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Abstract

This work studies the spatio-temporal dynamics of a generic integral–differential equation subject to additive random fluctuations. It introduces

a combination of the stochastic center manifold approach for stochastic differential equations and the adiabatic elimination for Fokker–Planck

equations, and studies analytically the systems’ stability near Turing bifurcations. In addition two types of fluctuation are studied, namely

fluctuations uncorrelated in space and time, and global fluctuations, which are constant in space but uncorrelated in time. We show that the

global fluctuations shift the Turing bifurcation threshold. This shift is proportional to the fluctuation variance. Applications to a neural field

equation and the Swift–Hohenberg equation reveal the shift of the bifurcation to larger control parameters, which represents a stabilization of the

system. All analytical results are confirmed by numerical simulations of the occurring mode equations and the full stochastic integral–differential

equation. To gain some insight into experimental manifestations, the sum of uncorrelated and global additive fluctuations is studied numerically

and the analytical results on global fluctuations are confirmed qualitatively.

c© 2007 Elsevier B.V. All rights reserved.

Keywords: Stochastic center manifold; Adiabatic elimination; Spatially colored noise; Integral–differential equation

1. Introduction

The dynamics in spatially extended systems have attracted

much attention in recent decades [1–3]. In this context,

the study of macroscopic changes, i.e. phase transitions,

of the system plays an important role. For example the

successful explanation of visual hallucinations in humans by

a phase transition in neuronal populations [4,5] supported

the idea of nonlocal interactions in neural systems [6–12].

Although the notion of a phase transition is defined rigorously

in thermodynamical equilibrium only, the mathematical

description of transitions in systems far from equilibrium has

been very successful [13,14]. On a descriptive level, phase

transitions in the thermodynamical equilibrium and far from
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it reflect a persistent change of macroscopic spatio-temporal

dynamics while changing a few so-called control parameters.

Since natural systems exhibit internal and external random

fluctuations, the mathematical description of non-equilibrium

phase transitions should take them into account. The

corresponding theory is well-developed [15–19] and has been

applied successfully to phase transitions in general low-

dimensional systems [20–25], in spatial physical systems

[26–31], and in biological systems [32–36]. In this context,

most studies on spatial systems examine the linear stability,

and there are fewer that focus on the nonlinear effects in the

presence of noise. Since the nonlinear stochastic analysis of

spatially extended systems is mathematically very challenging,

there are different methods to study systems assuming

specific system properties [13,15,37,18,29,31,32,36–39]. For

example, it is well known how to treat stochastic system,

whose deterministic version obeys a potential dynamics;

see e.g. [13,15,37]. Moreover, important stochastic adiabatic
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elimination procedures have been developed for systems whose

deterministic part and noise strength share specific scalings; see

e.g. [37].

The present work aims to treat a general class of spatial

systems, namely stochastic integro-differential equations

involving nonlocal spatial interactions, which in general do not

fulfill the previous conditions. Hence our work was motivated

by the general question of how to treat spatially extended

systems with very few specific properties. Looking for methods,

we concluded that the combination of a center manifold-

like approach [24,29,40,41] and an adiabatic elimination

procedure [42] is best suited to the analytical treatment of

stochastic integral–differential equations. This choice appeared

optimal with respect to the applicability of both methods

to rather unspecified problems. To be more specific, the

subsequent sections considers a stochastic center manifold

approach [40,41], which has been applied in the work of

Xu and Roberts [40] to a low-dimensional stochastic model

in order to gain a single order parameter. These authors

showed that the model does not reduce to a single order

parameter equation immediately due to several occurring

colored-noise fluctuations. To deal with these fluctuations, inter

alia they applied successfully a Fokker–Planck approach which

assumes the Gaussian-like shape of probability densities. Our

work extends the latter study in several aspects. At first it

applies the stochastic center manifold approach to spatially

extended systems. Further, we remove the Gaussian assumption

in [40] by applying an adiabatic elimination procedure for

the Fokker–Planck equations [38,42]. This method applies

an adiabatic procedure for spatially extended systems based

on the corresponding Fokker–Planck equations. However, the

power of this technique results from the knowledge of the

appropriate scaling behavior of projection amplitudes which

might not be known for general systems. In turn this knowledge

might be gained for general systems by deterministic center

manifold techniques. Consequently an optimal analysis consists

in the first application of a deterministic center manifold

technique to gain the appropriate scaling, followed by the

stochastic center manifold approach leading to a reduced

set of equations. Then the subsequent application of the

adiabatic elimination procedure allows for the final extraction

of the single order parameter equation. These extensions

have been applied recently to the stochastic Swift–Hohenberg

equation [43]. The present work applies the latter extensions to

stochastic integral–differential equations and thus generalizes

and extends the results obtained in [43].

The present work was also motivated by the question how to

treat mathematically the effect of additive fluctuations near the

stability threshold taking into account nonlinear terms. A first

choice considers random fluctuations uncorrelated in space and

time. Such fluctuations may originate from thermal background

activity and have been measured experimentally in spatial

systems [44,45]. Further, spatially correlated fluctuations have

been shown to yield pattern formation for multiplicative [18,

46–48] and additive noise [49–52]. The present work studies

global fluctuations, which are homogeneous in space and

uncorrelated in time. Such fluctuations have attracted some

attention in the last years and we mention experimental

effects by periodic [50] and randomly dichotomous temporal

fluctuations [51]. This specific choice of fluctuations allows for

the analytical treatment of stochastic phase transitions in the

nonlinear regime and we can show noise-induced effects for

additive fluctuations.
Our work studies the Turing phase transition in a stochastic

integral–differential equation (IDE) and considers the effects

of uncorrelated and global fluctuations on general pattern

forming systems with applications to neural field and the

Swift–Hohenberg equation. Since the latter models have

been studied extensively in recent decades, the model under

discussion is supposed to represent a general model for

nonlocal interactions. The IDE reads

∂U (x, t)

∂t
= h[U (x, t)] +

∫

Ω

dy (K (x − y)SK [U (y, t)]

+ L(x − y)SL [U (y, t)]) + I (x, t). (1)

in the one-dimensional spatial domain Ω . The activity U (x, t)

may be interpreted differently corresponding to the system

under study. For example, in neural fields U (x, t) represents

the effective membrane potential of neural populations [53,

54], whereas in hydrodynamics Eq. (1) may be written

as the Swift–Hohenberg equation [55], where U (x, t) is

a hydrodynamic amplitude. Further, the functional h[U ]
represents the local dynamics, SK [U ], SL [U ] reflect the

(non)linear interaction functionals and I (x, t) denotes an

external spatio-temporal input. Moreover, K (x) and L(x) are

spatial interaction kernels of two different types of interaction.

One may interpret K (x), L(x) as weighted probability density

functions of spatial interactions between two spatial locations

at distance x . For instance, K (x) = const represents mean-field

coupling while no spatial coupling is given by K (x) = δ(x). An

additional important case is K (x) > 0 and L(x) < 0, which

reflects excitatory and inhibitory interaction, respectively, and

allows for various space–time phenomena [5,7,53,54,56–58].

In the following, we consider symmetric kernels with K (x) =
K (−x) and L(x) = L(−x).

In addition, the different combinations of the local

dynamics, the interaction functions and the spatial interactions

yield diverse dynamical behavior. For instance nonlinear

local dynamics, linear interactions and short-range spatial

interactions represent a reaction–diffusion system [55], while a

mixture of short-range/long-range kernels and linear/nonlinear

interactions is present in the Kuramoto–Sivashinsky equation

exhibiting spatio-temporal chaos [55]. We point out that these

different models are specific cases of the model (1). In the

following we pick two diverse prominent examples of pattern

forming systems to illustrate the universality of the model and

the approach.
This work is structured as follows:

• Section 2 introduces the transformation of the spatial system

into the spatial Fourier space and shows the mathematical

formulation for stochastic differential equations (SDEs)

and the corresponding Fokker–Planck equation (FPE).

Uncorrelated and global fluctuations are introduced and their

effect on the SDEs and FPE is discussed.
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• Section 3 studies the linear dynamics of the system for

uncorrelated and global fluctuations and reveals the major

differences between both fluctuation types.

• Section 4 introduces the stochastic center manifold approach

for SDEs and the adiabatic elimination approach for the

FPE. Further, it is shown how the combination of both

methods yields a single order parameter equation for

both fluctuation types. Moreover, we show that global

fluctuations may shift the stability threshold of Turing

bifurcations to larger values of the control parameter, i.e. to

higher nonlinearity.

• Sections 5 and 6 show the application to a neural field

equation and the Swift–Hohenberg equation, respectively.

The analytical results from Section 4 are compared to

numerical results from the reduced mode equations and

the full integral–differential equation. Finally, Section 7

summarizes the results and provides an outlook on future

work.

2. The Fourier picture

Most studies investigate phase transitions using few order

parameters, which are assumed to reflect the most important

properties of the dynamics. These include the study of statistical

moments in space and the study of the structure function in

Fourier space, namely the power spectrum of the spatial activity

at each time point [17,18,27,28,59]. The present work studies

the dynamics of the spatial system not in the spatial domain

but in the corresponding Fourier space of the spatial domain.

Thus our approach follows the idea of the structure function

but examines the spatial Fourier modes separately in a system

of equations. This approach has been proven to yield important

results in the presence of additive stochastic fluctuations in

several previous studies [29,60].

