
 Open access Journal Article DOI:10.1109/TCOMM.2018.2890251

Additive, Structural, and Multiplicative Transformations for the Construction of
Quasi-Cyclic LDPC Matrices — Source link

Alban Derrien, Emmanuel Boutillon, Audrey Cerqueus

Institutions: University of Southern Brittany, University of Auvergne

Published on: 01 Apr 2019 - IEEE Transactions on Communications (IEEE)

Topics: Identity matrix, Matrix (mathematics), Multiplicative function, Equivalence class and
Low-density parity-check code

Related papers:

 Integer Ring Sieve (IRS) for Constructing Compact QC-LDPC Codes with Large Girth

 Quasi-cyclic LDPC (low density parity check) code construction

 Constructing good QC-LDPC codes by pre-lifting protographs

 Rank Analysis of Parity-Check Matrices for Quasi-Cyclic LDPC Codes

 Design of Nonbinary LDPC Cycle Codes with Large Girth from Circulants and Finite Fields

Share this paper:

View more about this paper here: https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-
zmbn2mcbco

https://typeset.io/
https://www.doi.org/10.1109/TCOMM.2018.2890251
https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco
https://typeset.io/authors/alban-derrien-em2nmm5xyu
https://typeset.io/authors/emmanuel-boutillon-3sqoo0mh7x
https://typeset.io/authors/audrey-cerqueus-3vlk2oelvg
https://typeset.io/institutions/university-of-southern-brittany-1ux9s3bh
https://typeset.io/institutions/university-of-auvergne-18c250o7
https://typeset.io/journals/ieee-transactions-on-communications-r4vy07z3
https://typeset.io/topics/identity-matrix-q91dckbb
https://typeset.io/topics/matrix-mathematics-11qhlpiv
https://typeset.io/topics/multiplicative-function-3awyuyhd
https://typeset.io/topics/equivalence-class-10e68nci
https://typeset.io/topics/low-density-parity-check-code-3k9aqckr
https://typeset.io/papers/integer-ring-sieve-irs-for-constructing-compact-qc-ldpc-3yty2x28h4
https://typeset.io/papers/quasi-cyclic-ldpc-low-density-parity-check-code-construction-2jq4vgovtr
https://typeset.io/papers/constructing-good-qc-ldpc-codes-by-pre-lifting-protographs-38qdc29iv8
https://typeset.io/papers/rank-analysis-of-parity-check-matrices-for-quasi-cyclic-ldpc-21l5vqityb
https://typeset.io/papers/design-of-nonbinary-ldpc-cycle-codes-with-large-girth-from-4u5vgzjmt3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco
https://twitter.com/intent/tweet?text=Additive,%20Structural,%20and%20Multiplicative%20Transformations%20for%20the%20Construction%20of%20Quasi-Cyclic%20LDPC%20Matrices&url=https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco
https://typeset.io/papers/additive-structural-and-multiplicative-transformations-for-zmbn2mcbco

HAL Id: hal-01950474
https://hal.archives-ouvertes.fr/hal-01950474

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Additive, Structural and Multiplicative Transformations
for the Construction of Quasi-Cyclic LDPC matrices

Alban Derrien, Emmanuel Boutillon, Audrey Cerqueus

To cite this version:
Alban Derrien, Emmanuel Boutillon, Audrey Cerqueus. Additive, Structural and Multiplicative
Transformations for the Construction of Quasi-Cyclic LDPC matrices. IEEE Transactions on
Communications, Institute of Electrical and Electronics Engineers, 2019, 67 (4), pp.2647-2659.
10.1109/TCOMM.2018.2890251. hal-01950474

https://hal.archives-ouvertes.fr/hal-01950474
https://hal.archives-ouvertes.fr

1

Additive, Structural and Multiplicative

Transformations for the Construction of

Quasi-Cyclic LDPC matrices.
Alban Derrien ∗, Emmanuel Boutillon ∗, Senior Member, IEEE, and Audrey Cerqueus †

∗Université de Bretagne-Sud

Lab-STICC, UMR 6285 CNRS – Lorient, France

〈firstname〉.〈lastname〉@univ-ubs.fr
†Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Institut Henri Fayol, F - 42023

Saint-Etienne France

audrey.cerqueus@emse.fr

Abstract—The construction of a Quasi-Cyclic Low Density
Parity-Check (QC-LDPC) matrix is usually carried out in two
steps. In the first step, a prototype matrix is defined according
to certain criteria (size, girth, check and variable node degrees,
etc.). The second step involves expansion of the prototype matrix.
During this last phase, an integer value is assigned to each non-
null position in the prototype matrix corresponding to the right-
rotation of the identity matrix. The problem of determining
these integer values is complex. State-of-the-art solutions use
either some mathematical constructions to guarantee a given
girth of the final QC-LDPC code or a random search of values
until the target girth is satisfied. In this paper, we propose an
alternative/complementary method that reduces the search space
by defining large equivalence classes of topologically identical
matrices through row and column permutations using additive,
structural and multiplicative transformations. Selecting only a
single element per equivalence class can reduce the search space
by a few orders of magnitude. Then, we use the formalism of
constraint programming to list the exhaustive sets of solutions
for a given girth and a given expansion factor. An example is pre-
sented in all sections of the paper to illustrate the methodology.

I. INTRODUCTION

Low Density Parity-Check (LDPC) codes are a family of

error correction codes used in many communication standards

(TV broadcasting [1], Wi-Fi [2] and next generation cellular

networks [3] among others). LDPC codes were invented in the

1960s by Gallager [4]. Their success is due to the existence

of a simple iterative decoding algorithm known as the Belief

Propagation (BP) algorithm [5]. The BP decoding algorithm

(and its simplified versions [6]) exchanges messages (belief on

the value of a bit) in a bipartite graph composed of variable and

parity-check nodes. LDPC codes were generalized by Davey

and McKay in 1998 over a finite field arithmetic [7]. These

codes are called Non-Binary LDPC (NB-LDPC) codes. One

of the main advantages of NB-LDPC codes is that good codes

can be constructed with the degree of the variable nodes set to

2 (each variable is thus connected to exactly two parity-check

nodes). NB-LDPC code has been adopted in a recent CCSDS

standard [8].

To obtain a hardware-friendly error control code, some

structures can be imposed on its structure. In particular,

memory conflicts that can appear in a high speed decoder

can be resolved using Quasi-Cyclic-LDPC (QC-LDPC) ma-

trices. This type of matrices is used in many communication

standards. There is a large literature on the construction of

QC-LDPC matrices, some of them based on mathematical

properties of particular sets, others on random generation, then

selection, and others on exhaustive search [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20].

The main contribution of this paper is to propose a two step

method to construct QC-LDPC matrices. The first step consists

of partitioning the search space into equivalence classes of

large size by means of additive, structural and multiplicative

transformations. Thus, testing only one element per class

allows us to reduce by a few orders of magnitude the number

of solutions to be explored. The second step consists of using

constraint programming tools to enumerate all solutions when

they exist. This method can be applied to any type of QC-

LDPC code. To explain and illustrate the method, we use

an example of the construction of good QC-LDPC matrices

from a given prototype matrix. Note that some of the ideas

of the paper were independently developed by Tasdighi et

al. and recently published in [21]. More specifically, the idea

of structural and multiplicative transformations was already

mentioned in [19] and has been used to reduce the search space

to find high-girth QC-LDPC matrices. But, as recognized by

M. Tasdighi, the present approach is much more general than

that previously proposed in [19].

The rest of the paper is organized as follows. Section II gives

the background of QC-LDPC code construction. Section III

presents an equivalence relation between QC-LDPC matrices.

Section IV shows how to select a single element of each

class. Section V presents a new equivalence relation based

on multiplicative properties. Section VI gives the number of

solutions of minimal girth for an L = 3 rows, J = 6 lines

protograph with several expansion factors. Finally, section VII

sets out the conclusions of this study.

<first name>.<last name>@univ-ubs.fr
audrey.cerqueus@emse.fr

2

II. CONSTRUCTION OF QC-LDPC MATRICES

In this section, we review the construction of a family

of LDPC matrices well suited for hardware implementation

called Quasi-Cyclic LDPC matrices. Then, we discuss the con-

ditions that have to be satisfied to obtain QC-LDPC matrices

with good topological properties. Finally, we provide some

notation to describe the permutations.

A. Definition of a QC-LDPC matrix

An LDPC code can be represented by a bipartite graph

that contains two types of nodes: the variable nodes and the

check nodes. Variable nodes (respectively check nodes) are

only connected to check nodes (respectively variable nodes).

In the case of a regular LDPC code, the number dv of check

nodes connected to a given variable node and the number dc
of variable nodes connected to a given check node are constant

(dv and dc are called the variable node degree and the check

node degree, respectively).

LDPC codes were generalized to NB-LDPC codes in 1998

by Mackay and Neal [22]. These authors show that good NB-

LDPC codes can be constructed with a constant variable node

degree dv = 2. The Belief Propagation (BP) algorithm is

equivalent to the Maximum A Posteriori (MAP) decoder if

the graph is cycle free [23] and its performance is close to

MAP decoder if the bipartite graph representing the code does

not have small cycles. Thus, the main topological objectives,

in the design of a bipartite graph, are, first, to maximize its

girth g (i.e. the length of its minimal cycle), and second, to

minimize its multiplicity (i.e. the number of cycles of length

g) denoted by M(g)
The bipartite graph can be represented by a matrix H ,

called the parity-check matrix, where each variable of the

code is associated with a column of H and each parity-check

is associated with a row. If an edge exists between a check

node i and a variable node j, then H(i, j) is not equal to

zero, otherwise, H(i, j) = 0. In the case of a (dv, dc) regular

bipartite graph, each row of H contains dc non-zero values

and each column of H contains dv non zero values. Note that

permuting the rows and the columns of H does not affect the

topology of the associated graph (see section III).

