
LETTER
doi:10.1038/nature10650

Additive threats from pathogens, climate and
land-use change for global amphibian diversity
Christian Hof1,2, Miguel B. Araújo1,2,3, Walter Jetz4 & Carsten Rahbek1

Amphibian population declines far exceed those of other verte-
brate groups, with 30% of all species listed as threatened by the
International Union for Conservation of Nature1–3. The causes of
these declines are a matter of continued research, but probably
include climate change, land-use change and spread of the patho-
genic fungal disease chytridiomycosis1,4,5. Here we assess the spatial
distribution and interactions of these primary threats in relation to
the global distribution of amphibian species. We show that the
greatest proportions of species negatively affected by climate
change are projected to be found in Africa, parts of northern
South America and the Andes. Regions with the highest projected
impact of land-use and climate change coincide, but there is little
spatial overlap with regions highly threatened by the fungal disease.
Overall, the areas harbouring the richest amphibian faunas are dis-
proportionatelymore affectedbyoneormultiple threat factors than
areas with low richness. Amphibian declines are likely to accelerate
in the twenty-first century, because multiple drivers of extinction
could jeopardize their populations more than previous, mono-
causal, assessments have suggested.
Amphibians are experiencingpopulationdeclines inall regions of the

world2,6. Causes for this global decline have been identified. Among the
highest ranking threats are anthropogenic land-use changes, leading to
habitat destruction and fragmentation, and the fatal disease chytridio-
mycosis, which is caused by the chytrid fungus Batrachochytrium
dendrobatidis. Other threats include climate change, which may inter-
act with chytridiomycosis, environmental pollution, direct exploitation
for the food, medicine and pet trades, increase in ultraviolet-B
irradiation due to anthropogenic ozone depletion, and the spread of
invasive species4,5.
Many studies have assessed how these threats affect amphibian

populations and how they may interact at local and regional scales7–10.
Recent assessments have used bioclimatic envelope models to project
climate change impacts on amphibian diversity on a continental
scale11,12. Attempts have also been made to assess the relative import-
ance of different threats for large groups of species13,14, but not in a
spatially explicit way. Several hypotheses have suggested that there
may be interactions of chytridiomycosis with land-use change15 and
climate change9, yet no final consensus has been reached10,16.
Preliminarymodels of the global geography of chytridiomycosis under
climate change have been provided17, but an integrative, analytical,
spatially explicit assessment at a global scale of the spatial interactions
of the most severe threats is urgently needed.
Using a nearly complete global data set of 5,527 amphibian species,

we elucidate how the spatial interaction at the global scale of three
important threats (climate change, chytridiomycosis and land-use
change, see Methods) could affect global amphibian diversity between
a baseline period (1980) and late in the present century (2080). Threat
from future climate change was estimated as the proportion of species
locally losing climatic suitability (‘climate losers’) per area, as given by
species-specific bioclimatic models (see Methods). Because the spatial

distribution of species richness varies considerably among the three
amphibian orders Anura (frogs and toads, ‘frogs’ hereafter), Caudata
(salamanders and newts, ‘salamanders’) andGymnophiona (‘caecilians’)
(Fig. 1a), we conducted climate change analyses separately for each
group. Threat from chytridiomycosis was quantified as the future
probability of occurrence of B. dendrobatidis from a bioclimatic model
projection17. Lastly, estimates of future land-use change (that is,
changes from natural to human-encroached land cover) were based
on the projections of the Millennium Ecosystem Assessment18–20.
The three major global threats to amphibians exhibit characteristic,