The evolution equation (1) may be written as the SDE

dU (x, t) = f [U (x, t)]dt + dΓ (x, t), (2)

with the drift term

f [U (x, t)] = h[U (x, t)] +
∫

Ω

dy (K (x − y)SK [U (y, t)]

+ L(x − y)SL [U (y, t)])

and the random fluctuations dΓ (x, t) = I (x, t)dt at spatial

location x . Here the random fluctuations are additive and thus

represent external random stimuli which have been shown

to reflect realistic inputs in biological systems, e.g. [61]. In

principle the subsequent analysis steps also allow us to study

random fluctuations of system parameters, which represents

multiplicative noise and renders the analysis more complex.

However, for illustration reasons the present work focusses on

additive random fluctuations.

We assume periodic boundary conditions which discretize

the Fourier space into infinitely many modes with the basis

{exp(−ikn x)/
√

|Ω |}, kn = n2π/|Ω | and the orthogonality

condition

1

|Ω |

∫

Ω

ei(km−kn)x dx = δnm .

In the Fourier picture the activity variable U (x, t) may be

expanded by

U (x, t) =
1

√
|Ω |

∞
∑

n=−∞
un(t)eikn x (3)

with the corresponding Fourier projections un(t) ∈ C with

un = u∗
−n . By virtue of the symmetry of spatial interaction

kernels, i.e. K (x) = K (−x), and the one-dimensionality of the

spatial domain, the Fourier transform of the kernel functions is

symmetric in spatial Fourier space. Hence the dynamics of the

spatial modes un(t) depend on k2
n and we find un = u−n .

Then inserting the Fourier projection (3) into Eq. (2) yields

the infinite set of SDEs

dun(t) = f̃n[{u j }]dt +
1

√
|Ω |

∫

Ω

dx dΓ (x, t)e−ikn x (4)

with the Fourier transform f̃n[·] of f [·]. We observe that

the evolution equation (2) is equivalent to the infinite set of

evolution equations (4) in the Fourier space.

Now the random fluctuations dΓ (x, t) are assumed to

represent a superposition of independent fluctuating sources

with

dΓ (x, t) =
∫

Ω

dy g(x, y) dW (y, t). (5)

The terms dW (y, t) represent the differentials of independent

Wiener processes satisfying

〈dW (y, t)〉 = 0,
〈

dW (x, t)dW (y, t ′)
〉

= 2δ(x − y)δ(t − t ′)dtdt ′

where 〈·〉 denotes the ensemble average and g(x, y) is a weight

kernel function. As will be seen in the subsequent paragraphs,

g gives the spatial interaction of random fluctuations.

2.1. Spatially uncorrelated fluctuations

In the case of fluctuations uncorrelated in space and time, the

fluctuations at each spatial location dΓ (x, t) are independent

of the fluctuations at other locations. Hence the weight kernel

function in (5) is g(x, y) = ηδ(x − y) with the fluctuation

strength η, and thus dΓ (x, t) = η dW (x, t). Then Eq. (4) reads

dun(t) = f̃n[{u j }]dt + ηdWn(t) (6)

with

dWn(t) =
1

√
|Ω |

∫

Ω

dx dW (x, t)e−ikn x .

The terms dWn(t) are the Fourier modes of the spatial Wiener

processes dW (x, t) and represent Wiener processes themselves

with

〈dWn(t)〉 = 0,
〈

dWn(t)dWl(t
′)
〉

= 2δnlδ(t − t ′)dtdt ′.

In other words, fluctuations uncorrelated in space and time

correspond to fluctuations uncorrelated in Fourier space and

time.
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The Fokker–Planck equation of Eq. (6) reads

∂ P({un}, t)

∂t
= −

∑

j

∂

∂u j

f̃ [{un}]P({un}, t)

+ η2
∑

j

∂2

∂u2
j

P({un}, t), (7)

with the joint probability density P({un}, t) of the stochastic

process.

2.2. Spatially global fluctuations

In this case, the fluctuation source dΓ (x, t) = dΓ (t) is

constant in space, the weight kernel is given by g(x, y) =
η′δ(y), and thus dΓ (x, t) = η′ dW (0, t) = dW (t). In other

words, at time t the random fluctuations are the same at each

spatial location. Consequently Eq. (4) reads

dun(t) = f̃n[{u j }]dt, ∀n 6= 0

du0(t) = f̃0[{u j }]dt + ηdW (t)
(8)

with η = η′√|Ω |. Hence all spatial modes un 6=0(t) obey a

deterministic ordinary differential equation and the dynamics

of u0(t) is governed by an SDE subjected to the Wiener process

dW (t).

In addition, the Fokker–Planck equation of (8) reads

∂ P({un}, t)

∂t
= −

∑

j

∂

∂u j

f̃ [{un}]P({un}, t)

+ η2 ∂2

∂u2
0

P({un}, t). (9)

In the subsequent section, we study the evolution equation

(1) in the linear regime and examine its linear stability with

respect to both uncorrelated and global fluctuations.

3. Linear stochastic analysis

Now let us study the activity about the stationary state U0

constant in space and time. To this end we assume an external

stimulation in (1) constant in space and time, i.e. I (x, t) = I0.

Then Eq. (1) recasts to the implicit equation for the stationary

state

0 = h[U0] + SK [U0]
∫

Ω

K (x)dx + SL [U0]

×
∫

Ω

L(x)dx + I0. (10)

Considering small deviations z(x, t) = U (x, t) − U0 and

random fluctuations ξ(x, t) = I (x, t) − I0 ≪ I0, we find

dz(x, t) =
(

h′ z(x, t) + S′
e

∫

Ω

K (x − y)z(y, t)dy

+ S′
i

∫

Ω

L(x − y)z(y, t)dy

)

dt + dΓ (x, t) (11)

with dΓ (x, t) taken from Eq. (5) and h′ = δh[U ]/δU, S′
e =

δSK [U ]/δU and S′
i = δSL [U ]/δU computed at U = U0. Here,

and in the following, δ/δU denotes the functional derivative.

Since Eq. (11) resembles Eq. (2), we can formulate the linear

evolution equation (11) immediately in the Fourier picture

according to the previous section.

3.1. Uncorrelated fluctuations

Applying the Fourier transformation to Eq. (11), we obtain

from Eq. (6)

dun(t) = αn un(t) dt + ηdWn(t) (12)

with the Fourier transforms un(t) of z(x, t) and αn = h′ +
F[S′

e K (x) − S′
i L(x)](kn) with

F[ f (x)](k) =
∫

Ω

dx f (x)e−ikx . (13)

In addition, we find the symmetry αn = α−n due to the spatial

symmetry of the kernels K (x) and L(x).

To study the stability of Eq. (12), first let us examine the

deterministic case η = 0. We make the ansatz un(t) ∼
exp(λt), λ ∈ C and find λ = αn . Since the kernel functions

and the functional h[U ] take real values, we find λ ∈ R and

no oscillatory activity is present. Further, the system is linearly

stable if αn < 0 for all n and it is marginally stable if some

spatial modes satisfy αn = 0. When the global maximum of

αn = αn(kn) becomes positive for some wavenumbers kn ,

the system becomes unstable and shows a stationary phase

transition. In this case the critical wavenumber reads [62]

kc = arg max
kn

F[K + L](kc), (14)

and for kc 6= 0 the transition is called a Turing phase

transition [63,64].

Adding random fluctuations, i.e. η 6= 0, we find the solution

of (12) to be

un(t) = un(0) eαn t + η

∫ t

0

eαn(t−t ′)dWn(t ′)

with the initial value un(0). This means that each spatial mode

at wavenumber kn is subjected to random fluctuations. It is easy

to see that αn < 0 for all n guarantees bounded activity of each

spatial mode, i.e. bounded activity of the system [24] for large

times t . In other words the system is pathwise stable.

However, the random fluctuations dWn(t) play an important

role if the system approaches the stability threshold with αn →
0 for a given n. To gain further information on the stationary

stochastic process near the stability threshold, we examine the

stationary joint probability density Ps({u j }) of (12) and obtain

from (7) the well-known solution [37]

Ps({u j }) =
1

(
√

2πη)N

N
∏

n=1

√

|αn|e−|αn |u2
n/2η2

(15)

for αn < 0. This is the well-known multivariate Gaussian

probability density with vanishing mean and covariance matrix

σ with σnm = η2/|αn|δnm . In the absence of random

fluctuations, i.e. η → 0, we have Ps →
∏

n δ(un), In addition,
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just below the stability threshold some spatial modes uc exhibit

αc ≈ 0, and the corresponding variance matrix element is very

large. This phenomenon has been observed experimentally in

many spatial systems, see e.g. [13,16], and the corresponding

activity shows so-called critical fluctuations. In the case of αn >

0, where some modes are unstable, no stationary probability

density exists.

3.2. Global fluctuations

In this case the Fourier expansion yields

dun(t) = αn un(t)dt + ηδn,0dW (t)

with αn taken from Eq. (12). In contrast to the case

of uncorrelated fluctuations, now all spatial modes at

wavenumbers kn 6= 0 are deterministic and vanish for αn <

0 at large times, while the constant spatial mode with k =
0 fluctuates randomly subjected to dW (t). Similar to the

treatment of uncorrelated fluctuations, αn < 0 for all n

guarantees the pathwise stability of the system at each spatial

location.

To gain further information on the stationary stochastic

process near the stability threshold, we apply the results from

the previous section and obtain from (9) the Fokker–Planck

equation

∂ P({un}, t)

∂t
= −

∑

j

∂

∂u j

α j P({un}, t) + η2 ∂2

∂u2
0

P({un}, t).

The spatial modes un(t) are independent of each other, and we

find for αn < 0

Ps({u j }) =
√

|α0|√
2πη

e−|α0|u2
0/2η2 ∏

n 6=0

δ(un). (16)

Now critical fluctuations may occur if the spatial mode u0

becomes pathwise unstable, i.e. α0 ≈ 0. Similar to Section 3.1,

no stationary probability density exists for αn > 0.

