Km or not.

Therefore, to reduce computing time, we do not update

these variableswhenassimilatingobservations.All other

model variables are updated by the filter. Positive defi-

nite model variables (q1,...,q6) are immediately reset

to zero if they become negative during the data assim-

ilation.

c. Ensemble initialization and additive noise

The perturbation procedure for each ensemble member

and each model field begins with an array that contains

Gaussian noise in high-reflectivity regions and is zero

elsewhere:

f 9(i, j, k)5
N(0, s2

f
), if ZdB(i, j, k) $ Zmin

0, otherwise
,

�

(2.5)

where f 9 is a perturbation array; i, j, and k are model

grid indices in the X (eastward), Y (northward), and Z

(upward) directions, respectively;N(0, s2
f ) is a Gaussian

random variable with mean 0 and variance sf
2; ZdB is

the observed reflectivity (more precisely, the effective

reflectivity factor in dBZ); and Zmin is a reflectivity

threshold. A different realization of the perturbation

array f9 is produced for each ensemble member and for

each perturbed model variable. The primary motivation

for adding perturbations in and near high-reflectivity

regions only is that these observations indicate where

the intense, localized disturbances associated with

convective storms are present. In addition, introducing

perturbations in precipitation regions counteracts the

tendency for ensemble spread to become too low where

plentiful observations are assimilated; dense coverage

of both Doppler velocity and reflectivity observations is

typically available in precipitation regions (e.g., Fig. 1).

The ZdB array needed in Eq. (2.5) is obtained by map-

ping recent reflectivity observations to the nearest model

grid points. For our experiments with the Oklahoma City

supercell, the ensemble of model states is perturbed every

5 min, and thus the gridded ZdB values at the current time

are produced from all observations available during the

preceding 5 min. If there are no recent reflectivity obser-

vations near a model grid point, at that point ZdB is as-

signed a value below the Zmin threshold. The threshold

reflectivity for our supercell experiments is Zmin 5 20

dBZ, which excludes ‘‘clear air’’ (nonprecipitation obser-

vations) and includes most precipitation regions.

The second step in the perturbation procedure is to

smooth the perturbation array f 9 while it is added to the

model field (Caya et al. 2005):

f perturbed(l, m, n)5 f unperturbed(l, m, n)1 �
i, j,k

f 9(i, j, k) exp �
X i �X lj j

lh
�

Y j � Ym

�

�

�

�

lh
�

Zk � Znj j

lv

 !

, (2.6)
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where f is a model field before and after perturbation; l,

m, and n are model grid indices; and lh and lv are hori-

zontal and vertical length scales for the smoothed per-

turbations, respectively. Following Caya et al. (2005), we

choose lh 5 4 km and lv 5 2 km for the length scales.

Each model field for each of the 50 ensemble mem-

bers is perturbed independently. Equation (2.6) spreads

the localized noise generated by Eq. (2.5) to surround-

ing points in a smooth manner. The smoothing function

(from Caya et al. 2005) is computationally expensive,

but the contribution of the perturbation procedure to

the total time for an assimilation experiment is small if

parallel processing is used. More computationally effi-

cient approaches for generating spatially correlated

noise with spatially varying variance are also possible

and should produce comparable results.

The additive-noise technique allows one to select

what model variables are perturbed, by how much, and

how often. For the current study, we adopt a conser-

vative approach of perturbing only a subset of the

model variables (specifically, the same set of model

variables that defined the original model base state): u,

v, u, and qv. Selecting appropriate values for the per-

turbation magnitudes (sf) requires experimentation;

results for various choices are shown in section 3. We

use a 5-min interval between applications of the per-

turbation procedure, which means that perturbations

are introduced several times during the life cycle of a

typical convective cloud.

To perturb water vapor, we temporarily transform the

model fields to dewpoint temperature Td (Fujita et al.

2007). Through such a transformation, complications

associated with the nonnegative nature of qv are avoi-

ded. A uniform standard deviation for the random Td

perturbations is used throughout the domain. After the

reverse transformation, the resulting qv perturbations

are relatively large where qv is large and relatively small

where qv is small.

Figure 3 shows an example of perturbations produced

through Eqs. (2.5) and (2.6) for a volume of reflectivity

observations during the early development of the Okla-

homa City supercell. The standard deviations of random

noise (before smoothing) were 1.0 K and 1.0 m s21 for

the potential temperature field and the horizontal wind

components, respectively. Prominent features in the

smoothed temperature and wind perturbations are sev-

eral kilometers wide, have magnitudes of several K and

m s21, and are localized near the precipitation cores.