A QC-LDPC matrix is constructed in two steps. First,

a protograph H of size J × L is constructed. Then, the

protograph matrix is expanded, or lifted, by a factor N to

obtain a (JN,LN) matrix [24], [20]. The simplest protograph

matrix for dv = 2, dc = 4 is the matrix H2 of size J = 2,

L = 4 defined as

H2 =

[

1 1 1 1
1 1 1 1

]

. (1)

Throughout this paper, we illustrate the proposed method using

the example of QC-LDPC matrices with a rate 1/2 generated

from the matrix H3 of size J = 3, L = 6, defined as

H3 =

1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

 . (2)

This matrix is well suited for the NB-LDPC code, where dv =
2 gives a good code [5]. Note that, for NB-LDPC code, we

also need to optimize the edge values (i.e. value of non-null

coefficients of H). This point is not discussed further here

since the present study is focused on the topological properties

of the graph associated with the expanded matrix. It can be

noted that H3 is unique up to rows/columns permutation (see

section III).

The lifting process generates a matrix of size (JN,LN)
from H by replacing each 0 value in H by ON , the (N,N)
zero matrix, and each 1 value by an (N,N) matrix INa , where

a is the shift value associated with the non-null position, see

(4). INa is defined as

INa =

{

INa (i, i+ a mod N) = 1, ∀i ∈ {0, . . . , N−1}
0, otherwise.

(3)

Note that IN0 represents the (N,N) identity matrix. The

matrix INa , a ∈ {0, . . . , N−1} is called a circulant matrix [25].

The index a is called the permutation shift. The QC-LDPC

matrix H is thus fully described by the protograph matrix H,

the factor of expansion N and by the shift values associated

with each non-zero value of the circulant permutation matrices

[20].

For example, matrix H obtained from H3 is defined as

H =

INa1
INb1 INc1 INd1

ON ON

INa2
INb2 ON ON INe2 INf2

ON ON INc3 INd3
INe3 INf3

 (4)

Matrix H defines a type-I QC-NB-LDPC code since non

zero values of the prototype matrix are expanded to a single

circulant matrix (a prototype matrix with at least one double

circulant matrix is called a type-II protograph [26]). Since

the protograph is of type-I, it is convenient to represent the

expanded matrix H as

H =

a1 b1 c1 d1 −1 −1
a2 b2 −1 −1 e2 f2
−1 −1 c3 d3 e3 f3

 , (5)

where H(i, j) represents IN
H(i,j) if H(i, j) is a positive integer,

or ON if H(i, j) = −1. In the sequel, −1 is replaced by a

simple dot to simplify the notation.

B. Topological properties of QC-LDPC matrices

Due to the correspondence between the Tanner graph and

the parity-check matrix, a cycle in the Tanner graph is equiv-

alent to a cycle in the parity-check matrix. In the parity-check

matrix, the cycle is composed of a circular consecutive se-

quence of horizontal and vertices vertices [4]. The construction

objective in the lifting process is to maximize the girth of the

Tanner graph.

Each cycle of length ℓ in the protograph lifts into one or

several cycles of length ℓ′ in the expanded graph, with ℓ′ being

a multiple of ℓ. The necessary and sufficient condition for a

cycle of length ℓ to lift into cycles of length strictly greater than

ℓ is given in [20]. Let N be the expansion size and C a cycle

of length ℓ in the protograph. Let (e1, e2,. . . , eℓ) represent the

3

sequence of edges of cycle C in H and let (a1, a2,. . . , aℓ) be

the corresponding permutation shifts. Then, it is possible to

associate the cycle C with a value φ(C) defined as

φ(C) =

ℓ
∑

i=1

(−1)i+1 ai mod N, (6)

where by convention, the first term of the cycle is on the upper

left position of the cycle in the parity-check matrix (see Fig.

1 on page 5). Since the graph is bipartite, the length ℓ of a

cycle is always even. Thus, the direction of the cycle does not

impact the value of φ(C) since (−1)ℓ−i = (−1)i.
Lemma 2.1 (Cycle breaking): Cycle C lifts into cycles of

length ℓ′ > ℓ if and only if φ(C) 6= 0.

Proof: See [20]

The problem can now be modeled as finding the shift values

of the circulant matrices to maximize the girth of the expanded

matrix, or alternatively, finding the minimum expansion factor

N required to obtain a given girth.

C. Equivalence relation

A permutation π of size n is a bijection function of set

N = {0, 1, . . . , n−1} to itself: π(N) = {π(0), π(1), . . . , π(n−
1)}. The identity permutation is denoted Id. It is possible

to represent the permutation π by a (n, n) matrix, called the

permutation matrix Pπ , defined as Pπ(i, j) = 1 if j = π(i), 0

otherwise. The inverse permutation of π will be denoted π−1

and verifies π−1(π) = π(π−1) = Id. Moreover, (Pπ)
−1 =

Pπ−1 and Pπ−1 ×Pπ = Pπ ×Pπ−1 = In0 with In0 the identity

matrix of size (n×n). Finally, (Pπ)
−1 = P t

π , where P t means

the transposed matrix of P .

Definition 2.2 (Equivalence of matrices): Two matrices A
and B of size (n,m) are said to be “permutation equivalent”

if and only if there exist two permutation matrices Pr (index

r for row) of size (n×n) and Pc (index c for column) of size

(m×m) such that A = Pr ×B×Pc. The relation is denoted

as A ≡ B.

Theorem 2.3: The permutation equivalent relation defines

an equivalence relation.

Proof: The relation is reflexive (A ≡ A), symmetrical

(A = Pr × B × Pc implies that B = P−1
r × A × P−1

c) and

associative (A = P a
r ×B×P a

c and B = P b
r ×C×P b

c implies

A = P a
r P

b
r × C × P b

cP
a
c).

Let A and B be two lifted matrices from the same prototype

matrix H, then, if A ≡ B, then A and B are equivalent

expanded matrices of H. This relation is denoted A ≡H B,

the subscript H being omitted when there is no ambiguity.

To summarize, if A ≡H B, then A and B correspond to

the same Tanner graph up to a renumbering of variable and

check nodes, and thus, represent the same code. The aim of

this paper is twofold: to define classes of equivalent solutions

using permutations and present static symmetry breaking [27]

to identify a solution per class of equivalence.

III. ADDITIVE AND STRUCTURAL TRANSFORMATIONS

In the following, “equivalence class” should be understood

in terms of the equivalence relation defined in Section II-C.

The main goals of this approach are (i) to determine the

number of equivalence classes (possibly, how many elements

there are in each equivalence class), and (ii) to obtain a unique

representative for each equivalence class. To address the

above issues, two transformations that preserve the equivalence

relation are presented: the “additive transformations”, already

proposed in [20] and the “structural transformation”. In the

sequel, the size N of the matrix is omitted when there is no

ambiguity.

A. Additive transformation

In this section, we introduce the additive transformation,

a state-of-the-art permutation [20] which reduces the degree

of freedom of the problem example from 12 (the number of

variables in (5)) down to 4.

Definition 3.1 (Circulant permutation): Let π+
a be the

permutation over {0, 1, . . . n − 1} defined as π+
a (i) = i + a

mod n. The permutation matrix P+
a associated with π+

a is also

equal to the circulant matrix P+
a = Ina .

Property 3.2: The product of two circulant matrices P+
a and

P+
b is equal to the circulant matrix P+

a × P+
b = P+

a+b [25].

Property 3.3 (Row rearrangement): Let M be an n × m
matrix and πr a permutation of size n. Then, Pπr

×M is the

(n,m) matrix obtained by permuting the rows of M according

to πr.

Property 3.4 (Column rearrangement): Let M be a n×m
matrix and πc a permutation of size m. Then M × Pπc

is

the (n,m) matrix obtained by permuting the columns of M
according to π−1

c .

Proof: Since for any matrix A, A = (At)t, then M ×
Pπc

= (P t
πc

×M t)t. The product P t
πc

×M t permutes the row

of M t according to P t
πc

, i.e., according to permutation π−1
c .

Thus, its transpose gives the permutation of the column of M
according to π−1

c .

Let us define C+
r as the (JN, JN) block diagonal permu-

tation matrix defined as

C+
r = diag(P+

r(1), P
+
r(2), . . . P

+
r(J)), with r =

(r(1), r(2), . . . r(J)) representing a vector of integers.

Property 3.5 (Row shift): Hr+ = C+
r ×H is the expanded

matrix defined by Hr+ with Hr+ = H(i, j) + r(i) ∀i ∈
{1, 2, . . . J}, j ∈ {1, 2, . . . L}.

Let us define C+
c as the (LN,LN) block diagonal permu-

tation matrix defined as

C+
c = diag(P+

c(1), P
+
c(2), . . . P

+
c(L)), with c =

(c(1), c(2), . . . c(L)) representing a vector of integers.

Property 3.6 (Column shift): Hc+ = H × C+
c is the

expanded matrix defined by Hc+ with Hc+(i, j) = H(i, j) +
c(j) ∀i ∈ {1, 2, . . . , J}, j ∈ {1, 2, . . . , L}.

Let HN
3 denote the set of matrices obtained by an expansion

of a factor N of the prototype matrix H3. Each matrix

H ∈ H
N
3 can be represented as (5). From r1 = (−a1,−a2, 0)

we can construct the (3N, 3N) permutation matrix C+
r1 =

diag(P+
−a1

, P+
−a2

, P+
0) and Hr+

1 = C+
r1 × H . According to

property 3.5, Hr+
1 can be represented as

Hr+
1 =

0 b1−a1 c1−a1 d1−a1 . .
0 b2−a2 . . e2−a2 f2−a2
. . c3 d3 e3 f3

 (7)

4

Then, multiplying Hr+
1 by the (6N, 6N) permutation matrix

C+
c with c = (0, a1−b1, a1−c1, a1−d1, a2−e2, a2−f2), gives

Hr+
1
,c+ = Hr+

1 ×C+
r . According to property 3.6, Hr+

1
,c+ can

be represented as Hr+
1
,c+ =

0 0 0 0 . .
0 b2−a2+a1−b1 . . 0 0

. . c3+a1−c1 d3+a1−d1 e3+a2−e2 f3+a2−f2

(8)

Finally, multiplying Hr+
1
,c+ on the left by C+

r2 with r2 =

(0, 0,−c3 − a1 + c1) gives Hr+
1
,c+,r+

2 = C+
r2 × Hr+

1
,c+ .