The latter analysis gives the stability criterion in the linear

regime. When the system becomes linearly unstable, the system

may still be stable for larger deviations from the stationary state

if the nonlinearities bound the dynamics. In the subsequent

section, this nonlinear saturation is studied in some detail for

both uncorrelated and global fluctuations.

4. Nonlinear stochastic analysis

Now let us turn to the field activity in the nonlinear regime.

The aim of this section is manifold:

• First, we formulate the nonlinear problem up to the cubic

nonlinear order and give the evolution equation in the

Fourier picture.

• Then we study the deterministic case to obtain the valid

scaling orders for all occurring variables and constants.

• The subsequent subsection discusses the uncorrelated

fluctuations at low expansion order and introduces the

stochastic center manifold approach and the adiabatic

elimination procedure for Fokker–Planck equations. This

section shows in some detail the calculation procedure of

both methods.

• Then both methods are applied in the case of global

fluctuations at various expansion orders. We find analytically

a shift of the bifurcation threshold by additive global

fluctuations at high expansion order.

4.1. The nonlinear equation

Expanding the functionals SK [U ] and SL [U ] in (1) to cubic

nonlinear order about the stationary point U0 defined by Eq.

(10), the evolution equation (1) reads

dU (x, t) ≈ dΓ (x, t) +
(∫

Ω

dy K1(x − y)U (y, t)

+ K2(x − y)U 2(y, t) + K3(x − y)U 3(y, t)

)

dt (17)

with

K1(x) =
δSK

δU
K (x) +

δSL

δU
L(x) +

δh

δU
δ(x)

K2(x) =
1

2

δS2
K

δU 2
K (x) +

1

2

δ2SL

δU 2
L(x) +

1

2

δ2h

δU 2
δ(x)

K3(x) =
1

6

δ3SK

δU 3
K (x) +

1

6

δ3SL

δU 3
L(x) +

1

6

δ3h

δU 3
δ(x)

where the functional derivatives are computed at the

stationary state U = U0. Here we point out that the

deterministic version of Eq. (17) generalizes several PDE-

models, e.g. reaction–diffusion equations [55] such as the

Ginsburg–Landau equation or the Newell–Whitehead equation,

or PDE-models involving spatial derivatives of higher order

such as the Swift–Hohenberg equation (see Section 6) or the

Kuramoto–Sivashinsky equation [55]. Since the expression in

the large brackets on the right-hand side of Eq. (17) represent

the deterministic part and the stochastic contribution is just

an additional term, we find that Eq. (17) also generalizes the

stochastic versions of the mentioned PDE-models.

Now inserting the Fourier expansion (3) into (17),

multiplying both sides by exp(−ikn x) and integrating over

space, we obtain the infinite set of SDEs in the Fourier picture

dun(t) =
[

αnun(t) + βn

∑

l

ul(t)un−l(t)

+ γn

∑

l,m

ul(t)um(t)un−l−m(t)

]

dt + dΓn(t) (18)

similar to (4) with the constants

αn = F[K1](kn), βn =
F[K2](kn)

√
|Ω |

,

γn =
F[K3](kn)

|Ω |
,

(19)

αn = α−n, βn = β−n, γn = γ−n and F[K ] taken from

(13). Recall that un = u−n ∈ R according to the previous
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Fig. 1. Illustration of αn = α(kn) taken from (19). The stability threshold is

given by αc = 0 at kc, k−c .

sections, which will be taken into account in the following.

Further, the terms dΓn represent the random fluctuations of the

spatial mode un , and we find from Section 2 that dΓn(t) =
ηdWn(t) for uncorrelated fluctuations and dΓn(t) = ηdW (t)

for global fluctuations. Fig. 1 illustrates the typical dependence

of the parameters αn on the discrete wavenumber kn and shows

the critical wavenumber k±c with αc = 0. Moreover, the

illustration shows values αn ≪ α0, αc with |n| ≥ 2c, i.e. a

separation of values αc, α0 and αn, |n| ≥ 2.

4.2. Intermediate step: Deterministic dynamics and the center

manifold

In a first step the dynamics is assumed deterministic, i.e. η =
0. According to Section 3, the system is stable if αn < 0 for all

n, and it is marginally stable at the stability threshold αn = 0

for some |n| = c. Hence the set of differential equations (18)

splits into critical modes uc and stable modes ui 6=c:

u̇c = αcuc + βc

∑

n

unuc−n + 2γcu3
c

+ γc

∑

n,m
n+m 6=±c

unumuc−n−m (20)

u̇i = αi ui + 2βi (ucui−c + u−cui+c) + βi

∑

n 6=±c,i±c

unui−n

+ γi

∑

n,m

unumui−n−m ∀i 6= ±c. (21)

Here, and in the following, we apply the relation un = u−n .

By virtue of αc = 0 and αi < 0, i 6= c, the deterministic

center manifold theorem applies [65] and the stable modes ui 6=c

depend on uc, i.e. ui = ui (uc). Inserting the polynomial ansatz

ui = ai u
2
c + bi u

3
c

into Eqs. (20) and (21) with i 6= ±c and comparing the

coefficients of orders u2
c and u3

c , we find

ai = −
2βi (δi,0 + 2δi,2c)

αi

→ u0, u2c ∼ u2
c (22)

bi = −
2βi (ai−c + ai+c)

αi

, i 6= 0, ±c, ±2c → ui ∼ u3
c . (23)

This brief calculation shows that there exist three classes of

mode defined corresponding to their scaling behavior with

respect to uc: the critical mode kc, the subset of stable modes

{kn}, n = 0, 2c, 3c, . . . from Eq. (22), and the other stable

modes {kn}, n 6= 0, 2c, 3c, . . . from Eq. (23).

Since the distinction of stable and critical modes in (20)

and (21) implies small time scales 1/|αk |, |k| > 2c, the

corresponding modes decrease very fast, i.e. uk ≈ 0 for |k| >

2c at large times. This assumption is valid if αn ≪ α0, αc with

|n| ≥ 2c (Fig. 1).

To examine the time scales of the critical and stable modes,

let us introduce the scaling factor ε > 0 with

αc ∼ O(ε) , αi 6=c, βi , γi ∼ O(1).

In other words, ε is proportional to the magnitude of αc and

thus quantifies the distance from the stability threshold αc =
0. Hence the larger the distance from the stability threshold,

i.e. the larger ε, the larger the deviations from the stationary

state and thus the stronger the nonlinear effects.

In the following, the system is presumed to evolve around

the stability threshold and thus ε ≪ 1. According to (22) and

(23), the mode amplitudes may be written as uc = xεm, u0 =
yε2m, u2c = zε2m, ui = wε3m, i 6= 0, ±2c, ±3c, . . . for some

constant m ∈ R. Here x, y, z are independent of ε. Inserting

these expressions into (20) and (21), we find m = 1/2, and thus

uc ∼ O(ε1/2), u0,2c ∼ O(ε), ui ∼ O(ε3/2) (24)

and dx/dt ∼ O(ε) and dy/dt, dz/dt, dw/dt ∼ O(1). Hence

the critical mode evolves on the time scale of order O(ε),

which is slow compared to the stable mode time scale of order

O(1). This finding confirms the time scale separation. Let us

summarize the latter discussion. The stable modes obey the

dynamics of the critical modes on the center manifold just

around the stability threshold, while they evolve faster than

the critical modes. In physical terms, the slow critical modes

enslave the fast stable modes, which in turn obey the dynamics

of the critical modes. This dependence is also called the slaving

principle, and the circular dependence is known as the circular

causality [13].

Taking into account the previous results, the set of mode

equations up to order O(ε3/2) reduces to

u̇c = αcuc + 2βcuc(u0 + u2c) + 2γcu3
c

u̇0 = α0u0 + 4β0u2
c

u̇2c = α2cu2c + 4β2cu2
c

u̇i = αi ui + 2βi uc(ui−c + ui+c) i 6= 0, ±c, ±2c, . . .

(25)

while higher spatial modes u3c, u4c, . . . have been neglected

corresponding to the discussion of Fig. 1.

The following subsections treat uncorrelated and global

fluctuations and apply the latter results to reduce the set of

SDEs (18) to a single stochastic order parameter equation.

Moreover, they explain the application of the stochastic

center manifold analysis and the adiabatic elimination in the

Fokker–Planck description in detail up to order O(ε5/2).

4.3. Spatially uncorrelated fluctuations at order O(ε3/2)

Now let us consider random fluctuations with the intensity

η ∼ O(ε). Applying the results obtained in the previous

paragraphs, Eqs. (25) read

duc =
(

αcuc + 2βcuc(u0 + u2c) + 2γcu3
c

)

dt + ηdWc(t) (26)
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du0 =
(

α0u0 + 4β0u2
c

)

dt + ηdW0(t) (27)

du2c =
(

α2cu2c + 4β2cu2
c

)

dt + ηdW2c(t) (28)

at order O(ε3/2). Here the modes ui , i 6= 0, ±c, ±2c have been

neglected as they have small magnitudes of order O(ε3/2) and

thus do not affect the evolution of uc at order O(ε3/2).