3. Observation-space diagnostics for additive-noise

experiments

Sensitivities of the data-assimilation results to the

magnitudes of additive noise are considered in the first

set of experiments. In all experiments, relatively large

perturbations are added during the first 20 min, and

then smaller perturbations (of different magnitudes for

different experiments) are added for the remainder of

the assimilation window. The large initial perturbations

help initiate convective storms in the ensemble, at a

time when large ensemble spread is needed to reflect

large uncertainty in the atmospheric state. All experi-

ments are initialized at 2040 UTC with additive noise

based on reflectivity observations in the first KOUN

radar volume (2046–2052 UTC). Using observations at

a slightly later time to influence the initialization in

these experiments is analogous to the approach in pre-

vious studies of confining initial perturbations to a

subdomain upstream of future convective cells (e.g.,

Snyder and Zhang 2003; Dowell et al. 2004a). For the

remainder of the assimilation window, the additive

noise every 5 min is based on reflectivity observations

available during the preceding 5 min. For all five ex-

periments, the standard deviations (sf) of random noise,

before smoothing, are 1.0 m s21, 1.0 m s21, 1.0 K, and

1.0 K for u, v, u, and Td, respectively, between 2040 and

2100 UTC. The random number generator for the ad-

ditive noise is seeded with the same value in all five

experiments, so results are identical until 2100 UTC

(Fig. 4). After 2100 UTC, the perturbation magnitudes

in the different experiments (hereafter the ‘‘0.75,’’

‘‘0.50,’’ ‘‘0.25,’’ ‘‘0.10,’’ and ‘‘0.00’’ experiments) range

from 0.75 m s21, 0.75 m s21, 0.75 K, and 0.75 K to 0.00

m s21, 0.00 m s21, 0.00 K, and 0.00 K. Experiments with

perturbations larger than 0.75 m s21 and 0.75 K after

2100 UTC have worse results than the 0.75 experiment,

and thus these additional results are not shown.

The analysis and forecast summary statistics in Figs. 4,

5, 6a, and 7 are for the KOUN Doppler velocity ob-

servations (the assimilated observations), averaged over

each radar volume (i.e., over periods of approximately 6

min). Since our study focuses on optimizing ensemble

spread and minimizing forecast and analysis error near

the convective storms, we only include locations where

the observed reflectivity exceeds 15 dBZ in the statis-

tical computations (similar to Snyder and Zhang 2003

and Tong and Xue 2005). Three basic quantities are

computed: the volume-mean innovation hdi, where

d5 yo �H(xf ) or yo �H(xa), (3.1)

and brackets indicate an average over all observations

in a radar volume; the root-mean-square of the inno-

vations (with the volume mean removed),

RMSI5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h(d� hdi)2i

q

; (3.2)
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and a measure of the ensemble spread that includes the

observation error,

spread5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
vr 1

1

N � 1
�
N

n51
[H(xn)�H(x)]2

* +

v

u

u

t

, (3.3)

where svr is assumed to be 2.0 m s21 in these experi-

ments (Dowell et al. 2004a).

A favorable decrease with time in forecast volume-

mean innovation is indicated in all experiments (Fig. 4).

The least favorable results (largest forecast RMSI and

often the largest forecast volume-mean innovation) are

obtained in the 0.00 and 0.10 experiments, which have

no or relatively little additive noise after 2100 UTC. The

results for the other experiments (0.25, 0.50, and 0.75)

are comparable in terms of RMSI.

FIG. 4. Observation-space diagnostic statistics for experiments with various magnitudes of

additive noise. Each color represents a different standard deviation (sf) of random noise after

2100UTC, ranging from 0.0m s21 and 0.0 K (black) to 0.75 m s21 and 0.75 K (orange) for (u and v)

and (u and Td), respectively. The volume-mean innovation hdi (dashed lines) and RMSI

(solid lines) are computed for KOUN Doppler velocity at locations where the observed re-

flectivity exceeds 15 dBZ. Results are averaged over each radar volume. Both forecast and

analysis statistics are plotted, hence the sawtooth pattern.