yet disparate geographic patterns (Fig. 1b–d). For frogs, regions with a
high projected impact of climate change (regions where high propor-
tions of climate losers in 2080 coincide with a high level of species
richness) are the northern Andes and parts of the Amazon and the
Cerrado in South America, large areas of sub-Saharan tropical Africa,
anda small region inSouthEastAsia (Fig. 1b andSupplementaryFig. 1a).
In the northernAndes,which harbour the greatest frog diversity world-
wide, the proportion of probable climate losers reaches 166 species
(73% of the local frog fauna). Globally, the proportion of frogs likely
to become climate losers measured as average per grid cell is 54%
(6 10% (standard deviation, s.d.)). For salamanders, western North
America, northern Central America and southern and south-eastern
Europe are the regions projected to bemost heavily affected by climate
change, as are some areas in northern South America for caecilians
(Fig. 1b). In several areas of Central America, up to 21 species (66% of
the local salamander fauna) are projected to lose climatic suitability
(global mean,56%6 15% s.d.) (Fig. 1b). The regions with the highest
projected probability of occurrence of chytridiomycosis are located in
mostly temperate climates as well as mountainous and coastal regions
(Fig. 1c). Areas with high projected land-use change are mainly found
in tropical Central and South America, tropical Africa and montane
parts of central and southern Asia (Fig. 1d).
Geographic coincidence in the intensity of the three types of threat is

highly uneven and varies strongly among the three amphibian orders
(Figs 1b–d and 2). Within the range occupied by frogs, the spatial
overlap between the top 25% affected grid cells for the three threat
types is small: 6.1% of these cells (out of a 25% possible) overlap for
chytridiomycosis and climate change, 9.1% for climate change and
land-use change and 8.6% for chytridiomycosis and land-use change
(Figs 2 and 3; see Supplementary Table 1 for sensitivity analyses and
spatial null model tests of overlap; see also Methods and Supplemen-
tary Methods for further details). The small degree of overlap between
areas of highest impact from chytridiomycosis and climate change
arises because of the strong association of B. dendrobatidiswith humid
and cool conditions found in temperate regions21 and cool tropical
high mountains, whereas the negative impacts from climate change
are more prominent in the warm and wet tropics (see Fig. 1a). For
salamanders, the comparable figures for spatial overlap are 12.2%,
4.6% and 10.0%, respectively (Fig. 3 and Supplementary Table 1).
Globally, more than half of the distributional area of each of the three
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amphibian orders is likely to be highly affected by at least one of the
three major threat factors. When only regions with the highest species
richness are considered, then about two thirds of the areas with the
richest frog and salamander faunas (half of the area for caecilians) are
projected to become heavily affected by 2080 (Fig. 4).
Several critical assumptions are inevitable when conducting global

assessments like ours. Although a careful investigation of some of the
methodological uncertainties in our study broadly confirms the con-
sistency of our findings (see Methods, Supplementary Methods and
Supplementary Discussion), several limitations are important.

First, much uncertainty exists in ensemble forecasting as illustrated
by the results produced by our use of 14 different global climatemodels
(GCMs) and three bioclimatic envelope modelling algorithms (Sup-
plementary Figs 8–12). Althoughwe explicitly examined this variation,
results are contingent on the methods used and future modelling
might provide further insights. Second, other threats not investigated
here may also cause declines in amphibian populations, including
pollution, direct exploitation, spread of invasive species, or increased
ultraviolet-B irradiation5. These additional factors give reason for further
concern, especially when they interact with one another4. Third,
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Figure 1 | Current amphibian species richness and the intensity of three
factors threatening global amphibian diversity projected for the year 2080.
a, Spatial variation of species richness (number of species per grid cell) of frogs
(n5 4,875), salamanders (n5 508) and caecilians (n5 144). b, Intensity of
threat from climate change, given as the proportion of species projected to lose
climatic suitability in a given area (arithmetic mean across 14 GCMs, 3
emission scenarios and 3 modelling algorithms). c, Intensity of threat from

chytridiomycosis, given as the projected probability of occurrence of B.
dendrobatidis (arithmetic mean across 3 GCMs and 2 emission scenarios, data
from ref. 17). d, Intensity of threat from land-use change, given as the
proportion of a given area projected to be converted from a natural to an
anthropogenic state (arithmeticmean across 4 scenarios, data from ref. 19). For
further details on the quantification of threat intensities, see Methods. White
areas in panels a and b indicate the absence of a given amphibian order.
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Figure 2 | Relationships among the intensities of the three main factors
threatening global amphibian diversity. Each point refers to one grid cell in
Fig. 1 and represents the relative intensity of each of the three threats when
considered jointly: climate change (proportion of species losing climatic
suitability); chytridiomycosis (probability of occurrence of chytridiomycosis);