4.3.1. The stochastic center manifold analysis

To obtain the stochastic order parameter equation we apply

the stochastic center manifold analysis [40,41]. Similar to

its deterministic version, this analysis assumes the stochastic

center manifold of u0 and u2c of the form

u0(uc, t) = h0(uc, t) =
∞
∑

n=2

h
(n)
0 (uc, t) (29)

u2c(uc, t) = h2c(uc, t) =
∞
∑

n=2

h
(n)
2c (uc, t) (30)

with h
(n)
0 , h

(n)
2c ∼ O(εn/2). We point out that the manifold

is dependent on time due to the random fluctuations, which

contrasts to the deterministic center manifold analysis. Further,

the subsequent stochastic manifold analysis is valid for small

enough nonlinearities only, i.e. the system should remain in the

vicinity of the bifurcation point (see Sections 5 and 6 in [41] for

more details). Consequently the analysis is restricted to finite

order n. With

du0 =
∂h0

∂uc

duc +
∂h0

∂t
dt, du2c =

∂h2c

∂uc

duc +
∂h2c

∂t
dt

and (29), (30), Eqs. (26)–(28) yield
(

∂

∂t
dt − α0dt

)

h0 =
[

4β0u2
c −

∂h0

∂uc

(αcuc + 2βcuc(h0 + hc)

+ 2γcu3
c)

]

dt − η
∂h0

∂uc

dWc(t) + ηdW0(t)

(

∂

∂t
dt − α2cdt

)

h2c =
[

4β2cu2
c −

∂h2c

∂uc

(

αcuc + 2βcuc(h0 + hc) + 2γcu3
c

)

]

dt − η
∂h2c

∂uc

dWc(t)

+ ηdW2c(t).

These equations have the form
(

∂

∂t
dt − αdt

)

g(uc, t) = f1(uc, t)dt + f2(uc, t)dW (t),

which may be inverted [25,40] to

g(uc, t) =
∫ t

−∞
eα(t−τ) f1(uc, τ )dτ

+
∫ t

−∞
eα(t−τ) f2(uc, τ )dW (τ ).

It is important to note that f1(uc, t) in the first integral is

integrated in time explicitly, while the second term represents

a stochastic integral. Now the stochastic center manifold

contributions to h0, h2c are calculated at different orders O(εn).

Sorting the resulting terms corresponding to their order, we find

at order O(ε)

h
(2)
0 (uc, t) = −

4β0

α0
u2

c + ηZ0(t),

Z0(t) =
∫ t

−∞
eα0(t−τ)dW0(τ )

(31)

h
(2)
2c (uc, t) = −

4β2c

α2c

u2
c + ηZ1(t),

Z1(t) =
∫ t

−∞
eα2c(t−τ)dW2c(τ )

(32)

and at order O(ε3/2)

h
(3)
0 (uc, t) =

8β0η

α0
uc Z2(t),

Z2(t) =
∫ t

−∞
eα0(t−τ)dWc(τ )

(33)

h
(3)
2c (uc, t) =

8β2cη

α2c

uc Z3(t),

Z3(t) =
∫ t

−∞
eα2c(t−τ)dWc(τ ).

(34)

These latter terms define the center manifold (29) and (30), and

the stochastic order parameter equation at order O(ε3/2) reads

duc =
(

αcuc + au3
c + bηuc (Z0(t) + Z1(t))

)

dt

+ ηdWc(t) (35)

with a = 2γc − 8β0βc/α0 − 8β2cβc/α2c and b = 2βc.

From (35) we learn that the order parameter is subjected

both to additive white noise dWc(t) and multiplicative noise

Z0(t), Z1(t). These latter terms represent colored noise with

long-memory correlations according to (31) and (32). Since

Z0(t) and Z1(t) also represent Ornstein–Uhlenbeck processes,

Eq. (35) can be extended by the corresponding SDEs

dZ0(t) = α0 Z0dt + dW0(t),

dZ1(t) = α2c Z1dt + dW2c(t).
(36)

In this formulation, the order parameter equation depends on

two additional variables Z0, Z1, while their evolution equations

(35) and (36) are subjected to additive white noise. Moreover,

the critical mode uc and Z0, Z1 show the time scale separation

of modes as they evolve on the slow and the fast time scale at

orders O(ε3/2) and O(1), respectively.

Now let us discuss the statistical properties of the colored

noise processes some detail. In the stationary regime, the

correlation function of Z0(t) reads

〈Z0(t)Z0(s)〉 =
1

|α0|
e−|α0||t−s|, (37)

its variance is σ 2 = 1/|α0|, and its power spectrum is given by
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S2(ω) =
1

|α0|2 + ω2
=

τ 2
0

1 + τ 2
0 ω2

(38)

with τ0 = 1/|α0|. Equivalent results may be gained for Z1(t).

The perfect time scale separation of the spatial modes

occurs for α0 → −∞, leading to the vanishing time scale

of the dynamics τ0, its variance σ 2 and the power S2(ω).

Consequently the perfect time scale separation yields Z0(t) →
0 for t → ∞. This behavior is confirmed by the corresponding

stationary probability density Ps(Z0) = δ(Z0), cf. Eq. (15).

In this context we mention the studies on colored noise [66,

67], which assume random fluctuations whose strength scales

with the dynamical time scale τ0. These studies presume that

τ0 → 0 yields the white-noise fluctuations with non-vanishing

variance. In contrast, the fluctuations in the present work exhibit

both vanishing variance and power spectrum as τ0 → 0.

To obtain a single order parameter equation, it is necessary

to further reduce the systems (35) and (36). However, the

stochastic center manifold approach is not capable to do that

as the obtained equation system represents an irreducible

form [40]. In other words, re-applying the previous analysis

yields the same equation systems (35) and (36). The reason

for this behavior is that Z0(t) and Z1(t) are independent

of uc and evolve at the order O(1). Thus they are already

separated from the mode uc. Consequently, a different approach

is necessary, which does not depend on Z0(t) and Z1(t)

explicitly. To deal with this problem, Xu and Roberts [40]

proposed a center manifold approach taking into account the

shape of resulting probability densities similar to the work of

Knobloch and Wiesenfeld [22] on Gaussian-like probability

densities. Here, however, we aim to find solutions without

any assumption on the shape of the probability densities. Our

method involves an adiabatic elimination procedure based on

the corresponding Fokker–Planck equation to gain a single

order parameter equation.

4.3.2. The reduced probability density function

We follow the adiabatic elimination approach of Drolet and

Vinal [38,42]. After re-scaling the variables ūc = uc/
√

ε, η̄ =
η/ε, ᾱc = αc/ε with Z0, Z1, α0, a, b ∼ O(1) according to our

previous results (24), the Fokker–Planck equation of Eqs. (35)

and (36) reads

∂ P(ūc, Z, t)

∂t

= −
∂

∂ ūc

(

ᾱcūc + aū3
c + bη̄ūc (Z0 + Z1)

)

εP(ūc, Z, t)

−
(

∂

∂ Z0
(α0 Z0) −

∂

∂ Z1
(α2c Z1)

)

P(ūc, Z, t)

+ η̄2 ∂2

∂ ū2
c

ε P(ūc, Z, t) +
(

∂2

∂ Z2
0

+
∂2

∂ Z2
1

)

P(ūc, Z, t) (39)

with Z = (Z0, Z1)
t and the joint probability den-

sity P(ūc, Z, t). Then assuming natural boundary condi-

tions and considering the decomposition P(ūc, Z, t) =
P(ūc, t)P(Z|ūc, t) with the conditional probability density

function P(Z|ūc, t), the double integration over Z yields

∂ P(ūc, t)

∂t
= −

∂

∂ ūc

[

(

ᾱcūc + aū3
c

)

+ bη̄ūc 〈Z0, Z1|ūc〉

+ η̄2 ∂2

∂ ū2
c

]

P(ūc, t)ε

with

〈Z0, Z1|ūc〉 =
∫ ∞

−∞

∫ ∞

−∞
dZ0dZ1(Z0 + Z1)P(Z|ūc, t). (40)

We learn that the probability density P(ūc, t) evolves on the

slow time scale of order O(ε) and is coupled to Z0, Z1 by

(40). Further, the integration of (39) over ūc assuming natural

boundary conditions yields the Fokker–Planck equation of the

joint probability density function P(Z, t)

∂ P(Z, t)

∂t
= −

(

∂

∂ Z0
(α0 Z0) −

∂

∂ Z1
(α2c Z1)

)

P(Z, t)

+
(

∂2

∂ Z2
0

+
∂2

∂ Z2
1

)

P(Z, t).

We observe that P(Z, t) evolves on a fast time scale of order

O(1) and is independent of uc. Hence the time scale separation

between uc and Z observed in the stochastic differential

equations (35) and (36) is retained in the dynamics of the

corresponding probability density functions.
By virtue of this time scale separation, we focus on the time

scale at order O(1), and gain from Eq. (39)

∂ P(Z|ūc, t)

∂t
= −

(

∂

∂ Z0
(α0 Z0) +

∂

∂ Z1
(α2c Z1)

)

P(Z|ūc, t)

+
(

∂2

∂ Z2
0

+
∂2

∂ Z2
1

)

P(Z|ūc, t). (41)

Here we approximated P(ūc, t) by a constant on the time scale

O(1), i.e.

dP(ūc, Z, t)

dt
≈ P(ūc, t)

dP(Z|ūc, t)

dt
,

which reflects the idea of an adiabatic behavior. In other words,

the dynamics of P(ūc, t) is much slower than the dynamics on

the time scale O(1) and thus may be treated as stationary. Then

the stationary solution of (41) on the time scale O(1) reads

Ps(Z|uc) =
√

|α0||α2c|
2π

e−|α0|Z2
0/2−|α2c|Z2

1/2. (42)

Since P(Z, t) approaches its stationary state much faster

than P(ūc, t), we can apply Eq. (42) in Eq. (40) as a good

approximation and obtain

〈Z|ūc〉 =
∫ ∞

−∞

∫ ∞

−∞
dZ0dZ1 (Z0 + Z1) Ps(Z|ūc) = 0.