FIG. 3. (a) Example of random perturbations in potential temperature (contours and shading at intervals of 1.0 K, with dashed contours

for negative values) and horizontal wind (vectors) added to an ensemble member at 2.25 km AGL. (b) The corresponding reflectivity

observations from KOUN (contours and shading at intervals of 5 dBZ). The X and Y coordinates (km) are relative to KOUN.
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For successful data assimilation, ensemble statistics

should be representative of forecast errors. For real data

experiments, in which the true forecast errors are un-

known and the observations have errors, one can still

test whether the spread and RMSI are consistent for the

assumed amount of observation error:

consistency ratio5

s2
vr 1

1

N � 1
�
N

n51
[H(xfn)�H(xf )]2

* +

h(d� hdi)2i
,

(3.4)

which should be approximately 1.0 (Dowell et al.

2004a). In the 0.00 and 0.10 experiments, the consis-

tency ratios range from 0.26 to 0.57 (Fig. 5), suggesting

too little ensemble spread in these experiments (and/or

an assumed standard deviation of observation errors

that is too small). Without additive noise after 2100

UTC in the 0.00 experiment, the consistency ratio de-

creases with time, which is the same problem observed

in another supercell case study (Dowell et al. 2004a) in

which no perturbations were added after the initializa-

tion time. In contrast, in the 0.75 experiment, the con-

sistency ratio increases with time, reaching values as

large as 1.60. Most likely, the magnitude of additive

noise is too large in this experiment. The 0.25 and 0.50

experiments maintain more favorable consistency ratios

(between 0.49 and 1.28 after 2100 UTC). With the

limited information available for forecast verification, it

is challenging to determine if one of these experiments

is better than the other. For the remaining discussion,

we choose the 0.25 experiment for comparison to other

experiments.

4. Comparison of an additive-noise experiment to

other experiments

a. Observation-space diagnostics

For comparison to the ‘‘additive noise’’ (0.25) ex-

periment (cf. section 3), two additional radar-data-

assimilation experiments, designed like those in previ-

ous studies, are conducted for the 8 May 2003 supercell

(Table 1). Both of these additional experiments are

initialized at 2026 UTC, 20 min before the first obser-

vations are assimilated (Snyder and Zhang 2003; Dowell

et al. 2004a,b). (Since both Snyder and Zhang and

Dowell et al. were attempting to ‘‘spin up’’ convective

storms quickly in the ensemble through a short period of

radar data assimilation, they found the 20-min period of

storm development before the first observations were

assimilated helpful.) As in Dowell et al. (2004b), warm

bubbles (5-K maximum temperature perturbation,

7.5-km horizontal radius, 2.5-km vertical radius) are

added in random locations with centers between 0.25

and 2.25 km AGL and within a 50-km-wide subdomain

centered at X 5 280 and Y 5 230, just upstream of

where the Oklahoma City storm formed. These per-

turbations produce incipient convective storms in the

ensemble during the 20-min integration.

In one of these two ‘‘bubbles’’ experiments, there is no

source of ensemble variability other than model processes

after the initialization time (Table 1). In the other exper-

iment (‘‘bubbles 1 inflation’’), domainwide prior covari-

ance inflation is applied every time a set of observations is

assimilated (every 60 s or more). The selected inflation

factor is g5 1.04, determined through experimentation to

give the most favorable statistics for verification with

KOUN and KTLX Doppler velocity observations.

FIG. 5. Consistency ratio [as defined in Eq. (3.4)] for experiments with the different magnitudes

of additive noise defined for Fig. 4.
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Since the additive-noise experiment is initialized 14

min later than the bubbles experiments (Table 1), the

results during the first few tens of minutes are not di-

rectly comparable. Indeed, the verification statistics for

the KOUN observations that are assimilated and the

independent KTLX observations show early fluctua-

tions in relative performance for the bubbles, bubbles1

inflation, and additive-noise (0.25) experiments as the

ensembles adjust to the observations in the first few

radar volumes (Fig. 6). Instead, we are more interested

in how the statistics evolve in data-assimilation systems

that are cycled for long periods of time. After about

2130 UTC, the bubbles experiment has the least favor-

able statistics overall and is apparently deficient in en-

semble spread, as indicated by a consistency ratio much

less than 1.0 (Fig. 7). Between 2115 and 2135 UTC, the

bubbles 1 inflation experiment has lower RMSI than

the additive-noise (0.25) experiment (Fig. 6). The for-

mer experiment could have an advantage from its ear-

lier initialization (cf. Table 1), since the convective cells

in the ensemble would mature earlier, possibly leading

to more efficient state estimation. After 2135 UTC, the

RMSI (Fig. 6) and consistency ratios (Fig. 7) for the

bubbles 1 inflation and additive-noise (0.25) experi-

ments are similar. Based on this performance measure,

one might conclude that assimilation success is compa-

rable in these two experiments. Interestingly, the addi-

tive noise experiment obtains similar RMSI with a

lower consistency ratio (less ensemble spread) than in

the bubbles 1 inflation experiment.