According to property 3.6, Hr+
1
,c+,r+

2 can be represented as

Hr+
1
,c+,r+

2 , which is defined as

Hr+
1
,c+,r+

2 =

0 0 0 0 . .
0 b . . 0 0
. . 0 d e f

 , (9)

where

b = b2 − a2 + a1 − b1,

d = d3 − d1 − c3 + c1,

e = e3 + a2 − e2 − c3 − a1 + c1,

f = f3 + a2 − f2 − c3 − a1 + c1.

(10)

Property 3.7 (bdef-pattern): Any matrix H ∈ H
N
3 is

equivalent to a matrix of type (9).

Thus the study of the set H
N
3 can be restricted to the

study of matrices defined in (9). To simplify notation, a

matrix H ∈ H
N
3 can be also represented by the 4-tuple

H = 〈b, d, e, f〉N . In this section, as mentioned before, we

apply the results of [20] to the case of the prototype matrix

H3. This transformation is very general and can be applied to

any QC-LDPC matrix. In fact, the additive transformation can

be used to set the first non-negative coefficients of each column

of H to zero and the first non-negative coefficient of each row

of H to zero, thus reducing the dimension of the search space

from Jdc (or Ldv , i.e., the number of non-negative values of

H) down to Jdc − J − L+ 1.

It is worth noticing that matrices of the form H =
〈b, d, e, f〉 do not give a unique representative of each

equivalence class, i.e., two matrices H = 〈b, d, e, f〉 and

H ′ = 〈b′, d′, e′, f ′〉 may be equivalent, even if (b, d, e, f) 6=
(b′, d′, e′, f ′). The next section presents the first contribution

of this paper: the structural transformation that uses a different

approach to identify equivalence between matrices.

B. Structural transformation

Let us consider the set PJ,L of pair of permutations (πr, πc)
of size equal to L and J , respectively, that satisfies

H = Pπr
×H×Pπc

, (11)

where Pπr
and Pπc

are, respectively, the permutation matrices

associated with πr and πc.

For example, (πr, πc) = ({2, 3, 1}, {4, 3, 6, 5, 2, 1}) belongs

to P3,6 since

Pπr
×H3 =

0 1 0
0 0 1
1 0 0

×

1 1 1 1 . .
1 1 . . 1 1
. . 1 1 1 1

=

1 1 . . 1 1
. . 1 1 1 1
1 1 1 1 . .

 ,

then (Pπr
×H3)×Pπc

gives

1 1 . . 1 1
. . 1 1 1 1
1 1 1 1 . .

×

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

(12)

=

1 1 1 1 . .
1 1 . . 1 1
. . 1 1 1 1

 = H3. (13)

Property 3.4 implies that the right product with Pπc
is equiva-

lent to the permutation of the columns according to π−1
c . In the

example given here, since in (13), πc = {4, 3, 6, 5, 2, 1}, we

have π−1
c = {6, 5, 2, 1, 4, 3}. It is possible to interpret directly

the effect of left multiplication of a matrix A by Pπc
: since

πc(6) = 1, the last column of A would be the first column of

A × Pπc
, and since πc(5) = 2, the fifth column of A would

be second column of A× Pπc
and so on.

Let A ⊗ B represent the Kronecker product of A and B.

Let Pπr
= Pπr

⊗ IN0 , Pπc
= Pπc

⊗ IN0 and H ∈ H
N
3 , then

Hπr,πc = Pπr
× H × Pπc

is also an element of H
N
3 satis-

fying Hπr,πc ≡ H . Thus, structural transformations preserve

the equivalence relation. In other words, several equivalence

classes can be merged owing to the structural transformation,

hence reducing the space search.

Going back to the example, let H = 〈b, d, e, f〉 be an

element of H3 and (πr, πc) the pair of permutations defined

above, then Hπr,πc can be represented as

Hπr,πc =

0 0 b 0 . .
f e . . d 0
. . 0 0 0 0

 . (14)

Then, using (10), Hπr,πc (and thus H) is equivalent to 〈e −
f, b, b− d+ f, b+ f〉.

For each of the 6 permutations πr on the 3 lines of the

prototype matrix H3, there are exactly 8 permutations πc on

columns that give structural transformations. For example, if

πr is equal to the identity, then permuting columns 1 and 2,

columns 3 and 4 or columns 5 and 6 does not change the

structure of H3 (2). By combining these 3 permutations, a

total of 8 structural permutations are obtained when πr is

equal to the identity. The first column of Tables VI and VII

gives an exhaustive enumeration of the 6× 8 = 48 structural

transformations. If b, d, f − e and N/2 are all distinct and

non null, then each of the 48 permutations gives a distinct

matrix after the transformation (see Tables VI and VII). If

this condition is not fulfilled, then the number of distinct

solutions is lower. For example, if f − e = 0, i.e., e = f ,

5

then permutations 1 and 2 of Table VI give the same matrix

〈+b,+d,+e = +f,+f = +e〉. More generally, if e = f ,

then for any i ∈ {1, 2, . . . 24}, permutations presented in lines

2i−1 and 2i also give the same result: the number of distinct

solutions is thus halved.

Tables VI and VII show the 48 equivalent 4-tuples of

〈1, 13, 15, 23〉35 (subscript 35 indicates a factor of expansion

N = 35) as well as the formal expression of the transformed

4-tuple.

IV. STRUCTURAL AND ADDITIVE DOMINANCE BREAKING

In the previous section, we show that, when applied to any

H , the 48 permutation pairs of P3,6 give a matrix Hπr,πc in the

same equivalence class. In this section, we present dominance

constraints and use them to find one solution per class.

The constraints are based on the cycles in the protograph

matrix. As shown in section II-B, a cycle can be defined by

a sequence of consecutive moves (in a column, then in a row,

then again in a column and so until going back to the starting

point) between the non-null positions of the prototype matrix.

In the example, the degree of the variable node is dv = 2, thus,

there is no need to specify the row index to define cycles in

H3. A column in H3 is denoted by a letter, “A” being the first

column and “F” the last column. By convention we denote a

cycle by a sequence of columns considering that the first move

is going down in the first column. The moves on subsequent

columns (i.e., either down or up) are uniquely determined and

do not need to be specified since the column weight is equal

to 2.

Example CAB denotes the cycle going down on column

A, then up in column B. Cycle CAB is thus going through

nodes (a1 → a2 → b2 → b1) in Figure 1(a). Cycle CAEC

denotes the cycle going down on column A then down on

column E and finally up in column C (see Figure 1(b)). It

is important to note that, for example, CABAB (respectively

CABABAB) denotes the cycle of length 8 (respectively 12)

that makes 2 (respectively 3) round trips between columns A

and B. According to lemma 2.1, the enumeration of all cycles

of length ℓ that uses one or more columns more than once is

also required.

a1 b1 c1 d1 . .
a2 b2 . . e1 f1

. . c3 d3 e3 f3

(a) Cycles CAB , CABAB , . . .

a1 b1 c1 d1 . .
a2 b2 . . e2 f2

. . c3 d3 e3 f3

(b) Cycles CAEC , CAECAEC , . . .

Fig. 1. Graphical description of cycles

As previously mentioned, any matrix in H3 is equivalent

to a matrix H = 〈b, d, e, f〉. It can thus be characterized

by the value of the 3 cycles of length four in matrix

H3, i.e. CAB , CCD and CEF , i.e., by the tuple Φ(H) =
〈φ(CAB), φ(CCD), φ(CEF)〉N = 〈b, d, f − e〉N , where the

φ(C) is the value of the cycle, as defined in (6).

A. Φ-order constraint: φ(CAB) ≤ φ(CCD) ≤ φ(CEF).

Lemma 4.1 (Swapping CAB and CCD): Any matrix H =
〈b, d, e, f〉 of H3 characterized by Φ(H) = 〈b, d, f − e〉 is

equivalent to a matrix H1 ∈ H3 characterized by Φ(H1) =
〈d, b, f−e〉.

Proof: According to line 26 of Table VII, H = 〈b, d, e, f〉
is equivalent to the matrix H1 = 〈d, b,−f,−e〉 owing to the

equivalence relation H1 = Pπr
×H × Pπc

, with (πr, π
−1
c) ∈

P3,6 defined as πr = {1, 3, 2} and πc = {3, 4, 1, 2, 5, 6}.

Matrix H1 is characterized by Φ(H1) = 〈d, b, f−e〉, which

completes the proof.

Lemma 4.2 (Swapping CCD and CEF): Any matrix H =
〈b, d, e, f〉 of H3 characterized by Φ(H) = 〈b, d, f − e〉 is

equivalent to a matrix H2 ∈ H3 characterized by Φ(H2) =
〈b, f−e, d〉.

Proof: Same proof as Lemma 4.1 using the equivalence

given in line 13 of Table VI.

Theorem 4.3 (Φ-Order): Any matrix H of H3 is equivalent

to a matrix H0 = 〈b, d, e, f〉, with Φ(H0) = 〈b, d, f − e〉
satisfying b ≤ d ≤ f − e.

Proof: Lemmas 4.1 and 4.2 show that it is possible

to generate equivalent solutions by swapping, respectively,

the first and second terms of Φ(H), then the second and

third terms of Φ(H). By combining these two swapping

permutations, any order of Φ(H) can be obtained, in particular,

the one where the values are in increasing order.

The Φ-order constraint defines a dominance relation over

the solutions. Thus, one can restrict the search to solutions

respecting this constraint, which reduces the size of the search

space by almost a factor of 6.

B. N/2-constraints: φ(CAB) ≤ N/2, φ(CCD) ≤ N/2 and

φ(CEF) ≤ N/2.

Lemma 4.4: Any matrix H = 〈b, d, e, f〉 of H3 character-

ized by Φ(H) = 〈b, d, f−e〉 is equivalent to a matrix H3 ∈ H3

characterized by Φ(H3) = 〈−b, d, f−e〉.
Proof: Similarly to the proof of Lemma 4.1, this involves

the transformation of line 5 of Table VI.

Lemma 4.5: Any matrix H = 〈b, d, e, f〉 of H3 character-

ized by Φ(H) = 〈b, d, f−e〉 is equivalent to a matrix H4 ∈ H3

characterized by Φ(H4) = 〈b,−d, f−e〉.
Proof: Similarly to the proof of Lemma 4.1, this involves

the transformation of line 3 of Table VI.