and land-use change. For details on the quantification of threat intensities, see
Fig. 1 andMethods. Values of threat intensity are standardized to vary between
0 and 100%, and then transformed into relative proportions to add up to 100%
(division by the sum of the three threat intensities). Darker colours indicate
higher point densities.
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modelled presence of chytridiomycosis does not always cause local
declines or extinctions and interspecific as well as regional differences
in amphibian susceptibility to chytridiomycosis exist22. Fourth, the spatial
resolution of our analysis is relatively coarse, yet several factors allow

population persistence at finer scales (see also discussion in refs 23, 24).
In particular, our analyses disregard dispersal, biotic interactions and
adaptive potential, and rely on the assumption that coarse-scale projec-
tions from bioclimatic envelope models provide a good surrogate for
species’ climatic requirements at finer scales. However, in some cases,
species might persist owing to increased climatic stability in fine-grain
refugia25, or to local adaptations of amphibian populations26. Our pro-
jections thus providemeasurements of the exposure of global amphibian
species distributions tokey threateningprocesses but, because the species’
responses to these threats are not investigated, projections overestimate
the impacts of multiple threats on the persistence of local amphibian
populations (see also Supplementary Discussion).
Despite these uncertainties, our results reveal an intriguing pattern

of non-overlap between key threatening factors. The implication is
that risk assessments focusing on a single threat, such as just climate
change or only chytridiomycosis, are probably picturing an optimistic
view. As such, they fail to identify the key actions required to curb the
ongoing global decline in amphibian diversity. The low coincidence
between regions projected to have high prevalence of chytridiomycosis
and climate or land-use change emphasizes the potential for silent
extinctions away from the regions where the current human footprint
is larger. In turn, the higher coincidence between land-use and climate
change highlights the existence of potential synergies between the two
threatening factors that are often neglected18,27,28. The substantial over-
lap of threats with many of the world’s centres of amphibian richness
further underlines the pessimistic long-term perspective for global
amphibian diversity1,5. It reinforces the realization that prioritization
of conservation efforts needs to be based on knowledge of the spatial
distribution both of the different key threats and of biodiversity.

METHODS SUMMARY
To identify the regions with the highest projected impacts of climate change on
amphibian species, we fitted three familiar bioclimatic models for each of 5,527
species using an ensemble forecasting framework29. Climate data were extracted
from14differentGCMs (SupplementaryTable 2)30under three emission scenarios.
Across 5,041 23 2 degrees latitude–longitude cells, we identified species projected
to lose climatic suitability in each grid cell (‘climate losers’) in 2080 compared with
baseline conditions (1980).We thenmapped the proportion of climate losers out of
the total number of species per grid cell across the world. The probability of occur-
rence of B. dendrobatidis was obtained from a climate-based ensemble modelling
projection (data from ref. 17). To estimate land-use change, we used the proportion
of a grid cell projected to be actively transformed by humans in the presence of (but
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Figure 3 | Spatial distribution andpairwise overlap of the threemain factors
threatening global amphibian biodiversity, projected for the year 2080.
a, Climate change and chytridiomycosis. b, Climate change and land-use
change. c, Chytridiomycosis and land-use change. Colours indicate areas of
particularly high threat intensity. These areas are defined as the 25% of all grid

cells with (1) the highest proportion of species projected to lose climatic
suitability, (2) the highest projected probability of occurrence of
chytridiomycosis and (3) the highest proportion of land projected to be
converted from a natural to an anthropogenic state. For other details see Fig. 1.
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Figure 4 | Spatial overlap between areas with the highest amphibian species
richness and the main factors threatening global amphibian diversity,
projected for 2080. Areas with the highest species richness are defined as the
25%of all grid cells with thehighest number of species. Areaswhere high levels of
species richness coincide with high intensity of 1–3 of the main factors
threatening amphibian diversity are coloured in yellow, orange and red,
respectively (blue: no coincidence of high richness and high threat intensity). For
definitionof 25%areas ofhigh threat intensity and furtherdetails seeFigs 1 and 3.
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not necessarily driven by) a changing climate (data from ref. 19; procedure follow-
ing ref. 27).
Regions with highest projected impacts of climate change were identified as the