Hence the probability density function of the order parameter

obeys

∂ P(uc, t)

∂t
= −

∂

∂uc

(

αcuc + au3
c

)

P(uc, t)

+ η2 ∂2

∂u2
c

P(uc, t) (43)
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with the stationary solution

Ps(uc) = N e−(αcu2
c+au4

c/2)/2η2
(44)

and the normalization constant N . We observe that the

stationary probability density exhibits maxima xm at the roots

of αcxm + ax3
m = 0. The stationary solution in Eq. (44) is

well-known in literature and describes a pitchfork bifurcation

subject to additive random fluctuations, see e.g. [16]. Hence the

previous analysis steps reproduce the well-known results.
To gain further insights to the effects of spatially

uncorrelated fluctuation on the bifurcation structure, a possible

subsequent step could extract the order parameter equation at

higher nonlinear order. For instance, the system of stochastic

differential equations at order O(ε5/2) reads

duc = (αc + b(u0 + u2c)uc + γc(2u3
c + (4u2

2c + 3u2
0)uc

+ 6ucu0u2c))dt + ηdWc(t)

du0 = (α0u0 + 4β0u2
c + β0(u

2
0 + 2u2

2c)

+ 2γ0(u0 + u2c)u
2
c)dt + ηdW0(t)

du2c = (α2cu0 + 4β2cu2
c + 2u0u2c + γ2cu2

c(2u2c + u0))dt

+ ηdW2c(t).

(45)

First calculations show that further different colored-noise

processes occur, which render the proposed analytical

procedure much more complex than at order O(ε3/2). However,

preliminary numerical investigations of Eq. (45) do not show

a change of the bifurcation structure subject to the random

fluctuations; see the comparison of orders O(ε3/2) and O(ε5/2)

in Fig. 5. In addition, the detailed investigation of uncorrelated

fluctuations would exceed the major aim of the work and thus

we do not go into more detail here.
Summarizing, this subsection introduced the stochastic

center manifold approach and the adiabatic elimination

procedure for the Fokker–Planck equation. Now the following

subsection applies the same combination of both methods to

gain insights into nonlinear effects in the presence of global

fluctuations. We shall observe that the analytical calculations

are less complex and thus allow for the analytical study of high

orders of ε.

4.4. Spatially global fluctuations at order O(ε3/2)

Now considering global fluctuations, the new focus of

this section is the critical mode uc and the stable mode u0,

while neglecting all other modes. This represents a reasonable

approximation if α0 ≫ α2c, α3c, . . . (cf. the discussion of

Fig. 1) and allows us to clarify some nonlinear effects. To learn

more about the error made by this approximation, Sections 5

and 6 show numerical studies which compare results from two

modes uc, u0 and three modes uc, u0, u2c. It will turn out that

both approximations yield qualitatively similar results.
Considering global fluctuations, the evolution equations (18)

read

duc =
(

αcuc + 2βcucu0 + 2γcu3
c

)

dt (46)

du0 =
(

α0u0 + 4β0u2
c

)

dt + ηdW (t). (47)

Similar to the previous section, the stochastic center manifold

u0 is modeled by

u0(uc, t) = h0(uc, t) =
∞
∑

n=2

h
(n)
0 (uc, t)

and the lowest contributions to the stochastic center manifolds

are computed as

h
(2)
0 = −

4β0

α0
u2

c + ηZ0(t), Z0(t) =
∫ t

−∞
eα0(t−τ)dW (τ )

h
(3)
0 = 0.

Then the order parameter equation at order O(ε3/2) reads

duc =
(

αcuc + au3
c + bηuc Z0(t)

)

dt.

We observe that the order parameter is subjected to the

multiplicative random fluctuations Z0(t), which represent

an Ornstein–Uhlenbeck process. Subsequently, we find the

equation system

duc =
(

αcuc + au3
c + buc Z0

)

dt,

dZ0 = α0 Z0dt + dW (t),
(48)

which is irreducible, as in the previous section.

To obtain a single order parameter equation, we apply

the adiabatic elimination procedure introduced in the previous

section. After re-scaling the variables similarly to the previous

section, the Fokker–Planck equation corresponding to Eqs. (48)

reads

∂ P(ūc, Z0, t)

∂t

= −
∂

∂ ūc

(

ᾱcūc + aū3
c + bη̄ūc Z0

)

εP(ūc, Z0, t)

−
∂

∂ Z0
(α0 Z0) P(ūc, Z0, t) +

∂2

∂ Z2
0

P(ūc, Z0, t). (49)

Assuming natural boundary conditions, the integration over Z0

yields

∂ P(ūc, t)

∂t
= −

∂

∂ ūc

[(

ᾱcūc + aū3
c

)

+ bη̄ūc 〈Z0|ūc〉
]

× P(ūc, t)ε (50)

with

〈Z0|ūc〉 =
∫ ∞

−∞
dZ0 Z0 P(Z0|ūc, t). (51)

Here we set P(ūc, Z0, t) = P(Z0|ūc, t)P(ūc, t). From Eq.

(50), we learn that P(ūc, t) evolves on a slow time scale of

order O(ε). Moreover, the integration of Eq. (49) over uc with

natural boundary conditions yields

∂ P(Z0, t)

∂t
= −

∂

∂ Z0
(α0 Z0) P(Z0, t) +

∂2

∂ Z2
0

P(Z0, t).

Thus P(Z0, t) evolves on a fast time scale of order O(1). By

virtue of this time scale separation, we apply the adiabatic
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approximation P(ūc, t) = const at time scale O(1) and find

∂ P(Z0|ūc, t)

∂t
= −

∂

∂ Z0
(α0 Z0) P(Z0|ūc, t)

+
∂2

∂ Z2
0

P(Z0|ūc, t), (52)

with the stationary solution

Ps(Z0|uc) =
|α0|√

2π
e−|α0|Z2

0/2. (53)

Then Eq. (51) is computed to 〈Z0|ūc〉 = 0 and the probability

density function of the order parameter obeys

∂ P(ūc, T )

∂T
= −

∂

∂ ūc

(

ᾱcūc + aū3
c

)

P(ūc, T ) (54)

on a large time scale with T = εt . Eq. (54) considers terms

of order O(ε), which is different from the order O(ε3/2) of

the corresponding SDE. The following paragraphs will pay

attention to this distinction of orders in ε as it guarantees the

treatment of all contributing terms.

Eq. (54) is equivalent to the order parameter equation

u̇c = αcuc + 2γcu3
c, (55)

which is deterministic. Subsequently, the stationary probability

density exists for γc < 0, and reads

Ps(uc) =
∑

n

Anδ(uc − xn) (56)

while An are normalization constants and xn are the stationary

solutions of αcxn + ax3
n = 0.

4.5. Spatially global fluctuations at order O(ε2)

Now let us study global random fluctuations at the higher

order O(ε2) while neglecting the amplitudes u2c, u3c, . . .

similar to the previous sections. In comparison to order

O(ε3/2), now the SDE of the stable mode u0 exhibits additional

terms, and we obtain

duc =
(

αc + bu0uc + 2γcu3
c

)

dt (57)

du0 =
(

α0u0 + 4β0u2
c + β0u2

0 + 2γ0u0u2
c

)

dt + ηdW (t). (58)

The subsequent application of the stochastic center manifold

analysis retains the lower order terms h
(2)
0 and h

(3)
0 and yields

the additional term

h
(4)
0 (uc) = β0η

2 Z5 − 8
β0αc

α2
0

u2
c + 4

B

b
ηZ4u2

c + Au4
c

with the colored random fluctuations

Z4(t) =
∫ t

−∞
eα0(t−τ)Z0(τ )dτ,

Z5(t) =
∫ t

−∞
eα0(t−τ)Z2

0(t)dτ.

Now the stochastic center manifold reads

u0(uc, t) = −
4β0

α0
u2

c + ηZ0(t) + h
(4)
0 ,

leading to

duc =
[

(

αc + bηZ0 + β0bη2 Z5(t)
)

uc

+
(

2γc − 4
bβ0

α0
− 8

β0bαc

α2
0

+ BηZ4(t)

)

u3
c − Au5

c

]

dt

dZ0 = α0 Z0dt + dW

dZ4 = (α0 Z4 + Z0)dt

dZ5 = (α0 Z5 + Z2
0)dt

with the variables A, B defined in the Appendix.

First let us study some statistical properties of Z4 and Z5.

We find

〈Z4(t)〉 = 0, 〈Z4(t)Z4(T )〉 =
e−|α0||T −t |(1 + 2α0)

4α2
0 |α0|

(59)

for |T − t | → ∞. The comparison of (59) and (37)reveals

similar first and second cumulants of Z4 and Z0 and thus

allows us to assume Z4 ≈ Z0/2α0 for |α0| ≪ 1. This latter

approximation has been discussed in Fig. 1.

Correspondingly, we find the expressions

〈Z5(t)〉 =
1

α2
0

,

〈(Z5(T ) − 〈Z5〉)〉 =
2e−|α0||T −t |

3α4
0

(2 − eα(|T −t |))

(60)

with the statistical second cumulant
〈

(Z5(t) − 〈Z5〉)2
〉

=
2/3α4

0 . Then Z5 and Z0 share the first and second statistical

cumulant if Z5 ≈
√

2/3|α0|3 Z0 + 1/α2
0 , which is a valid

approximation up to second order statistics.