Lemma 4.6: Any matrix H = 〈b, d, e, f〉 of H3 character-

ized by Φ(H) = 〈b, d, f−e〉 is equivalent to a matrix H5 ∈ H3

characterized by Φ(H5) = 〈b, d,−(f−e)〉.
Proof: Similarly to the proof of Lemma 4.1, this involves

the transformation of line 2 of Table VI.

Theorem 4.7 (constraint N/2): Any matrix H of H3 is

equivalent to a matrix H0 = 〈b, d, e, f〉, with Φ(H) =
〈b, d, f − e〉 satisfying b ≤ N/2, d ≤ N/2 and f − e ≤ N/2.

Proof: Let us consider H = 〈b, d, e, f〉 where b > N/2,

then using Lemma 4.4, H is equivalent to H0 = 〈−b, d, e, f〉.
Since the operation is performed modulo N , b > N/2 ⇒ (−b
mod N) ≤ N/2. The proof is completed by Using lemma 4.5

and 4.6 in a similar way.

6

C. Φ-order-N/2 constraint: φ(CAB) ≤ φ(CCD) ≤
φ(CEF) ≤ N/2.

Theorem 4.8 (Constraint Φ-order-N/2): Any matrix H of

H3 is equivalent to a matrix H0 = 〈b, d, e, f〉, with Φ(H0) =
〈b, d, f − e〉 satisfying b ≤ d ≤ f − e ≤ N/2.

Proof: Using Theorem 4.7, H is equivalent to a matrix

H0 satisfying the constraint N/2. Then, the proof is completed

by applying Theorem 4.3 on H0 to sort the φ values of H0 in

increasing order.

Constraint φ(CAB) ≤ φ(CCD) ≤ φ(CEF) ≤ N/2 defines

a dominance relation, and the search of solutions can then

be restricted to those respecting the constraint. This relation

allows us to reduce by up to 48 the size of the space to

explore. For example, in tables VI and VII, the only equivalent

solution H0 of H = 〈1, 7, 13, 17〉35 satisfying the Φ-order-

N/2 constraint is given on line 13 (in a grey cell in the fifth

column) by H0 = 〈1, 4, 21, 28〉35. The Φ value of H0 is given

by Φ(H0) = 〈1, 4, 7〉35 that satisfies 1 ≤ 4 ≤ 7 ≤ 35/2.

D. Φ0-order-N/2 constraint: 0 < φ(CAB) ≤ φ(CCD) ≤
φ(CEF) ≤ N/2.

Finally, we can also add an additional constraint to the Φ-

order-N/2 constraint by imposing 0 < b. In fact, b = 0 leads

to weak expanded matrices with a girth of size 4 as explained

in section VI-A. In the following, this new constraint is called

the Φ0-order-N/2 constraint. We also define H
N,0
3 (or H

0
3,

to simplify the notation) as the subset of all matrices of H
N
3

equivalent to a matrix H = 〈b, d, e, f〉 respecting the Φ0-order-

N/2 constraint, i.e. 0 < b ≤ d ≤ f − e ≤ N/2. Hence, H
N,0
3

is the subset of HN
3 with expanded matrices of girth g ≥ 6.

V. MULTIPLICATIVE TRANSFORMATION

In this section, we present a new transformation which relies

on the multiplication of the values of the circulant matrices

of H. The properties of this transformation are presented in

Section V-A and used in Section V-B to identify new forms

of equivalent matrices, thus reducing further the search space.

A. Properties

Definition 5.1 (Product-matrix): Let k ∈ Z/NZ be an

integer coprime with N (the greatest common divisor of

k and N is equal to 1, i.e., gcd(k,N) = 1), then P×
k

is the permutation matrix associated with the permutation

π×
k (i) = k × i mod N .

Since k and N are coprime, then there exists an integer k−1

so that k × k−1 = 1 mod N and thus, (π×
k)

−1 = π×

k−1 and

(P×
k)−1 = P×

k−1 .

Theorem 5.2 (Multiplication over a circulant matrix): Let

k ∈ Z/NZ coprime with N and INa the a-circulant matrix,

then P×
k × INa × P×

k−1 is equal to the (ka mod N)-circulant

matrix INak.

Proof: P×
k × INa × P×

k−1 is the permutation matrix

associated with the permutation π = π×
k (π

+
a (π

×

k−1)). For

all i ∈ Z/NZ, we have π×

k−1(i) = k−1i, thus π+
a (π

×

k−1(i)) =
k−1i+a and therefor, π(i) = π×

k (k
−1i+a) = k(k−1i+a) =

i+ ka. Thus, π is the ka-circular permutation, and therefore,

its associated permutation matrix is Ika.

Example 5.3: Consider N = 32, k = 7 and a = 3. Since

gcd(7, 32) = 1, then 7−1 exists over Z/32Z. Since 7× 23 =
161 = 1 + 5× 32 = 1 mod 32, then 7−1 = 23 over Z/32Z.

Thus, according to Theorem 5.2, P×
7 × I323 × P×

23 = I3221 .

Another way to reach this result has been presented in refer-

ence [19]. It can be extended to the whole prototype matrix

to identify a new type of transformation (i.e., multiplicative

transformation) that also preserves the equivalence relation.

Theorem 5.4 (Multiplicative rearrangement): H×
k = (IJ0 ⊗

P×
k) × H × (IL0 ⊗ P×

k−1) is the expanded matrix defined as

H×
k (i, j) = k ×H(i, j).

Proof: The proof of this theorem comes directly from

Theorem 5.2 since each (N,N) expanded matrices of H×
k

(see (4)) is equal either to P×
k × 0N × P×

k−1 = 0N or P×
k ×

INa × P×

k−1 = INka.

Combined with additive and structural transformations, mul-

tiplicative transformation allows us to identify more matrices

in the same equivalent class, thus reducing the search space

since only one representative of each equivalence class needs

to be tested.

B. Symmetry breaking

In this section, we use Theorem 5.4 to identify new subsets

of equivalent matrices in H3. Note that this method can be

applied to any prototype matrix.

Property 5.5 (Coprime multiplication): Let k be a number

coprime with N , then any matrix H = 〈b, d, e, f〉N of H3 is

equivalent to the matrix 〈kb, kd, ke, kf〉N

0 0 0 0 . .
0 b . . 0 0
. . 0 d e f

 ≡

0 0 0 0 . .
0 kb . . 0 0
. . 0 kd ke kf

 (15)

Proof: Derived directly from Theorem 5.4.

Once a solution is found, it is possible to build the class of

all equivalent solutions for all k coprime with N .

Property 5.6 (Divisors of N): If b 6= 0, b can be restricted

to values in the set D(N)/N of the divisors of N with N
excluded.

Proof: From Bezout’s theorem, there exist two integers

u, v so that ub + vN = gcd(b,N), where gcd is the

“greatest common divisor”. For any integer ρ, let us define

kρ as kρ = u + ρ × N/ gcd(b,N). Thus, by construction,

kρ × b = gcd(b,N) mod N . According to Diriclet’s prime

number theorem, since u and N/ gcd(b,N) are coprime, the

set {kρ}ρ∈N contains an infinity of prime numbers, thus, there

exists a kρ coprime with N which complete the proof.

For example, let N = 30 and H = 〈12, 13, 4, 17〉30. Since

b = 12, we have gcd(b,N) = 6 and N/ gcd(b,N) = 5. Taking

u = 3 and v = −1 gives 3 × 12 + (−1) × 30 = 6. Thus,

kρ = 3+5ρ takes respectively the values {3, 8, 13, 18, 23, 28}
for ρ = 0, 1, . . . , 5. In this series, k2 = 13 and k4 = 23
are the only integers coprime with N = 30. Thus, using k2,

H = 〈12, 13, 4, 17〉30 is equivalent to 〈6, 19, 22, 11〉30, and

using k4, H is also equivalent to 〈6, 29, 2, 1〉30.

Theorem 5.7 (Global Constraint): Any matrix H of H
0
3 is

equivalent to a matrix Hn = 〈bn, dn, en, fn〉, with Φ(Hn) =

7

〈bn, dn, fn − en〉 verifying 0 < bn ≤ dn ≤ fn − en ≤ N/2
and bn a divisor of N verifying bn ≤ gcd(db, N) and bn ≤
gcd(fn − en, N).

Proof:

The proof of this Theorem is performed by recursion,

by showing the existence of a series of equivalent matrices

H0 = 〈b0, d0, e0, f0〉, H1 = 〈b1, d1, e1, f1〉, . . ., Hn =
〈bn, dn, en, fn〉 satisfying the Φ0-order-N/2 constraint, with

decreasing value of b, i.e. (b0 > b1 > b2 · · · > bn ≥ 1) until

bn reaches the value of a divisor of N (eventually, bn = 1).

Initial condition: From Theorem 4.8, any matrix H of H
0
3

is equivalent to a matrix H0 = 〈b0, d0, e0, f0〉 satisfying the

Φ0-order-N/2 constraint.

Recursion: Let us assume that H is equivalent to a matrix

Hn = 〈bn, dn, en, fn〉 satisfying the Φ0-order-N/2 constraint

with bn ≥ 1. If bn is a divisor of N , the condition of the theo-

rem is fulfilled. Otherwise, Theorem 5.4 shows that there exists

k such that Hn is equivalent to 〈gcd(bn, N), kdn, ken, kfn〉.
Note that gcd(bn, N) < bn since bn is not a divisor of N .

Due to the multiplication by k and the reduction modulo

N , 〈gcd(bn, N), kdn, ken, kfn〉 may no longer respect the

Φ0-order-N/2 constraint. Nevertheless, it is still possible to

find an equivalent matrix Hn+1 = 〈bn+1, dn+1, en+1, fn+1〉
that respects the constraint. Since gcd(bn, N) ≤ N/2, it

will be only affected by swapping operations during the

construction of an equivalent matrix respecting the Φ0-order-

N/2 constraint (see proof of Theorem 4.8), and thus, 1 ≤
bn+1 ≤ gcd(bn, N) < bn.

Finally, if bn > gcd(dn, N), then dn and bn can be swapped

and the same process will lead to bn+1 = gcd(dn, N) < bn.