25% of the grid cells with the highest proportion of losers for each amphibian order.
We also used the 25% threshold to identify the areas with the highest species rich-
ness, as well as the regions with the highest projected incidence of chytridiomycosis
and the highest projected land-use change in 2080. We repeated the analyses using
threshold levels of 20% and 10% to assess the consistency of our results. Spatial
overlap among grid cells projected to be most affected was assessed by pairwise
comparisons of the three threat factors, and also in relation to the distribution of
regions with the highest levels of species richness.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Data.We fitted bioclimate envelope models (BEMs) for 5,527 amphibian species
from the three amphibian orders Anura (frogs and toads), Caudata (salamanders
and newts) and Gymnophiona (caecilians), which for simplicity are henceforth
referred to as frogs, salamanders and caecilians. Distribution data were compiled
from the Global Amphibian Assessment31. Polygons of species’ ranges were
resampled to a 23 2 degree latitude–longitude grid (referred to as the 2u-grid)
including 5,041 terrestrial cells (for maps of species richness, see Fig. 1a). This
resolution approximates the average of the original resolutions of the climate data
sets (see later).
Climatic data were obtained from the World Climate Research Programme

(WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model
data set30 of the Fourth Intergovernmental Panel on Climate Change (IPCC)
report. Data were derived from 14 coupled Atmosphere-Ocean GCMs and 3
emission scenarios (see Supplementary Table 2 for an overview of the used data
sets). Using this series of GCMswe encompass a wide range of equilibrium climate
sensitivity (ECS; 2.1–4.3 uC; see Supplementary Table 2 for details) and an array of
original spatial resolutions, from1.13 1.1 to 3.753 3.75 degrees latitude–longitude
in the original sets. Outputs for eachmodelwere obtained for three SRES32 emission
scenarios A1B, A2 and B1, but A2 and B1 scenarios were not available for all of the
GCMs (SupplementaryTable 2; see ref. 33 for a description of the different scenario
storylines). Inclusion of these three scenarios ensures that the models cover a wide
range of likely climatic changes.
For each of the GCMs and emission scenarios, five climatic variables were

obtained to characterize the baseline period (averaged across a 30-year time period
from 1970 to 1999) that was used to calibrate themodels. The same variables were
then used to make projections into a 30-year time period between 2070 and 2099,
subsequently referred to as 2080. The variables usedweremean annual rainfall and
precipitation seasonality, annual temperature range, minimum temperature and
maximum temperature. These variables are known to impose constraints on
amphibian physiology and survival34 and are often used to model amphibian
species distributions and richness12,35. All climate variables were resampled to
the 2u-grid.
By using a global extent approach and given the grain of our analysis, we (1)

avoid asserting artificial data quality by inappropriate downscaling of the climatic
data, and (2) minimize the problem of false absences in the species distribution
data36 as many species in the data set have only been identified in a few localities,
with no knowledge about the true occurrence of the species2. However, the coarse
resolution precludes detailed local assessments of threat interactions and pro-
cesses; therefore our focus is on documenting coarse spatial patterns.
Projections of the probability of occurrence of B. dendrobatidis were obtained

from climate-based consensus projections previously described17. These projec-
tions (standardized probability of occurrence given by a consensus of MaxEnt
BEMs across three GCMs and two emission scenarios; Supplementary Fig. 3) were
resampled to the 2u-grid by weighted averaging. In contrast to the climate change
and land-use change projections, for chytridiomycosis we did not use values of the
change of the probability of occurrence, as many regions are not infected yet by
chytridiomycosis, which makes the absolute value of probability of occurrence a
better estimate of future risk of B. dendrobatidis infection. For the subsequent
analyses, we used a consensus map calculated as the arithmetic mean across all
the projections (Fig. 1b). Generally, averaging across different scenarios may be
problematic. However, for practical reasons and because separate maps of the
variation of the probability of chytridiomycosis occurrence for each combination
of used GCM3 scenario did not show strong differences in the spatial pattern
(Supplementary Fig. 3), we used the consensus map.
For the projections of potential land-use change, we used data from the