Then utilizing these approximations, the corresponding

Fokker–Planck equation reads

∂ P(ūc, Z0, t)

∂t
= −

∂

∂ ūc

[

(

ᾱcūc + aū3
c + bη̄ūc Z0

)

ε

+
(

B

2α0
η̄Z0ū3

c − 8
β0bᾱc

α2
0

ū3
c + β0bη̄2 Z5(Z0) + Aū5

c

)

ε2

]

×P(ūc, Z0, t)

−
∂

∂ Z0
(α0 Z0) P(ūc, Z0, t) +

∂2

∂ Z2
0

P(ūc, Z0, t) (61)

with Z5(Z0) =
√

2/3α3
0 Z0 + 1/α2

0 . In addition, again we find

∂ P(Z0)/∂t ∼ O(1) as in the previous section and we obtain

∂ P(ūc, t)

∂t
= −

∂

∂ ūc

[

(

ᾱcūc + aū3
c

)

ε + β0bη̄2 〈Z5〉 ε2

+
(

8
β0bᾱc

α2
0

ū3
c − Aū5

c

)

ε2

]

P(ūc, t). (62)
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Eq. (62) shows that P(ūc, t) evolves on two time scales

at orders O(ε), O(ε2), and thus is slower than P(Z0, t).

Consequently the adiabatic approximation P(ūc, Z0, t) ≈
Ps(Z0|ūc)P(ūc, t) is valid at the time scales of orders

O(ε), O(ε2) with Ps(Z0|uc) taken from (53).

The Fokker–Planck equation (62) does not contain all terms

of order O(ε2), though some of these terms occur. This will

be seen in the subsequent section, which treats a higher order.

However, (62) contains all terms at order O(ε3/2) as we

increased the order of terms compared to the previous section.

Consequently, we treat (62) in the order O(ε3/2) and obtain

∂ P(uc)

∂t
= −

∂

∂uc

(

αcuc + au3
c

)

P(uc)

with the stationary solution

Ps(uc) =
∑

n

Anδ(uc − xn) (63)

while An are normalization constants and xn are the

deterministic stationary solutions with αcxn + ax3
n = 0. This

solution is the same as in the previous section at order O(ε3/2).

To gain all terms at order O(ε2) in the Fokker–Planck

equation, we have to further increase the order in the SDE.

Essentially this additional treatment of higher order guarantees

the valid investigation of highly nonlinear effects and yields a

novel effect.

4.6. Spatially global fluctuations at orders O(ε5/2)

At this order an additional term occurs in the equation of the

critical mode uc compared to the previous section, and it is

duc =
(

αc + bu0uc + 2γcu3
c + 3γcucu2

0

)

dt (64)

du0 =
(

α0u0 + 4β0u2
c + β0u2

0 + 2γ0u0u2
c

)

dt + ηdW (t). (65)

Then the subsequent stochastic center manifold analysis yields

h
(5)
0 (uc, t) = 0 and

duc =
[

(

αc + bηZ0 + β0bη2 Z5 − 3γcη
2 Z2

0

)

uc

−
(

A + 48γc

β2
0

α2
0

)

u5
c +

(

2γc − 4
bβ0

α0
− 8

β0bαc

α2
0

+
(

B

2α0
− 24

γcβ0

α0

)

ηZ0

)

u3
c

]

dt

dZ0 = α0 Z0dt + dW0

dZ4 = (α0 Z4 + Z0)dt

dZ5 = (α0 Z5 + Z2
0)dt.

Applying the approximations of Z4(t) and Z5(t) from the

previous section, the final Fokker–Planck equation for the order

parameter reads at order O(ε2)

∂ P(uc)

∂t
= −

∂

∂uc

[

(αc − αth(η)) uc + Cu3
c + Du5

c

]

P(uc)

(66)

with

αth(η) = η2

(

β0b

α2
0

− 3
γc

|α0|

)

(67)

and the constants C, D defined in the Appendix.

We observe that the order parameter uc obeys the

deterministic equation

u̇c =
(

αc − αc,th (η)
)

uc + Cu3
c + Du5

c . (68)

Further, αth defines the new stability threshold, which depends

on the fluctuation strength η, and thus reflects noise-induced

transitions. To our best knowledge Eq. (68) has not been derived

yet for additive random fluctuations in general evolution

equations. In the case αth > 0, the noise retards the

emergence of the bifurcation with increasing αc and thus

stabilizes the neural field. From a physical point of view, the

global fluctuations represent an external stimulus which forces

the system to obey the stimulus dynamics. The stronger the

stimulus is, i.e. the larger the fluctuation strength η, the stronger

the spatial mode k = 0 is, and thus the smaller the contribution

of the unstable mode k = kc.1

Moreover, the stationary probability density of (66) exists if

D < 0 and reads

Ps(uc) =
∑

n

Anδ(uc − xstat) (69)

with the normalization constants An and the deterministic

stationary solutions xn of Eq. (68), which depends on the

fluctuation strength η. We remark that Eq. (66) contains all

terms of order O(ε2).

The following section studies two specific spatial systems

which involve different local dynamics and spatial interactions.

We compare the analytical results obtained in the current

section with the numerical results gained by numerical

integration of the set of stochastic mode equations at different

orders and the full model (1).

5. Application to a neural field equation

In this section, the model under study describes mathemat-

ically the membrane potential U (x, t) of a spatially extended

neural population at the location x at time t [53,54]. The fol-

lowing specific model is motivated by the orientation selectivity

in the visual cortex [68,10] and assumes local excitation–lateral

inhibition interaction with

K (x) = N
ae

σe

e−x2/2σ 2
e , L(x) = −N

ai

σi

e−x2/2σ 2
i (70)

defined on the interval x ∈ [−π/0.65, π/0.65] with periodic

boundary conditions. In other words, the spatial domain Ω

is a circle with circumference |Ω | = 2π/0.65. Further, ae

and ai denote the excitatory and inhibitory total synaptic

weight, respectively, while σe and σi represent the range of the

1 In this context the authors appreciate interesting discussions with
A. Neiman.
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Fig. 2. Effective spatial interaction kernel with the |Ω |-periodic variable x

taken from (70). Parameters are ae = 1.83, ai = 1.23, σe = 0.2π, σi = 0.3π .

corresponding spatial interaction. The constant N guarantees

the normalization of the kernels to
∫

Ω
dx K (x)+L(x) = ae−ai .

Fig. 2 shows the effective interaction kernel K (x) + L(x).

Further, we presume equal sigmoidal functionals SK [U ] =
SL [U ] ≡ S[U ] = 1/(1 + exp(−5.5(U − 3.0))) and choose the

local dynamics as h[U ] = −U . Considering the external input

I (x, t) = I0 + Γ (x, t) with the external random fluctuations

Γ (x, t), the evolution equation under study reads

dU (x, t) =
(

−U (x, t) +
∫

Ω

dy (K (x − y) + L(x − y))

× S[U (y, t)] + I0

)

dt + dΓ (x, t). (71)

Fig. 3(a) shows the stationary solutions of Eq. (10) subject

to the parameter I0, cf. Eq. (10). We observe the monotonic

relation of I0 to U0.

Then considering small deviations from the stationary

solution U0, the expansion coefficients in (19) read

αn = S′ Jn − 1, βn =
S′′

√
|Ω |

Jn, γn =
S′′′

6|Ω |
Jn

Jn =
(

ae In(σe)

σe

−
ai In(σi )

σi

)

,

In(σ ) = 2N

∫ |Ω |/2

0

e−x2/2σ 2
cos(kn x)dx,

with In(σ ) > 0 and S′ = dS/dU, S′′ = d2S/dU 2, S′′′ =
d3S/dU 3 computed at the stationary state U0; see Fig. 3(b). We

observe in Fig. 3(b) that the sign of S′, S′′ and S′′′ changes with

U0, which correspondingly may yield sign changes in αn, βn

and γn . Subsequently the stationary state U0 affects αn, βn and

γn . This behavior of parameters contrasts with most pattern

formation studies which exhibit a single varying parameter.

However, the specific choice of the parameters guarantees βn ≤
0, γn < 0, and thus the stability of the system depends on αn

only. Since αn defines the linear stability of the system it serves

as the control parameter.

Fig. 4 shows the values of αn as a function of kn and we

observe that U = 3.1 guarantees the stability of the system,

i.e. αn < 0. The case U0 = 3.0 yields αc > 0, and a single

spatial mode with wavenumber |k| = kc becomes unstable.

5.1. Spatially uncorrelated fluctuations in the mode equations

First we study the effect of uncorrelated fluctuations at

various orders in ε. Recall that the control parameter αc depends

on the stationary state U0 and αc ∼ ε. Thus ε is proportional

to the distance from the stability threshold. This study yields

some information on the validity of the approximation made in

Section 4.3 at order O(ε3/2) compared to order O(ε5/2).

We apply the stochastic Euler forward algorithm with time

step dt = 0.01 for the amplitudes uc(t), u0 and u2c in Eq. (45)

at order O(ε5/2) with the initial values of the modes taken from

a uniform distribution in the interval [−0.4; 0.4]. Subsequently

the stationary probability density Ps(uc) was computed by an

ensemble average over 1000 simulated paths, which showed

stationary behavior after 4 × 105 time steps.

To gain some insight into how well the order O(ε3/2)

approximates the dynamics of the system compared to the

higher order O(ε5/2), Fig. 5 compares the numerical results

at order O(ε5/2) and the analytical results in Eq. (44) at

lower order O(ε3/2). We observe a good accordance of the

results at low fluctuation strengths, and some differences at

higher fluctuation strengths. Hence the lower order O(ε3/2)

is sufficient for small fluctuation strengths, while higher

fluctuation strengths make necessary higher orders in ε.