b. Model-space diagnostics

Differences among the experiments are perhaps bet-

ter revealed by comparing model-space fields. One field

FIG. 6. As in Fig. 4, except for the experiment initialized with warm bubbles at 2026 UTC

(blue), the experiment initialized with warm bubbles and with covariance inflation throughout

the assimilation window (green), and the experiment initialized at 2040 UTC and with additive

noise (0.25 m s21 and 0.25 K) throughout the assimilation window (red). Statistics are computed

for Doppler velocity observations from the (a) KOUN radar (the assimilated observations) and

(b) KTLX radar (not assimilated) where observed reflectivity exceeds 15 dBZ.
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we use for qualitative verification is the effective

reflectivity factor (Fig. 8), an overall indicator of where

convective cells are present. (As a reminder, we note

that in our experiments, reflectivity observations are

used to determine where noise is added to the model

fields but are not actually assimilated into the model.)

Reflectivity calculations from the model prognostic

fields are based on Smith et al. (1975) and Smith (1984);

similar equations are used in the study by Tong and Xue

(2005). During the early development of the Oklahoma

City storm, multiple reflectivity cores formed along

a southwest–northeast oriented line (from X 5 270,

Y 5 225 to X 5 235, Y 5 10 in Fig. 8a). These early

convective cells are captured in the ensemble mean in

the bubbles experiment (Fig. 8b), but numerous spuri-

ous convective cells are also produced in the model. The

square shape of the subdomain in which warm bubbles

are added at 2026 UTC is still apparent at 2100 UTC.

The artifacts of this initializationmethod (also discussed

by Snyder and Zhang 2003) were a motivating factor for

Caya et al. (2005) to develop an initialization method

that introduces perturbations only near observed pre-

cipitation. In the current experiments, the spurious cells

eventually weaken, owing to strong convective inhibi-

tion in the base state (Fig. 2, which shows a relatively

stable layer near 850 mb). In other cases, the environ-

ment could permit deep, moist convection more readily,

and the spurious cells could strengthen and/or grow

upscale (Aksoy et al. 2009). Assimilating low-re-

flectivity (nonprecipitation) observations in the storm

environment, which was not attempted here, could

suppress the spurious cells (Dowell et al. 2004a; Tong

and Xue 2005; Aksoy et al. 2009). Nevertheless, it would

be preferable to minimize the introduction of spurious

cells in the first place.

By 2208 UTC, when the Oklahoma City supercell was

becoming tornadic, all three experiments produce a

strong supercell with classic reflectivity structure

TABLE 1. The 8 May 2003 radar-data-assimilation experiments with different methods for populating the initial ensemble and

maintaining ensemble spread.

Experiment name

Initialization time

(UTC 8 May 2003)

Method for populating

initial ensemble

Sources of ensemble spread

after initialization time

Additive noise (0.25) 2040 Additive noise* Model processes, additive noise*

Bubbles 2026 5-K warm bubbles** Model processes

Bubbles 1 inflation 2026 5-K warm bubbles** Model processes, 4% prior inflation

* The standard deviations of random noise, before smoothing, are 1.0 m s21, 1.0 m s21, 1.0 K, and 1.0 K for u, v, u, and Td, respectively,

between 2040 and 2100 UTC, and 0.25 m s21, 0.25 m s21, 0.25 K, and 0.25 K after 2100 UTC (cf. sections 2 and 3). Perturbations are

added every 5 min.

** The warm bubbles added at 2026 UTC are randomly distributed between 0.25 and 2.25 km AGL and within a 50-km-wide region

centered at X 5 280 km, Y 5 230 km.

FIG. 7. As in Fig. 5, except for the experiment initialized with warm bubbles at 2026 UTC

(blue), the experiment initialized with warm bubbles and with covariance inflation throughout

the assimilation window (green), and the experiment initialized at 2040 UTC and with additive

noise (0.25 m s21 and 0.25 K) throughout the assimilation window (red).
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(Browning 1964; Lemon and Doswell 1979) in the en-

semble mean (Fig. 9). Some of the more obvious dif-

ferences among the experiments are found north of the

supercell. The bubbles experiment (Fig. 9c) most poorly

represents the smaller convective cells north of the su-

percell. The inability of the model to produce these cells

through the assimilation of Doppler velocity observa-

tions is probably related to insufficient ensemble spread

(and thus a low consistency ratio; cf. Fig. 7). The addi-

tive-noise and bubbles 1 inflation experiments both

capture the convective cells on the left flank of the su-

percell (Figs. 9b and 9d). Qualitatively, the reflectivity

pattern in the former experiment resembles the ob-

served pattern slightly better than does the latter ex-

periment.