Millennium Ecosystem Assessment20,37. The Millennium Ecosystem Assessment
uses four scenarios representing a variety of socio-economic and political futures
to estimate future changes in the Earth’s land-cover27 (‘Adapting Mosaic’, ‘Global
Orchestration’, ‘Order from Strength’ and ‘TechnoGarden’20). The Millennium
Ecosystem Assessment maps provide information on current and future distribu-
tions of 18 different land-cover types at a 0.5u latitude–longitude resolution. For a
quantification of potential land-use change we identified grid cells that are pro-
jected to change from a natural to an anthropogenic land-cover state (change of
any land-cover type to land-cover type 3 ‘cropland/permanent pasture’) and cal-
culated the proportion of area changed for each cell of our 2u-grid for 2080, as a
consensus map (arithmetic mean across all four scenarios, Fig. 1c) and separately
for each of the four scenarios (Supplementary Fig. 4). As for the projections of
chytridiomycosis, for practical reasons and because a separate use of different
Millennium Ecosystem Assessment scenarios does virtually not affect the results,
we used the consensus map in the subsequent analyses.
Modelling. Three different modelling algorithms, Euclidean distance (ED),
Mahalanobis distance (MD) and MaxEnt (MX), were used to run BEMs. These

presence-only algorithms were selected owing to the large number of species with
uncertain distributions or very small range sizes to be modelled (see also
SupplementaryDiscussion).The twodistance-basedmethods (EDandMD)measure
the similarity of each species’ occurrence to the mean (or centre) of the available
climatic space.Accordingly species’ niches are defined as circular (for ED) or elliptical
(for MD) shapes in climatic hyperspace38. BioEnsembles, a computer software
which is able to optimize and take advantage of high-speed parallel processing,
was used to run the ED and MD models39. MaxEnt version 3.2.440,41, a machine-
learning technique based on the principle of maximum entropy, was used to run
the MX models. In MaxEnt, we used a regularization multiplier of 0.5 (a model
parameterwhich allows for adjustment of the degree ofmodel overfitting), because
this value represents a balance between being able to fit models for species with
very few records while avoiding an unreliable degree of overfitting.

For each of the 5,527 species, we ran each possible modelling combination (3
modelling algorithms3 14GCMs3 3 scenarios3 2 time periods), which resulted
in 1,260,156 models (note that for some GCMs only two scenarios were available,
Supplementary Table 2). Standard BEMvalidation procedures were not applicable
in our study (but note that a validation for future scenarios is in any case not
possible42). However, we cautiously assessed patterns of variation in model results
that may have resulted from different sources of uncertainty, such as species with
small numbers of occurrence records, different modelling algorithms, and vari-
ation among GCMs that may result from different resolutions and equilibrium
climatic sensitivities, as well as different emission scenarios (see Supplementary
Discussion, also for discussion onmodel-inherent assumptions). All analyses were
performed separately for frogs, salamanders and caecilians.