5.2. Spatially global fluctuations in the mode equations

Now let us investigate the effects of global fluctuations

numerically. First the section compares the analytical results

to the numerical results gained by stochastic integration of

mode equations at different orders. In addition we compare the

analytical results for P(uc) obtained from the two modes u0

and uc with numerical results from the mode equations Eq. (18)

which have not been reduced by center manifold reduction and

the adiabatic elimination. Further, to obtain some insight into

the validity of such a restriction to two modes, we compare the

P(uc) from two modes with the P(uc) from three modes u0, uc

and u2c. Since P(uc) has not been determined analytically

Fig. 3. The stationary solution U0 and its effect to the sigmoidal derivatives. Panel (a) shows the stationary solutions of Eq. (71), while (b) presents the derivatives

of S. See text for the definition of S and Fig. 2 for additional parameters.
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Fig. 4. Values of the control parameter αn with respect to the wavenumbers

kn for two stationary states U0. The wavenumbers are discrete with kn =
n 2π/|Ω | = 0.65 n, n ∈ Z0 and the critical wavenumber is kc = 1.3. The

dashed line just illustrates the curve αn = αn(kn), while the filled dots represent

values of αn . Further parameters are defined in Fig. 2.

Fig. 5. The stationary probability density Ps (uc) in the presence of

uncorrelated fluctuations for three fluctuation strengths η. The panels show

Ps (uc) at order O(ε5/2) computed by stochastic integration of Eqs. (45) (dotted

lines) and the analytical solution Ps (uc) from Eq. (44) at the lower order

O(ε3/2) (solid lines). We choose the stationary state U0 = 3.0, and other

parameters are as in Fig. 2.

for three modes, we compare the numerical results from Eq.

(18) for three modes to the results from two modes. Then the

numerical results from the integration of the full system are

compared to the results from the mode equations.

First let us focus on the modes uc and u0 at order O(ε3/2).

The application of the temporal integration to Eqs. (46) and

(47) yields the stationary probability density Ps(uc) (Fig. 6(a)

and (b)). For the stationary state U0 = 3.1 with αc < 0 we

find a very narrow probability density Ps(uc) with maximum

at uc = 0 (Fig. 6(a)) reflecting the systems stability. This

result shows good accordance to the analytical result (56). In

the case of U0 = 3.0, i.e. αc > 0, the spatially constant

stationary state is unstable, and we find a bimodal probability

density P(uc) with sharp peaks at uc = ±x0 (Fig. 6(b)).

In other words, the system is governed by the spatial modes

with wavenumber ±kc and thus exhibits a periodic pattern with

wavelength 2π/kc. The comparison to the analytical result (56)

also shows good accordance as the values x0 coincide with the

analytical stationary solution xn = ±
√

−αc/2γc. These results

confirm our analysis steps in Section 4.

In Section 4.4 we approximated the set of mode equations

by the u0 and uc. To gain some insight into the validity of

this approximation, Fig. 6(c) and (d) present numerical results

for P(uc) by considering additionally the mode u2c, i.e. the

spatial modes uc, u0, u2c. We observe a good accordance to the

analytical results obtained from two spatial modes (Fig. 6(a)

and (b)). Consequently no novel effects occur at low orders

O(ε3/2) and correspondingly at order O(ε2), as the analysis

has shown. Further, Fig. 7 presents the bifurcation diagram

computed from the analytical solution (55), and we observe

the pitchfork bifurcation well-known from the deterministic

case [69,70]. We point out that the bifurcation structure is not

affected by the fluctuation strength η.

Now let us focus on the next higher order O(ε5/2). Fig. 8

shows the stationary probability density Ps(uc) obtained by

the stochastic integration of Eqs. (64) and (65) for two modes

uc, u0 (Fig. 8(a) and (b)). For U0 = 3.1, αc < 0, yielding

the numerical result Ps(uc) = δ(uc) (Fig. 8(a)), which

coincides with the analytical result from Eq. (63). Moreover,

numerical integrations for U0 = 3.0, i.e. αc > 0, yield

stationary probability density functions which depend on the

fluctuation strength η (Fig. 8(b)): the larger the fluctuation

strength η the lower the values of the stationary solution of uc.

This behavior also shows good accordance with the analytical

result (63), which predicts deterministic dynamics of the type

Fig. 6. The stationary probability density Ps (uc) computed for global fluctuations at orders O(ε3/2) at two different values U0 and for different numbers of modes.

The top row shows Ps (uc) computed from Eqs. (46), (47) for (a) U0 = 3.1 with αc < 0 and (b) U0 = 3.0 with αc > 0. The bottom row shows Ps (uc) computed

from Eqs. (18) for (c) U0 = 3.1 and (d) U0 = 3.0. The vertical dotted lines represent the stationary states obtained from (56). Other parameters are η = 0.02 and

are taken from Figs. 2 and 4.
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Fig. 7. The bifurcation diagram of the order parameter equation at orders

O(ε3/2), O(ε2) for global fluctuations corresponding to Eq. (55) with ustat =
un . Solid lines denote stable stationary states, whereas unstable stationary states

are encoded by dashed lines. The diagram is independent of η, and further

parameters are taken from Figs. 2 and 4.

P(uc) = aδ(uc − x0) + bδ(uc + x0), where x0 depends on the

fluctuation strength η. These findings confirm the analysis steps

in Section 4. However, the numerically computed probability

density functions exhibit a non-vanishing width which contrasts

with the analytical results. Extended numerical simulation

studies with longer integration times or smaller time step dt

confirm the probability densities in Fig. 8. Consequently the

non-vanishing width of Ps(uc) seen numerically is likely a

feature of the approximations in the theory. Since the analytical

results at lower orders O(ε3/2), O(ε2) have been confirmed in

the last paragraphs, the strong approximations of Z4 and Z5 in

Section 4.5 cause these difference of results.

Finally we integrated the stochastic differential equations

(18) for the spatial modes uc, u0 and u2c and found good

agreement with the results from two modes uc and u0;

see Fig. 8(c) and (d). Consequently the analytical treatment

of two modes is sufficient to reveal this shift. In addition,

Fig. 9 presents the corresponding bifurcation diagram for

two fluctuation strengths, and we observe a delayed pitchfork

bifurcation for η > 0.

Figs. 8 and 9 reveal a delayed transition by global

fluctuations, which stabilize the system. This shift of the critical

parameter αc to higher values is given by αth > 0, cf. Eq.

(67), which depends on the variables α0, β0, βc and γc. Then

the question arises whether there is a set of variables which

advances the bifurcation with αth < 0 and thus de-stabilizes the

system. Applying the definitions in Eq. (19) to the definition of

αth in (67), we find

αth =
2βcβ0

α2
0

− 3
γc

|α0|
=

2

|Ω |
F[K2](kc)F[K2](k0)

F[K1]2(k0)

−
3

|Ω |
F[K3](kc)

|F[K2](k0)|
and subsequently

αth =
η2

2|Ω |S′
c

1

|S′[U0](ae − ai ) − 1|

×
(

ae − ai

|S′[U0](ae − ai ) − 1|
(

S′′[U0]
)2 − S′′′[U0]

)

. (72)

Here we used the definition of the threshold

αc = F[K1](kc) = S′
c(F[K ](kc) + F[L](kc)) − 1 = 0.

with kc taken from (14) and critical value S′
c. From Eq.

(72) we learn that the bifurcation shift is independent of the

spatial kernel but depends on the stationary state U0 and

the total excitatory and inhibitory synaptic weight ae and ai ,

respectively. Further, the prefactor in Eq. (72) is positive for

ae > ai , and yet an advanced bifurcation with αth < 0 is

possible for S′′′[U0] > 0 only. In the present application,

the specific choice of the stationary state U0 yields γc < 0,

i.e. S′′′[U0] < 0, and thus αth > 0, i.e. a delayed bifurcation.

5.3. Spatially global fluctuations in the IDE

In addition, the stochastic full model (1) has been

studied numerically. The time integration obeyed a stochastic

Runge–Kutta algorithm of second order [71] with time step

dt = 0.005 and random equally distributed initial values in

the interval [−0.025; 0.025]. Further, the integration over space

obeyed the trapezoidal rule with the spatial grid of 400 intervals

Fig. 8. The stationary probability density Ps (uc) computed for global fluctuations at order O(ε5/2) at two different values of U0, for different number of modes

and different fluctuation strengths. The top row shows Ps (uc) for two spatial modes u0 and uc computed from Eqs. (64) and (65) (a) for U0 = 3.1 for the fluctuation

strength η = 0.01 and (b) U0 = 3.0 for the fluctuation strengths η1 = 0.01, η2 = 0.02 and η3 = 0.03. The bottom row shows Ps (uc) for three spatial modes u0, uc

and u2c computed from Eqs. (18) for (c) U0 = 3.1 for η1 = 0.01 and (d) U0 = 3.0 for the same values of η1, η2, η3 as in (b). The vertical dotted lines represent the

stationary states obtained from the analytical studies in Section 4.6. Further parameters are taken from Figs. 2 and 4.
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Fig. 9. The bifurcation diagram of the order parameter equation at orders

O(ε5/2) in the absence and the presence of global fluctuations corresponding to

Eq. (68) with ustat = un . In (a) η = 0 and (b) considers the fluctuation strengths

η2 = 0.02, cf. Fig. 8. Solid lines denote stable stationary states and dashed lines

encode unstable stationary states. Further parameters are taken from Fig. 8.

and the field length |Ω |. Fig. 10(a) shows the space–time

activity in the absence and presence of global fluctuations. We

observe the onset of a spatial pattern in the absence of random

fluctuations (left panel), while global fluctuations stabilize the

system and no spatial pattern occurs (right panel). A closer

statistical examination of the spatial pattern at a single time

point in the stationary regime confirms this finding (Fig. 10(b)).

Here the Fourier amplitude un of the stationary pattern exhibits

strong peaks at k = 0 and k = kc = 1.3 in the case

of η′ = 0 (left panel), while the peak at k = kc vanishes

for η′ = 0.03 (right panel). Eventually Fig. 10(c) shows the

probability density of the Fourier amplitude Ps(uc) at k = kc

computed in a large time window in the stationary regime. We

observe a sharp peak at large Fourier amplitudes for η′ = 0,

while Ps(uc) for η′ > 0 peaks at uc ≈ 0.