The same method can be applied if bn > gcd(fn − en, N)

To conclude this section, we use multiplicative permutation

to show that the number of equivalent classes (or equivalently,

the space of search, since only one element per class needs

to be tested) is upper bounded by ρ(N), where ρ(N) is the

number of distinct tuples 〈b, d, e, f〉 respecting the Φ0-ordre-

N/2 constraint and b ∈ N . The value ρ(N) can be computed

as

ρ(N) =
∑

b∈D(N)/N

N/2
∑

d=b

∑

d≤f−e≤N/2

1. (16)

Let us focus on the last of the three sum operators of (16). For

each value of e, there are ⌊N/2⌋ − d + 1 possible values of

f that fulfilled the constraint d ≤ (f − e) ≤ N/2, so the last

summation term is equal to N(⌊N/2⌋ − d + 1). According

to the second summation term of (16), d varies from b to

⌊N/2⌋, thus (⌊N/2⌋ − d + 1) takes all the values from 1 up

to ⌊N/2⌋ − b+ 1, thus

ρ(N)=N
∑

b∈D(N)/N

(⌊N/2⌋ − b+ 1)(⌊N/2⌋ − b+ 2)

2
. (17)

Note that if N is a prime number greater than 2, then

D(N)/N = {1} and thus, ρ(N) = (N3 − N)/8.

For example, for N = 5, the ρ(5) = 15 solutions

are 〈1, 1, 0, 1〉, 〈1, 1, 0, 2〉, 〈1, 1, 1, 2〉, 〈1, 1, 1, 3〉, 〈1, 1, 2, 3〉,

〈1, 1, 2, 4〉, 〈1, 1, 3, 4〉, 〈1, 1, 3, 0〉, 〈1, 1, 4, 0〉, 〈1, 1, 4, 1〉,
〈1, 2, 0, 2〉, 〈1, 2, 1, 3〉, 〈1, 2, 2, 4〉, 〈1, 2, 3, 0〉 and 〈1, 2, 4, 0〉.

C. Discussion

The links between structural additive equivalence and multi-

plicative transformation are still an open problem. In Tables VI

and VII, the last column shows three equivalent matrices gen-

erated from the multiplicative transformation of 〈1, 7, 13, 17〉35
satisfying the Φ0-order-N/2 constraint, meaning that the three

matrices (in grey in the last column) belong to the same

equivalence class. So far, we have been unable to find an

a priori method to determine a single element of this class.

Nevertheless, once the matrices of interest are generated for

a given girth, it is possible a posteriori to prune the space of

solutions by seeking equivalent solutions using multiplicative

transformation and keeping only one element per equivalent

class. The present authors consider that, while the problem

may be of interest to group theorist specialists, an exhaustive

analysis of the group properties is beyond the scope of their

paper. Finally, it is worth mentioning that the method used

here can be generalized for any prototype matrix to reduce the

search space. The difficulty is first to find the structural set PH

of pair of permutations associated with the prototype matrix

H, and then find a simple constraint to determine a single

matrix per equivalence class. This is a challenging problem to

solve in the general case!

Finally, readers interested in the mathematical aspects of the

present study are invited to consult the on-line note written of

Xavier Giraud based on an early version of our paper [28]. M.

Giraud also contributed to the paper by pointing out, in the

global theorem, that b can be also be taken smaller or equal

than gcd(d,N) and than gcd(f − e,N).

VI. CONSTRUCTION OF HIGH GIRTH MATRICES

In this section, we construct H matrices of minimum size

from the H3 prototype matrix with a girth ranging from g = 8
up to g = 14. Then, we give an explicit rule based on the

multiplicity M(g) to select the matrix. Finally, to illustrate

the efficiency of the proposed method, we present a very early

promising result for another type of prototype matrix.

A. Optimal lifting of the H3 protograph.

The problem of optimal lifting by a factor N of the H3

protograph matrix can be formalized in two steps. The first

step is to define the maximum achievable girth ḡN as

ḡN (H) = max
H∈HN

3

g(H), (18)

where g(H) is the girth of matrix H . From ḡN (H), we can

define H
N,o
3 as the subset of H

N
3 of matrices of maximum

girth ḡN . Then the optimal lifted matrices Ho is given by

Ho = arg min
H∈H

N,o

3

M(ḡN (H)), (19)

where M(ḡN (H)) is the number of cycles of length ḡN (H)
of the matrix H . Note that if several distinct matrices lead

8

to the same M(ḡN (H)) minimum value, then the value of

M(ḡN (H) + 2) can be used as a second criteria and so on.

In the following, we present some results on the inverse

problem, i.e., to find the minimum value of N required to

guaranty a given girth g0. To do so, we first express all the

cycles of length ℓ = 4, 6, 8, 10, 12 and 14 of H3 using the

method presented in [29]. Note that the software to perform

this enumeration is available online [30]. The number N (ℓ) of

cycles for each value of ℓ is given in Table I. Each cycle gives

a new constraint on the lifted matrix according to equation (6).

ℓ = 4 ℓ = 6 ℓ = 8 ℓ = 10 ℓ = 12 ℓ = 14
N (ℓ) 3 8 11 40 139 336

Total 3 11 22 62 201 537

.

TABLE I
NUMBER OF CONSTRAINTS TO BE TAKEN INTO ACCOUNT BY THE

CONSTRAINT PROGRAMMING SOFTWARE

Then, using the Φ0-order-N/2 constraint, we obtained a

well-defined constraint optimization problem to find the matrix

〈b, d, e, f〉N giving a girth greater of equal than g0: according

to lemma 2.1, any cycle C of the protograph matrix of

length ℓ < g0 should satisfy Φ(C) 6= 0. The total number

of constraints Nl < g0 is given in the last line of Table I.

It is noteworthy that some constraints are redundant. For

example, the cycle CAECBEFB of length ℓ = 14 gives the

same constraint as the cycle CAEFEC of length ℓ′ = 10
since Φ(CAECBEFB) = Φ(CAEFEC) = f −2e. Nevertheless,

introducing redundant constraints in a constraint programming

tool is not a problem.

Table II presents the number of solutions for a targeted girth

g0 = 8 up to g0 = 16, with respect to the expansion size

N . In the first column, we give the highest value of N for

which no solution can be found for the corresponding girth.

We also give the number of solutions for the next 10 values

of N to show the evolution of the number of solutions with

increasing N . Line 2 gives the number of solutions n0 when

only the additive transformation is used to reduce the search

space (matrices of type H = 〈b, d, e, f〉) with no particular

constraint on b, d, e and f), line 3 gives the number of

solution n1 when the Φ-order -N/2 is used, while line 4

shows the number of solutions n2 when both Φ-order-N/2
constraint and multiplicative transformation are applied. The

last line shows the final fraction of remaining search space

R = n2/n0. For a given expansion factor N , if a solution

with a girth g exist, this solution will be enumerated in the

list of solutions obtained for a targeted girth g0 = g − 2. For

example, in Table II, among the n2 = 14 solutions obtained

for a targeted girth g0 = 8 with an expansion factor of

N = 8, two have a girth equal to 10. When g0 ≥ 10, any

two cycles of length four have distinct values. The Φ0-order-

N/2 constraint can thus be expressed with strict inequality

as 0 < Φ(CAB) < Φ(CCD) < Φ(CEF) < N/2 . Then,

each of the 48 additive and structural transformations gives a

distinct solution. In that case, n1 is just equal to n1 = n0/48.

Moreover, due to the multiplicative transformation (Theorem

5.5), some of the leftover solutions can be proved equivalent,

thus the reduction can be significantly greater than a factor

48. For example, in Table II when N equals 23, there are

23760 solutions when no equivalence is used. This number

reduces to n1 = 23760/48 = 495 when using Φ0-order-N/2
equivalence. Among those 495 solutions, 470 are proved to

be equivalent due to multiplicative transformation. Thus, only

a maximum of n2 = 25 out of 23760 are distinct solutions

(all solutions have a distinct multiplicity spectrum), which

correspond to only R = 0.19% of the initial space. Note that

the computation time is also significantly reduced: 3.9 seconds

to determine n2 and its related solutions as against 97.6 s to

determine n0 and its related solutions for N = 45 and g = 16.

B. Elements of differentiation of the solutions

The above section presents the formulation of constraints

forbidding cycles of a given size and shows the result of

numerical experiments. From those experiments, we can high-

light the reduction of the number of solutions found by using

dominance breaking. Except for some rare cases, there exist

several solutions for a given girth and expansion size and our

method finds them all.

Due to the significant reduction in the number of solutions,

it is now possible to analyze in more details the properties of

each solution by computing the multiplicity M(g) of cycle

of length g, and eventually, the multiplicity of greater length.

Table III shows an example of the 5 solutions obtained for

g = 14 and N = 30, giving the matrices and the values of

M(14) and M(16).
One can note that, in this example, all solutions are distinct

since they have different cycle multiplicities and that solution

4 gives the code with the best topological properties.

One of the most surprising results on Table II is that the

number n2 of distinct solutions does not always increase when

N increases. For g ≥ 8, the number n2 of unique solutions for

N = 5, 6, . . . 13 is respectively n2 = 1, 7, 4, 17, 14, 37, 20, 99
and 35. Even more surprising, for g = 16, there exist n2 = 4
solutions when N = 36, none when N = 37 and N = 38,

then 2 for N = 39, 6 for N = 40 and one for N = 41! In

other words, the girth is not necessarily an increasing function

of the expansion factor of the lifting factor N , since g = 16
for N = 36, g = 14 for N = 37 and N = 38, g equals

16 again for N ≥ 39. This result is rather counter-intuitive

so it has been carefully checked. It is worth mentioning that

the method proposed here has been used to construct several

good Non-Binary-LDPC matrices of several sizes and code

rates available on line [30]).

Finally, Table VIII in the Appendix gives the best expanded

matrices found for values of N between 4 and 43. For each

value of N , a NB-LDPC codes over GF(64) is constructed.