The additive-noise and bubbles 1 inflation experi-

ments have similar cold pools associated with the

supercell (roughly X5225 to 5, Y5 5 to 30 in Fig. 10),

and the minimum temperature perturbation of 26 K in

each experiment agrees with observations (Figs. 4 and 5

of Romine et al. 2008). However, the bubbles 1 infla-

tion experiment also includes amore widespread cold pool

throughout the northwest part of the domain (Fig. 10b).

This large spurious cold pool is produced through

evaporative cooling in precipitation in the spurious cells

that develop from the initial warm bubbles, which per-

sist longer through covariance inflation than they other-

wise would. (There is still some evidence of spurious

convective cells lingering in the bubbles 1 inflation

experiment at 2208 UTC, e.g., in the northwest corner

of Fig. 9d). Even though most of the spurious cells have

weakened by 2208 UTC, their cumulative negative ef-

fects on the ensemble mean in the bubbles 1 inflation

experiment have been significant. In contrast, the ad-

ditive-noise technique produces fewer spurious cells

and much less evaporatively cooled air at low levels

away from the supercell (Fig. 10a).

Patterns in ensemble spread differ greatly among the

experiments (Fig. 11). One of our goals (cf. section 1)

was to produce relatively large spread among the en-

semble members in and near the convective storms and

relatively small spread farther away. This goal has been

achieved for the additive-noise experiment (Fig. 11a).

Significant variability in the y wind component (and

other fields; not shown) among the ensemble members

is maintained throughout the supercell and the other

convective cells to its north. Also, in the storm envi-

ronment, the region southeast of the supercell inherits

ensemble spread from the perturbations added earlier

in convective cells southeast of the supercell (Fig. 8).

Like the additive-noise experiment, the bubbles exper-

iment at 2208 UTC (Fig. 11b) has relatively large en-

semble spread in y centered around X 5 0, Y 5 25,

which is north of the mesocyclone and in the heart of the

precipitation core (Fig. 9). However, the ensemble

spread elsewhere is relatively small in the bubbles ex-

periment, and this experiment was shown earlier to

have too little spread in wind (Fig. 7).

The bubbles1 inflation experiment (Fig. 11c) is much

different from the others, developing the greatest

FIG. 8. Effective reflectivity factor (contours and shading at intervals of 5 dBZ) at 1750 m AGL at 2100 UTC. (a) Observations from the

KOUN radar. (b) Ensemble mean in the experiment initialized with warm bubbles at 2026 UTC. Horizontal wind vectors are also shown.
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ensemble spread in wind (and other model variables; not

shown) in the environment far away from the supercell.

Since the designs of the bubbles and bubbles1 inflation

experiments are the same except for the inflation, the

differences in Figs. 11b and 11c illustrate the large im-

pact that repeated covariance inflation has in the envi-

ronment. The large environmental variability comes

from inflation of perturbations associated with spurious

cells, gravity waves, etc. While state uncertainty could

actually be large in the poorly observed storm environ-

ment, we suggest that it would be more realistic to use

instead mesoscale and global ensemble techniques (e.g.,

Stensrud et al. 1999; Buizza et al. 2005; Eckel and Mass

2005) to represent processes leading to environmental

variability and to account for model error.

5. Conclusions

An additive-noise method for initializing storm-scale

ensembles and maintaining ensemble spread during an

assimilation window was developed and tested for

FIG. 9. Effective reflectivity factor (contours and shading at intervals of 5 dBZ) at 1750mAGL at 2208UTC. (a) Observations from the

KOUN radar. (b) Ensemble mean in the experiment with additive noise (0.25 m s21 and 0.25 K) throughout the assimilation window.

Horizontal wind vectors are also shown. (c) Ensemble mean in the experiment initialized with warm bubbles. (d) Ensemble mean in the

experiment initialized with warm bubbles and with covariance inflation throughout the assimilation window.
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Doppler velocity observations of a supercell thunder-

storm. Essentially, the method proposed by Caya et al.