5.4. Sum of global and uncorrelated fluctuations in the IDE

Finally, let us investigate the effect of global fluctuations

in the presence of intrinsic thermal fluctuations. We wish to

see whether the postponement effect we have found survives

in the presence of such uncorrelated noise. Such fluctuations

may represent the sum of several different random background

processes in the neural system and thus are spectrally white in

space and time according to the central limit theorem. Then the

neural field equation reads

dU (x, t) =
(

−U (x, t) +
∫

Ω

dy (K (x − y) + L(x − y))

× S[U (y, t)]
)

dt + ηbdY (x, t) + η′dW (t) (73)

with the fluctuation strength ηb of the background fluctuations

described by the differentials of a Wiener process in space

and time dY (x, t) with 〈dY (x, t)〉 = 0, 〈dY (x, t)dY (y, τ )〉 =
2δ(x − y)δ(t − τ)dtdτ .

Fig. 11(a) shows the spatio-temporal activity of the system

in the presence of uncorrelated background fluctuations and

the sum of background and global fluctuations. It turns out

that the sum of both fluctuation types makes the spatial Turing

pattern vanish (Fig. 11(a)). This is confirmed by the numerical

computation of the spatial Fourier spectrum (Fig. 11(b)) and the

probability density Ps(uc) (Fig. 11(c)) which reveal the lacking

contribution of the critical spatial mode kc in the presence

of global fluctuations. Hence, global fluctuations delay the

Turing bifurcation in the neural system even in the presence

of background fluctuations.

6. Application to the Swift–Hohenberg equation

Now we apply the analytical and numerical analysis to

the Swift–Hohenberg equation (SHE), which describes the

amplitude dynamics in the Rayleigh–Benard convection near

the onset of a stationary, i.e. time-independent, instability [69,

72]. As has been shown in [55], the SHE can be derived as

Fig. 10. Effects of global fluctuations on the full system (1). In (a), the spatio-temporal activity is shown subtracted from its spatial average at each time for the

fluctuation strengths η′ = 0 (left) and η′ = 0.03 (right). (b) Absolute values of the spatial modes un at wavenumbers kn at an arbitrary time point in the stationary

regime of the system. (c) Stationary probability density P(uc) of the stationary amplitude values uc at k = kc = 1.3 in the time window 87 < t < 214 (no

fluctuations, left panel) and 231 < t < 331 (global fluctuations, right panel) in the stationary regime of the system. Further parameters are taken from Fig. 8.
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Fig. 11. Effects of global fluctuations on the full neural field equation (73) in the presence of background fluctuations. In (a), the spatio-temporal activity is shown

subtracted from its spatial average at each time for background fluctuations with ηb = 0.005, η′ = 0, and for the sum of background and global fluctuations with

ηb = 0.005, η′ = 0.2. (b) shows the absolute values of the spatial modes un at wavenumbers kn at t = 1076 in the stationary regime of the system. In (c) the

panels give the stationary probability density P(uc) of the stationary amplitude values uc at k = kc = 1.3 in the time window 1076 < t < 1176 (left panel) and

182 < t < 282 (right panel) in the stationary regime of the system.

a specific case of Eq. (1). To this end we specify h[U ] =
aU − bU 3, b > 0, SK [U ] = −U and SL = 0, and we obtain

∂U (x, t)

∂t
= aU (x, t) − bU 3(x, t)

−
∫

Ω

K (x − y)U (y, t) + I (x, t). (74)

Then the integral in Eq. (74) can be approximated by a sum of

partial differentials with respect to U (x, t), and we obtain

∂U (x, t)

∂t
= aU (x, t) − bU 3(x, t) − K0U (x, t)

− K2
∂2

∂x2
U (x, t) − K4

∂4

∂x4
U (x, t) + I (x, t) (75)

with the kernel moments Kn =
∫

Ω
dzzn K (z)/n!. Specifically

we choose the spatial kernel K (x) as a Gaussian distribution

N (0, σ 2) with vanishing mean and a variance σ . In other words,

σ represents the spatial interaction range of the system [55].

Then the choice b = 1/2 and the re-scaling of time and space

according to t → 2t and x → σ x/
√

2 yield the SHE

∂U (x, t)

∂t
= εU (x, t) − U 3(x, t) −

(

1 +
∂2

∂x2

)2

U (x, t)

+ I (x, t) (76)

with the control parameter ε = 2a − 1. In the following we

assume periodic boundary conditions.

Following the analysis steps in Section 4, we have

δSK

δU
= −1,

δ2SK

δU 2
= 0,

δ3SK

δU 3
= 0

and

αn = ε − 1 + 2k2
n − k4

n, βn = 0, γn = γ = −
1

|Ω |
.

In addition, the threshold shift is obtained from Eq. (67) to

αth =
3γ

|α0|
η2 > 0,

i.e. the system is stabilized by the global fluctuations.

The stationary state U0 constant in space and time is given

by U0 = 0 for all ε and U0 = ±
√

ε for ε > 0. In the following

we choose U0 = 0, and the stochastic SHE is given by

dU (x, t) =
(

εU (x, t) − U 3(x, t) −
(

1 +
∂2

∂x2

)2

U (x, t)

)

dt

+ dΓ (x, t)

with dΓ (x, t) taken from (5). Further, we specify the domain as

a circle of circumference |Ω | = 80π . This choice of |Ω | = 80π

guarantees numerically the normalization of the kernel and the

de-stabilization of a single spatial mode. This means that the

discrete wavenumbers are given by kn = 0.025n, n ∈ Z0. With

this parameter choice ε > 0 yields a single unstable mode

with αc > 0 at |kc| = 1 and stable modes with αn < 0

for |kn| 6= 1. For ε < 0, all modes are stable with αn < 0.

Fig. 12 illustrates the dependence of αn of the wavenumbers

kn . To compare the analytical results on global fluctuations

with numerical results, we applied the stochastic Euler forward

algorithm with dt = 0.01 for the amplitudes uc(t), u0 and

u2c at order O(ε5/2). The initial values of the modes were

taken from a uniform distribution in the interval [−0.4; 0.4],
and the stationary probability density Ps(uc) was computed by

an ensemble average over 1000 simulated paths. The stationary

state was reached after 4 × 105 time steps.
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Fig. 12. The values of αn subject to the wavenumber kn for two values of the control parameter ε. The panels on the bottom represent the same data as in the top

line but focussed on a smaller range of values.

Fig. 13. The probability density Ps (uc) computed numerically at order O(ε5/2) in the presence of global fluctuations for two and three modes and different

fluctuation strengths. The top row shows results from the mode equations (64) and (65) of the modes uc , u0 at (a) ε = −0.001 for η = 0.1 and (b) ε = 0.001 for

η1 = 0, η2 = 0.1, η3 = 0.2, η4 = 0.4. The bottom row shows numerical results for the modes uc, u0 and u2c taken from (18) at (c) ε = −0.001 for η = 0.1 and

(d) ε = 0.001 for the same fluctuation strengths as in (b). The vertical dotted lines denote the analytical solution (69).

The numerical results are shown in Fig. 13; see also [43].

At first it turns out that the results gained from the modes

uc, u0 coincide with the results from three modes uc, u0 and

u2c, which thus validates the approximation of neglecting

higher modes in Section 4.6. Further, the numerical results

represent good approximations of the analytical results and thus

confirm the noise-induced shift of the bifurcation threshold.

The corresponding bifurcation diagram is presented in Fig. 14

for two values of η, and we observe the noise-induced shift to

higher values. In other words, the numerical results confirm

the stabilization of the system by global fluctuations for the

Swift–Hohenberg equation [43].

7. Conclusion

Our work studies the impact of additive fluctuations on

spatially extended systems analytically and numerically. The

major element of the work is the combination of two stochastic

perturbation methods, namely the stochastic center manifold

approach for stochastic differential equations and the adiabatic

elimination procedure for Fokker–Planck equations. Both latter

Fig. 14. Bifurcation diagram of the stationary amplitude ustat taken from (68)

subjected to the control parameter αc = ε for two values of η. The vertical

arrows denote the values of αc examined in Fig. 13. Solid lines (dashed lines)

denote stable (unstable) solutions.

methods allow for the analytical treatment of spatial systems

near the bifurcation threshold. Further, the combination of both

methods has been studied for two types of random fluctuation.

We find that fluctuations uncorrelated in both time and space

do not affect the stability of spatial systems. In contrast, global

fluctuations, i.e. spatially constant fluctuations uncorrelated

in time, do change the stability of the system near the

bifurcation threshold. This effect is derived analytically and is

confirmed quantitatively in numerical simulations. Specifically,
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the bifurcation threshold of the system is shifted proportionally

to the variance of the global fluctuations. To gain some insight

into the bifurcation shift, the proposed approach is applied

to a neural field equation and the Swift–Hohenberg equation.

We observe a positive shift of the bifurcation threshold to

higher values in both models. In other words, additive global

fluctuations delay the Turing bifurcation in both models.

Future work may aim to study random fluctuations

correlated in space and time in one-dimensional spatial

systems. Further two-dimensional spatial systems may be

investigated due to their importance in physics, biology and

chemistry.
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Appendix. Definition of variables

The following abbreviations have been used in Sections 4.5

and 4.6:

A = 16
β0

α2
0

(

2
β0b

α0
−

β2
0

α0
+ γ0 − γc

)

,

B = 4b

(

γ0 +
2β0(b + β0)

α0

)

C = a − 8
β0bαc

α2
0

, D = A + 48
γcβ

2
0

α2
0

.
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