The choice of the Galois Field coefficients is carried out

following the rules given in [31]. Figure 2 compares the energy

per symbol versus the Energy of the noise (Es/N0, in dB)

required to obtain a Frame Error Rate (FER) of 10−2 and

10−3 , respectively. The decoding algorithm is the Extended

Min Sum (EMS) algorithm of parameter nm = 20 [32] with 10

decoding iterations. The modulation is the Binary Phase Shift

Keying (BPSK) modulation over the Additive White Gaussian

Noise (AWGN) channel. The channel outputs are quantified

on 5 bits before entering the decoder.

9

g0 = 8

N < 4 4 5 6 7 8 9 10 11 12 13

n0 0 2 16 92 288 702 1440 2648 4480 7130 10800
n1 0 2 2 14 18 55 67 150 175 335 378
n2 0 1 1 7 4 17 14 37 20 99 35
R N/A 50 % 6.25 % 7.61 % 1.39 % 2.42 % 0.97 % 1.40 % 0.45 % 1.39 % 0.32%

g0 = 10

N < 8 8 9 10 11 12 13 14 15 16 17

n0 0 48 336 480 1680 2160 5184 6096 12336 13968 24960
n1 0 1 7 10 35 45 108 127 257 291 520
n2 0 1 2 3 4 15 10 24 40 45 35
R N/A 2.08 % 0.59 % 0.62 % 0.24 % 0.69 % 0.19 % 0.39 % 0.32 % 0.32 % 0.14 %

g0 = 12

N < 14 14 15 16 17 18 19 20 21 22 23

n0 0 480 432 1056 1920 4032 5184 7296 12960 17520 23760
n1 0 10 9 22 40 84 108 152 270 365 495
n2 0 3 2 4 3 18 7 25 30 41 25
R N/A 0.62 % 0.46 % 0.38 % 0.16 % 0.45 % 0.13 % 0.34 % 0.23 % 0.23 % 0.11 %

g0 = 14

N < 28 28 29 30 31 32 33 34 35 36 37

n0 0 1440 1344 1632 5760 6528 12480 13824 30336 30048 60480
n1 0 30 28 34 120 136 260 288 632 626 1260
n2 0 3 1 5 4 12 14 18 28 57 35
R N/A 0.21 % 0.07 % 0.30 % 0.069 % 0.18 % 0.11 % 0.13 % 0.09 % 0.19 % 0.058 %

g0 = 16

N < 36 36 37 38 39 40 41 42 43 44 45

n0 0 1536 0 0 1728 2784 1920 5088 4032 15840 12096
n1 0 32 0 0 36 58 40 106 84 330 252
n2 0 4 0 0 2 6 1 10 2 18 13
R N/A 0.26 % N/A N/A 0.12 % 0.21 % 0.052 % 0.20 % 0.050 % 0.11 % 0.11 %

TABLE II
COMPARISON OF EXECUTION TIME AND NUMBER OF SOLUTIONS WITH AND WITHOUT Φ-ORDER-N/2 CONSTRAINT FOR g0 = 8, 10, 12, 14 AND 16.

〈b, d, e, f〉30 M(14) M(16)
1 〈1, 3, 7, 19〉30 180 825
2 〈1, 5, 7, 16〉30 180 840
3 〈1, 6, 25, 8〉30 180 810
4 〈1, 9, 2, 13〉30 90 1080
5 〈3, 5, 4, 13〉30 240 750

.

TABLE III
THE FIVE SOLUTIONS FOR g = 14, N = 30

0 100 200 300 400 500 600 700 800

Information Blocksize

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

E
S
/N

0
 (

d
B

)

FER = 10
-3

FER = 10
-2

Fig. 2. Required Es/N0 to obtain a FER of 10−2 and 10−3 for NB-LDPC
matrices over GF(64) constructed from matrices of Table VIII. The EMS
decoding algorithm is used with 10 decoding iterations. Received samples are
quantified on 5 bits.

C. Extension to the complete (3-L) QC-LDPC matrix

Before presenting the conclusion of this paper, we give an

additional example to highlight the efficiency of the proposed

method to construct QC-LDPC matrices. Let us consider the

set of complete prototype matrices H(3,L) of size 3 × L,

(H(3,L) is composed of 3 lines of L ones)). The problem

of finding the minimum lifting factor N giving a QC-LDPC

matrix of girth 8 and 10 is well studied in the literature. Table

IV shows the evolution of the minimum value of N cited in

the literature for L varying from 4 to 12 and girth g equal to

8.

These solutions are found by a heuristic search with no

proof of optimality. Using the theory and the tools developed

in the present study for this problem, we were rapidly able (in

one day) to:

1) Enumerate all the cycles of length 4 and 6 of the H(3,L)

matrices.

2) Prove the optimality of the existing solutions for L = 4
up to L = 10 1.

3) Find a new solution for L = 11 with an expansion factor

of N = 40.

This new matrix H40
(3,11) generated with the constraint

programming tool is

H40
(3,11) =

0 0 0 0 0 0 0 0 0 0 0
0 1 3 5 8 12 16 19 21 23 24
0 2 7 18 33 15 38 39 10 31 35

 (20)

Note that we do not have any proof that N = 40 is

optimal (i.e. minimum expansion factor) for L = 11. Without

a deeper study of this problem involving symmetry breaking,

the running time required to demonstrate optimality is too

long. Property 5.6 and Theorem 4.3 would help in finding

new symmetries to reduce the size of the space to explore.

We leave this as an open question.

For the girth g = 10, the minimum lifting factor N is greatly

reduced compared to the state of the art. For example, for L =

1Taking the constraints HN
(3,L)

(2, 2) as a divisor of N thanks to multiplica-

tive transformation and HN
(3,L)

(2, j) ≤ H40
(3,L)

(2, j+1), j = 1, . . . , L− 1

thanks to column permutations of the matrix.

10

L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 L = 11 L = 12
2004 [20] 9 14 18 21 26 33 39 46 54
2006 [16] 9 13 18 22 27 34 40 49 55
2013 [15] 9 13 18 21 25 30 35 41 47
2015 [33] 9 13 18 21 25 30 35 40 46
2017 [19] 9 13 18 21 25 30 35 41 45

TABLE IV
RANDOMLY FOUND SOLUTION FOR A COMPLETE PROTOMATRIX, WITH J = 3 LINES AND L COLUMNS

L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 L = 11
2013 Lower bound [34] 37 61 91 127 168 217 271 331

2008 [35] 39 63 103 160 233 329 439 577

2012 [36] 37 61 101 159 219 319 439 560

2016 [33];[37] 37 61 91 155 227 323 429 571

2017 [21] 37 61 91 - - - - -

2018 Proposed 37 61 91 139 201 280 383 503

,

TABLE V
SMALLEST LIFTING FACTOR N REQUIRED TO OBTAINED A GIRTH g = 10 FOR A COMPLETE (3,L) QC-LDPC MATRIX

11, N is reduced between 2008 and 2016 from N = 577 down

to N = 560. In the present study, we propose a new value of

N equal to 506! Smallest values of N are also obtained for

L = 7, 8, 9 and 10 as shown in Table V. The corresponding

matrices are

H139
(3,7) =

0 0 0 0 0 0 0
0 1 26 31 54 100 106
0 3 15 104 7 44 122

 (21)

H201
(3,8) =

0 0 0 0 0 0 0 0
0 1 5 20 32 99 105 158
0 3 16 86 155 45 133 194

 (22)

H280
(3,9) =

0 0 0 0 0 0 0 0 0
0 1 5 12 97 112 162 233 249
0 3 13 41 207 75 101 216 158

 (23)

H383
(3,10) =

0 0 0 0 0 0 0 0 0 0
0 1 5 12 32 55 160 237 261 305
0 3 13 29 74 246 111 170 350 132

 (24)

and

H503
(3,11) =

0 0 0 0 0 0 0 0 0 0 0
0 1 5 12 32 50 184 269 385 410 432
0 3 13 29 68 109 276 415 216 195 371

 (25)

VII. CONCLUSION

In this paper, we have defined the notion of equivalence

classes between QC-LDPC matrices. We have proposed three

transformations that preserve the equivalence between matri-

ces: the additive transformation (already known), the structural

transformation and the multiplicative transformation. As an

example, we have applied these transformations to a particular

3-row, 6-column protomatrix with variable node degree of

2 and check node degree 4. For this problem, we proposed

criteria to select a single element for each equivalence class

of matrices, thus allowing a very fast exhaustive exploration.

In fact, since an equivalent class can contain from a few tens

up to a few thousand elements, the search space is reduced

accordingly. Finally, we make use of a tool from the constraint

programming literature to prove and find solutions to the

construction problem.

We should note that the new equivalence relations between

QC-LDPC matrices are very general and can be used for

any construction of QC-LDPC matrices from the lifting of a

prototype matrix. Finally, we conclude with an open question:

is it possible to use additive, structural and multiplicative

transformations on their own to generate the equivalent class

of any QC matrix?

ACKNOWLEDGMENT

The authors would like to thank several people that have

also help for the realization of this paper: Ahmed Abdmouleh

for his proposal of the prototype matrix, Marc Sevaux for his

reading of a very early version of the paper, Hassan Harb,

Cédric Marchand, Titouan Gendron and Franklin Cochachin to

have developed some useful tools and performed simulations.

A special thanks to Xavier Giraud, Valentin Savin, Alireza

Tasdighi and the anonymous reviewers for their reading and

their suggestions to improve the paper, Laura Conde-Canencia

for her reading of the paper and Michael Carpenter for copy-

editing of the final version. Part of the work uses ressources

funded by the Région Bretagne and the ANR through the

CPER Sophie.

APPENDIX

REFERENCES

[1] DVB standard committee, “DVB-S2.”
https://www.dvb.org/standards/dvb-s2.

[2] IEEE standard committee, “WI-FI.”
http://ieeexplore.ieee.org/browse/standards/get-
program/page/series?id=68.

[3] 3GPP, “5G standard.” https://www.3gpp.org.
[4] R. G. Gallager, “Low-density parity-check codes,” 1963.
[5] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of

low density parity check codes,” Electronics Letters, vol. 32, pp. 1645–,
Aug 1996.