Processing of modelling results. We used a no-dispersal scenario as the basic
underlying assumption for the further processing of the modelling results for two
reasons. First, it is unlikely that amphibians will be able to fully track changes in
climatic conditions by shifts of their distributional ranges43, in particular when
thinking of the coarse spatial scale of our analyses (see also our discussion of coarse
data implications in the Supplementary Discussion). Second, and more impor-
tantly, the ranges ofmany species are extremely small (see Supplementary Fig. 2 for
range-size frequency distributions). Because BEM projections can become un-
reliable for species with few occurrence records44–46, we refrained from projecting
a species’ range into areaswhere the species does not currently occur. Furthermore,
to avoid uncertainties associated with the choice of thresholds to convert raw
model outputs (that is, distance to the optimal centroids or probabilities of occur-
rence) into binary estimates of presence and absence47, we decided not to use any
type of thresholding. Instead, following ref. 48, we used the change in climatic
suitability that overlapped with species’ current ranges and disregarded suitability
or probability scores that did not overlap with existing records for the species. The
change in climatic suitability was then calculated as the difference of the climatic
suitabilities between current and future conditions (standardized MX probability
of occurrence or 1 minus the raw distance (standardized between 0 and 1) for ED
and MD, respectively; see Supplementary Fig. 5 for an example). This procedure
was repeated for each model combination (algorithm3GCMs3 scenarios) for
each species. Despite the standardization of values of suitability change to a range
from 0 to 1, the values are not quantitatively comparable across the different
modelling algorithms, which is due to general differences in distance-based (ED,
MD) and machine-learning (MX) algorithms as well as to software-inherent dif-
ferences (for histograms and maps of the mean changes of suitability per grid cell,
calculated as the means across all species, see Supplementary Figs 6 and 7).
Therefore we used a qualitative approach to identify the regions with the strongest
projected impacts of climate change on amphibian diversity48: for each model
combination, we counted the number of species per grid cell that (1) lose climatic
suitability (‘climate losers’: negative change in climatic suitability between current
and future conditions), (2) gain climatic suitability (‘climate winners’: positive
change in climatic suitability between current and future conditions) and (3) show
no change in climatic suitability between current and future conditions. Note that
doing so implies that species will be counted as ‘climate loser’ or ‘climate winner’
regardless of the magnitude of those changes, and that species may be identified as
losers in one grid cell and as winners in another. However, as we only analyse these
counts in categorical and aggregate form (that is, cells with the highest proportion
of losers) we expect results to be robust to this simplification and further provide
sensitivity analyses (see also Supplementary Discussion).

To identify the regions with the strongest projected impacts of climate change on
amphibian diversity, we built consensusmaps of theproportion of climate losers and
then identified the 25% of all grid cells with the highest proportion of losers (Fig. 3a).
Consensus maps were derived by calculating arithmetic means of the proportion of
climate losers across all model combinations (algorithm3GCM3 scenario) for
2080 (Fig. 1a).

Many studies have shown that species distribution modelling results can vastly
differ when using different GCMs, emission scenarios and algorithms49,50. To
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assess the uncertainties around the consensus, wemapped the proportion of losers
separately as arithmetic means (1) across all combinations of GCM3 algorithm
per scenario (Supplementary Fig. 8), (2) across all combinations of
GCM3 scenario per algorithm (Supplementary Fig. 9A–C), (3) across all combi-
nations of GCM3 scenario per combination of two algorithms (Supplementary
Fig. 9D–F), and (4) across all combinations of algorithm 3 scenario per GCM
(Supplementary Fig. 10). Furthermore, following a novel uncertainty assessment
protocol51, we assessed the proportion of variation explained by different sources
of uncertainty (algorithm, GCM, scenario, their interactions, and the residual
uncertainty) by variance partitioning (SS proportion in 3-way ANOVAs;
Supplementary Fig. 11), and mapped these proportions of uncertainty (see
Supplementary Fig. 12, ref. 51 and Supplementary Discussion for details). In
addition, we identified the 25% grid cells with the highest proportion of climate
losers separately for eachmodel combination and calculated thenumber ofmodels
per grid cell that identified this grid cell as one of the 25% with the highest
proportion of losers. These overlap maps were constructed for each possible
algorithm combination (ED3MD3MX; ED3MD, ED3MX, MD3MX;
ED, MD, MX) to assess also the amount of uncertainty that is associated with
the use of one, two or three modelling algorithms (Supplementary Fig. 13).

Spatial overlap of different threats.To investigate the spatial overlap of different
threats for amphibian diversity, we identified the regions with the highest pro-
jected impact for each of the respective threat: 25% of all grid cells with the highest
proportion of climate losers (red areas in Supplementary Fig. 1A), 25% of all grid
cells with the highest probability of occurrence ofB. dendrobatidis (orange areas in
Supplementary Fig. 1B), and the grid cells with a projected land-use change of at
least 25% of the total area (green areas in Supplementary Fig. 1C). All of these
calculations were based on the consensus maps derived using the procedures
explained above. For statistical analyses of threat overlap, see Supplementary
Methods and Supplementary Table 1.
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