(2005) for initializing an ensemble with random, smooth

perturbations in high-reflectivity regions is applied

throughout the assimilation window. An EnKF tech-

nique was used to assimilate Doppler velocity obser-

vations of the 8 May 2003 Oklahoma City supercell into

a numerical cloud model, and u, v, u, and qv perturba-

tions were added to the ensemble every 5 min where the

reflectivity observations indicated precipitation during

the preceding 5 min.

A data-assimilation experiment employing additive

noise was compared to more traditional experiments

initialized with random perturbations within a sub-

domain, with or without covariance inflation during the

assimilation window. The additive-noise technique was

useful for the intended purpose—maintaining signifi-

cant ensemble spread within the convective storms

while leaving the environment relatively undisturbed.

In contrast, the experiment with perturbations added

only at the initial time became deficient in spread, while

the experiment with initial bubbles plus covariance in-

flation developed large ensemble spread in the envi-

ronment far away from the storms. All experiments

produced a strong supercell in the ensemble mean, but

the additive-noise technique had fewer spurious cells

and did not generate a large, strong spurious cold pool

like that in the bubbles 1 inflation experiment.

As do experiments with inflation, experiments with

the additive-noise method require tuning to produce

ensemble spread consistent with innovation statistics.

For this study, we used the fixed perturbation length

scales from Caya et al. (2005), and we chose the mag-

nitudes of the additive noise through experimentation.

Length scales representative of initial analysis uncer-

tainty and later forecast errors could be significantly

different, but the current method does not account for

such a difference. In future studies, an adaptive method

with situation-dependent perturbation magnitudes and

length scales (Mitchell and Houtekamer 2000) based on

Doppler velocity innovation statistics could be devel-

oped. However, without thermodynamic observations

available on the storm scale, tuning ensemble spread in

the thermodynamic fields remains somewhat ad hoc.

It might be possible to develop an improved covari-

ance-inflation method that takes advantage of the same

information that the additive-noise method is provided.

That is, a local inflation method could be developed that

increases ensemble spread where reflectivity is high and

does not modify the ensemble where the reflectivity is

low. Spatially and temporally varying inflation has

proven helpful for other applications (Anderson 2009).

The additive-noise technique proposed here provides

more flexibility for tuning assimilation results than does

an inflation method, which could be both an advantage

and a disadvantage. Perhaps more importantly, the

additive-noise technique has the potential to produce

ensembles that span a more diverse subspace than en-

sembles modified through inflation. For example, when

the numerical model fails to capture the initial

FIG. 10. Ensemble mean perturbation temperature (contours and shading at intervals of 1 K) and horizontal wind (vectors) at 250 m

AGL at 2208 UTC. (a) Experiment initialized at 2040 UTC and with additive noise (0.25 m s21 and 0.25 K) throughout the assimilation

window. (b) Experiment initialized with warm bubbles at 2026 UTC and with covariance inflation throughout the assimilation window.
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development of a new convective storm with precipi-

tation, the additive-noise technique responds by in-

creasing ensemble spread there, providing the ensemble

an opportunity to recover during the subsequent fore-

cast and data-assimilation cycles.

We are currently applying the additive-noise tech-

nique to a variety of convective storm cases, employing

simplified environmental conditions, and will report on

the results in later papers. In the near future, we also

plan to implement the method in a mesoscale model

with full complexity. Our intent is to use mesoscale

ensemble techniques to represent environmental vari-

ability and uncertainty while using the additive-noise

method to maintain ensemble spread within the con-

vective storms.

In future studies, the additive-noise technique could

employ other observation types and/or be applied on

larger scales. For example, one of the challenges for

storm-scale radar data assimilation is how long it takes

to identify the locations of new convective storms;

reflectivity and Doppler velocity observations typically

do not become available until precipitation develops,

which can occur up to a few tens of minutes after initial

cloud development. Satellite observations could identify

FIG. 11. Ensemble standard deviation of the y wind component (contours and shading at intervals of 1 m s21) and ensemble-mean

horizontal winds (vectors) at 1750 m AGL at 2208 UTC. (a) Experiment with additive noise (0.25 m s21 and 0.25 K) throughout the

assimilation window. (b) Experiment initialized with warm bubbles. (c) Experiment initialized with warm bubbles and with covariance

inflation throughout the assimilation window.
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convective cloud formation, and thus locations where

ensemble perturbations are needed, sooner than radar

observations. Finally, the additive noise used for storm-

scale data assimilation in the current study is localized.

We infer from the work of Houtekamer and Mitchell

(2005) and Hamill and Whitaker (2005) that using flow-

dependent (e.g., localized) additive noise could also prove

useful for larger-scale applications.
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