[6] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative Decoding of Con-
catenated Convolutional Codes: Implementation Issues,” Proceedings of

the IEEE, vol. 95, pp. 1201–1227, June 2007.
[7] M. C. Davey and D. J. C. MacKay, “Low density parity check codes

over GF(q),” in 1998 Information Theory Workshop (Cat. No.98EX131),
pp. 70–71, Jun 1998.

https://www.dvb.org/standards/dvb-s2
http://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
http://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
www.3gpp.org

11

πr πc 〈b, d, e, f〉N ≡ 〈1, 7, 13, 17〉N b divisor of N
1 {1, 2, 3} {1, 2, 3, 4, 5, 6} 〈+b,+d,+e,+f〉N 〈1, 7, 13, 17〉35 〈1, 7, 13, 17〉35
2 {1, 2, 3} {1, 2, 3, 4, 6, 5} 〈+b,+d,+f,+e〉N 〈1, 7, 17, 13〉35 〈1, 7, 17, 13〉35
3 {1, 2, 3} {1, 2, 4, 3, 5, 6} 〈+b,−d,−d+ e,−d+ f〉N 〈1, 28, 6, 10〉35 〈1, 28, 6, 10〉35
4 {1, 2, 3} {1, 2, 4, 3, 6, 5} 〈+b,−d,−d+ f,−d+ e〉N 〈1, 28, 10, 6〉35 〈1, 28, 10, 6〉35
5 {1, 2, 3} {2, 1, 3, 4, 5, 6} 〈−b,+d,+b+ e,+b+ f〉N 〈34, 7, 14, 18〉35 〈1, 28, 21, 17〉35
6 {1, 2, 3} {2, 1, 3, 4, 6, 5} 〈−b,+d,+b+ f,+b+ e〉N 〈34, 7, 18, 14〉35 〈1, 28, 17, 21〉35
7 {1, 2, 3} {2, 1, 4, 3, 5, 6} 〈−b,−d,+b− d+ e,+b− d+ f〉N 〈34, 28, 7, 11〉35 〈1, 7, 28, 24〉35
8 {1, 2, 3} {2, 1, 4, 3, 6, 5} 〈−b,−d,+b− d+ f,+b− d+ e〉N 〈34, 28, 11, 7〉35 〈1, 7, 24, 28〉35
9 {2, 1, 3} {1, 2, 5, 6, 3, 4} 〈−b,−e+ f,−e,+d− e〉N 〈34, 4, 22, 29〉35 〈1, 31, 13, 6〉35
10 {2, 1, 3} {1, 2, 5, 6, 4, 3} 〈−b,+e− f,−f,+d− f〉N 〈34, 31, 18, 25〉35 〈1, 4, 17, 10〉35
11 {2, 1, 3} {1, 2, 6, 5, 3, 4} 〈−b,−e+ f,+d− e,−e〉N 〈34, 4, 29, 22〉35 〈1, 31, 6, 13〉35
12 {2, 1, 3} {1, 2, 6, 5, 4, 3} 〈−b,+e− f,+d− f,−f〉N 〈34, 31, 25, 18〉35 〈1, 4, 10, 17〉35
13 {2, 1, 3} {2, 1, 5, 6, 3, 4} 〈+b,−e+ f,−b− e,−b+ d− e〉N 〈1, 4, 21, 28〉35 〈1, 4, 21, 28〉35
14 {2, 1, 3} {2, 1, 5, 6, 4, 3} 〈+b,+e− f,−b− f,−b+ d− f〉N 〈1, 31, 17, 24〉35 〈1, 31, 17, 24〉35
15 {2, 1, 3} {2, 1, 6, 5, 3, 4} 〈+b,−e+ f,−b+ d− e,−b− e〉N 〈1, 4, 28, 21〉35 〈1, 4, 28, 21〉35
16 {2, 1, 3} {2, 1, 6, 5, 4, 3} 〈+b,+e− f,−b+ d− f,−b− f〉N 〈1, 31, 24, 17〉35 〈1, 31, 24, 17〉35
17 {2, 3, 1} {3, 4, 5, 6, 1, 2} 〈−e+ f,−b,+e,−d+ e〉N 〈4, 34, 13, 6〉35 〈1, 26, 12, 19〉35
18 {2, 3, 1} {3, 4, 5, 6, 2, 1} 〈+e− f,−b,+f,−d+ f〉N 〈31, 34, 17, 10〉35 〈1, 9, 22, 15〉35
19 {2, 3, 1} {3, 4, 6, 5, 1, 2} 〈−e+ f,−b,−d+ e,+e〉N 〈4, 34, 6, 13〉35 〈1, 26, 19, 12〉35
20 {2, 3, 1} {3, 4, 6, 5, 2, 1} 〈+e− f,−b,−d+ f,+f〉N 〈31, 34, 10, 17〉35 〈1, 9, 15, 22〉35
21 {2, 3, 1} {4, 3, 5, 6, 1, 2} 〈−e+ f,+b,+b+ e,+b− d+ e〉N 〈4, 1, 14, 7〉35 〈1, 9, 21, 28〉35
22 {2, 3, 1} {4, 3, 5, 6, 2, 1} 〈+e− f,+b,+b+ f,+b− d+ f〉N 〈31, 1, 18, 11〉35 〈1, 26, 13, 6〉35
23 {2, 3, 1} {4, 3, 6, 5, 1, 2} 〈−e+ f,+b,+b− d+ e,+b+ e〉N 〈4, 1, 7, 14〉35 〈1, 9, 28, 21〉35
24 {2, 3, 1} {4, 3, 6, 5, 2, 1} 〈+e− f,+b,+b− d+ f,+b+ f〉N 〈31, 1, 11, 18〉35 〈1, 26, 6, 13〉35

TABLE VI
EQUIVALENT MATRICES THROUGH STRUCTURAL AND ADDITIVE TRANSFORMATIONS. PART I: LINES 1 TO 24.

πr πc 〈b, d, e, f〉N ≡ 〈1, 7, 13, 17〉N b divisor of N
25 {1, 3, 2} {3, 4, 1, 2, 5, 6} 〈+d,+b,−e,−f〉N 〈7, 1, 22, 18〉35 〈7, 1, 22, 18〉35
26 {1, 3, 2} {3, 4, 1, 2, 6, 5} 〈+d,+b,−f,−e〉N 〈7, 1, 18, 22〉35 〈7, 1, 18, 22〉35
27 {1, 3, 2} {3, 4, 2, 1, 5, 6} 〈−d,+b,+d− e,+d− f〉N 〈28, 1, 29, 25〉35 〈7, 34, 6, 10〉35
28 {1, 3, 2} {3, 4, 2, 1, 6, 5} 〈−d,+b,+d− f,+d− e〉N 〈28, 1, 25, 29〉35 〈7, 34, 10, 6〉35
29 {1, 3, 2} {4, 3, 1, 2, 5, 6} 〈+d,−b,−b− e,−b− f〉N 〈7, 34, 21, 17〉35 〈7, 34, 21, 17〉35
30 {1, 3, 2} {4, 3, 1, 2, 6, 5} 〈+d,−b,−b− f,−b− e〉N 〈7, 34, 17, 21〉35 〈7, 34, 17, 21〉35
31 {1, 3, 2} {4, 3, 2, 1, 5, 6} 〈−d,−b,−b+ d− e,−b+ d− f〉N 〈28, 34, 28, 24〉35 〈7, 1, 7, 11〉35
32 {1, 3, 2} {4, 3, 2, 1, 6, 5} 〈−d,−b,−b+ d− f,−b+ d− e〉N 〈28, 34, 24, 28〉35 〈7, 1, 11, 7〉35
33 {3, 1, 2} {5, 6, 1, 2, 3, 4} 〈−d,+e− f,+e,+b+ e〉N 〈28, 31, 13, 14〉35 〈7, 4, 22, 21〉35
34 {3, 1, 2} {5, 6, 1, 2, 4, 3} 〈−d,−e+ f,+f,+b+ f〉N 〈28, 4, 17, 18〉35 〈7, 31, 18, 17〉35
35 {3, 1, 2} {5, 6, 2, 1, 3, 4} 〈+d,+e− f,−d+ e,+b− d+ e〉N 〈7, 31, 6, 7〉35 〈7, 31, 6, 7〉35
36 {3, 1, 2} {5, 6, 2, 1, 4, 3} 〈+d,−e+ f,−d+ f,+b− d+ f〉N 〈7, 4, 10, 11〉35 〈7, 4, 10, 11〉35
37 {3, 1, 2} {6, 5, 1, 2, 3, 4} 〈−d,+e− f,+b+ e,+e〉N 〈28, 31, 14, 13〉35 〈7, 4, 21, 22〉35
38 {3, 1, 2} {6, 5, 1, 2, 4, 3} 〈−d,−e+ f,+b+ f,+f〉N 〈28, 4, 18, 17〉35 〈7, 31, 17, 18〉35
39 {3, 1, 2} {6, 5, 2, 1, 3, 4} 〈+d,+e− f,+b− d+ e,−d+ e〉N 〈7, 31, 7, 6〉35 〈7, 31, 7, 6〉35
40 {3, 1, 2} {6, 5, 2, 1, 4, 3} 〈+d,−e+ f,+b− d+ f,−d+ f〉N 〈7, 4, 11, 10〉35 〈7, 4, 11, 10〉35
41 {3, 2, 1} {5, 6, 3, 4, 1, 2} 〈+e− f,−d,−e,−b− e〉N 〈31, 28, 22, 21〉35 〈1, 28, 12, 21〉35
42 {3, 2, 1} {5, 6, 3, 4, 2, 1} 〈−e+ f,−d,−f,−b− f〉N 〈4, 28, 18, 17〉35 〈1, 7, 22, 13〉35
43 {3, 2, 1} {5, 6, 4, 3, 1, 2} 〈+e− f,+d,+d− e,−b+ d− e〉N 〈31, 7, 29, 28〉35 〈1, 7, 19, 28〉35
44 {3, 2, 1} {5, 6, 4, 3, 2, 1} 〈−e+ f,+d,+d− f,−b+ d− f〉N 〈4, 7, 25, 24〉35 〈1, 28, 15, 6〉35
45 {3, 2, 1} {6, 5, 3, 4, 1, 2} 〈+e− f,−d,−b− e,−e〉N 〈31, 28, 21, 22〉35 〈1, 28, 21, 12〉35
46 {3, 2, 1} {6, 5, 3, 4, 2, 1} 〈−e+ f,−d,−b− f,−f〉N 〈4, 28, 17, 18〉35 〈1, 7, 13, 22〉35
47 {3, 2, 1} {6, 5, 4, 3, 1, 2} 〈+e− f,+d,−b+ d− e,+d− e〉N 〈31, 7, 28, 29〉35 〈1, 7, 28, 19〉35
48 {3, 2, 1} {6, 5, 4, 3, 2, 1} 〈−e+ f,+d,−b+ d− f,+d− f〉N 〈4, 7, 24, 25〉35 〈1, 28, 6, 15〉35

TABLE VII
EQUIVALENT MATRICES THROUGH STRUCTURAL AND ADDITIVE TRANSFORMATIONS. PART II: LINES 25 TO 48).

[8] “Consultative Committee for Space Data Systems (CCSDS), Telecom-
mand Sync and Channel Coding Specification using advanced Block
Codes.” https://https://public.ccsds.org/.

[9] K. Liu, Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Quasi-Cyclic
LDPC codes: Construction and rank analysis of their parity-check
matrices,” in 2012 Information Theory and Applications Workshop, ITA

2012, San Diego, CA, USA, February 5-10, 2012, pp. 227–233, 2012.

[10] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-
approaching Protograph Codes,” IEEE Journal on Selected Areas in

Communications, vol. 27, pp. 876–888, Aug. 2009.

[11] D. Divsalar, S. Dolinar, and C. C. R. Jones, “Low-rate LDPC codes with
simple protograph structure,” Proceedings. International Symposium on

Information Theory, 2005. ISIT 2005., pp. 1622–1626, 2005.

[12] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for designing
LDPC codes using protographs and circulants,” International Symposium

on Information Theory, 2004. ISIT 2004. Proceedings., pp. 238–, 2004.

[13] S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel, “On the girth of (3,

L) Quasi-Cyclic LDPC Codes based on Complete Protographs,” in 2015

IEEE International Symposium on Information Theory (ISIT), pp. 431–
435, June 2015.

[14] G. Zhang, R. Sun, and X. Wang, “Construction of Girth-Eight QC-LDPC
Codes from Greatest Common Divisor,” IEEE Communications Letters,
vol. 17, no. 2, pp. 369–372, 2013.

[15] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
QC-LDPC codes,” in 2008 5th International Symposium on Turbo Codes

and Related Topics, pp. 180–185, Sept 2008.

[16] M. E. O’Sullivan, “Algebraic construction of sparse matrices with
large girth,” IEEE Transactions on Information Theory, vol. 52, no. 2,
pp. 718–727, 2006.

[17] J. Zhang and G. Zhang, “Deterministic Girth-Eight QC-LDPC Codes
with Large Column Weight,” IEEE Communications Letters, vol. 18,
no. 4, pp. 656–659, 2014.

[18] S. Vafi and N. Majid, “Combinatorial design based Quasi Cyclic LDPC
codes with girth eight,” Digital Communications and Networks (2018),

https://public.ccsds.org/

12

g 〈b, d, e, f〉N M(8) M(10) M(12) M(14) M(16) M(18) M(20)
8 〈2, 2, 1, 3〉4 30 0 112 0 1038 0 7196
8 〈1, 1, 2, 3〉5 15 30 80 180 382 1128 3422
8 〈1, 1, 2, 4〉6 6 48 86 120 392 1228 3282
8 〈1, 1, 2, 4〉7 7 35 91 147 422 1208 2881
10 〈1, 2, 3, 6〉8 0 48 80 144 486 1072 2929
10 〈1, 2, 3, 6〉9 0 45 75 144 513 1122 2798
10 〈1, 2, 3, 6〉10 0 40 75 150 525 1150 2694
10 〈1, 2, 3, 6〉11 0 33 77 165 528 1177 2593
10 〈1, 4, 1, 6〉12 0 24 82 192 522 1128 2557
10 〈1, 2, 5, 8〉13 0 13 104 156 624 1053 2444
12 〈1, 2, 6, 9〉14 0 0 126 168 602 952 2744
12 〈3, 5, 13, 4〉15 0 0 95 240 495 1200 2736
12 〈1, 2, 5, 12〉16 0 0 96 224 520 1152 2688
12 〈1, 2, 5, 13〉17 0 0 102 170 646 952 2924
12 〈1, 2, 5, 13〉18 0 0 90 180 657 1074 2619
12 〈1, 2, 5, 14〉19 0 0 95 114 798 912 2907
12 〈1, 4, 6, 14〉20 0 0 70 180 700 1120 2738
12 〈1, 2, 5, 12〉21 0 0 49 231 609 1302 2562
12 〈1, 3, 9, 14〉22 0 0 55 154 814 1034 2739
12 〈1, 3, 9, 14〉23 0 0 46 138 897 1012 2783
12 〈1, 2, 6, 14〉24 0 0 44 216 624 1320 2496
12 〈1, 2, 6, 17〉25 0 0 50 125 850 975 3000
12 〈1, 2, 6, 15〉26 0 0 39 182 676 1274 2704
12 〈1, 2, 6, 18〉27 0 0 27 135 891 1062 2916
14 〈1, 6, 23, 8〉28 0 0 0 168 882 1288 2478
14 〈1, 4, 6, 15〉29 0 0 0 174 812 1421 2349
14 〈1, 9, 2, 13〉30 0 0 0 90 1080 1050 3195
14 〈1, 3, 9, 14〉31 0 0 0 124 992 1147 2697
14 〈1, 8, 11, 26〉32 0 0 0 64 1176 832 3264
14 〈1, 10, 2, 14〉33 0 0 0 99 1023 1155 2871
14 〈1, 3, 8, 23〉34 0 0 0 102 918 1326 2601
14 〈1, 4, 12, 18〉35 0 0 0 70 1015 1085 3150
16 〈1, 11, 6, 19〉36 0 0 0 0 1296 648 3834
14 〈1, 3, 12, 17〉37 0 0 0 37 1184 851 3219
14 〈1, 3, 10, 15〉38 0 0 0 114 988 1140 2565
16 〈1, 12, 7, 21〉39 0 0 0 0 1209 897 3393
16 〈4, 10, 7, 19〉40 0 0 0 0 1330 0 5760
16 〈1, 3, 14, 19〉41 0 0 0 0 1312 574 3567
16 〈1, 3, 14, 19〉42 0 0 0 0 1260 728 3528
16 〈1, 3, 14, 19〉43 0 0 0 0 1204 774 3483

TABLE VIII
BEST MATRICES FOUNDED FOR SEVERAL EXPANSION FACTORS N .

2018. doi: 10.1016/j.dcan.2018.01.001.

[19] A. Tasdighi, A. H. Banihashemi, and M. Sadeghi, “Symmetrical Con-
structions for Regular Girth-8 QC-LDPC Codes,” IEEE Transactions on

Communications, vol. 65, no. 1, pp. 14–22, 2017.

[20] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Transactions on Information

Theory, vol. 50, pp. 1788–1793, Aug. 2004.

[21] A. Tasdighi, A. H. Banihashemi, and M. R. Sadeghi, “Efficient Search
of Girth-Optimal QC-LDPC Codes,” IEEE Transactions on Information

Theory, vol. 62, pp. 1552–1564, April 2016.

[22] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 33, pp. 457–
458, Mar 1997.

[23] F. R. Kschischang, B. J. Frey, and H. . Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[24] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” tech. rep., JPL IPN Progress Report 42-154, 2003.

[25] D. G. M. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-Cyclic
LDPC Codes Based on Pre-Lifted Protographs,” IEEE Transactions on

Information Theory, vol. 60, pp. 5856–5874, Oct 2014.

[26] R. Smarandache and P. O. Vontobel, “On regular quasicyclic LDPC
codes from binomials,” in IEEE International Symposium on Information

Theory, 2004. ISIT 2004., p. 275, 2004.

[27] G. Chu and P. J. Stuckey, “Dominance breaking constraints,” Con-

straints, vol. 20, no. 2, pp. 155–182, 2015.

[28] X. Giraud, “Comments on Additive, Structural and Multiplicative
transformations for the construction of Quasi Cyclic LDPC matrices.”
http://www-labsticc.univ-ubs.fr/nb ldpc/. [online since 2018].

[29] R. Asvadi, A. H. Banihashemi, and M. Ahmadian-Attari, “Design
of Finite-Length Irregular Protograph Codes with Low Error Floors

over the Binary-Input AWGN Channel Using Cyclic Liftings,” IEEE

Transactions on Communications, vol. 60, pp. 902–907, April 2012.
[30] C. Marchand and et al., “Non-Binary WEB page of Lab-STICC.”

http://www-labsticc.univ-ubs.fr/nb ldpc/. [online since 2015].
[31] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-

LDPC codes over GF(q) using their binary images,” IEEE Transactions

on Communications, vol. 56, pp. 1626–1635, October 2008.
[32] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-

complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, pp. 1365–1375, May
2010.

[33] M. Diouf, Conception avancée des codes LDPC binaires pour des

applications pratiques. PhD thesis, Université de Cergy Pontoise ;
Université de Cheikh Anta DIOP, 2015.

[34] M. Karimi and A. H. Banihashemi, “On the Girth of Quasi-Cyclic
Protograph LDPC Codes,” IEEE Transactions on Information Theory,
vol. 59, pp. 4542–4552, July 2013.

[35] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
QC-LDPC codes,” in 2008 5th International Symposium on Turbo Codes

and Related Topics, pp. 180–185, Sept 2008.
[36] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.

Satyukov, “Searching for Voltage Graph-Based LDPC Tailbiting Codes
With Large Girth,” IEEE Transactions on Information Theory, vol. 58,
pp. 2265–2279, April 2012.

[37] M. Diouf, D. Declercq, M. Fossorier, S. Ouya, and B. Vasić, “Improved
PEG construction of large girth QC-LDPC codes,” in 2016 9th Interna-

tional Symposium on Turbo Codes and Iterative Information Processing

(ISTC), pp. 146–150, Sept 2016.

http://www-labsticc.univ-ubs.fr/nb_ldpc/
http://www-labsticc.univ-ubs.fr/nb_ldpc/

