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Value-based decision making in complex environments, such as those with uncertain

and volatile mapping of reward probabilities onto options, may engender computational

strategies that are not necessarily optimal in terms of normative frameworks but

may ensure effective learning and behavioral flexibility in conditions of limited neural

computational resources. In this article, we review a suboptimal strategy – additively

combining reward magnitude and reward probability attributes of options for value-

based decision making. In addition, we present computational intricacies of a recently

developed model (named MIX model) representing an algorithmic implementation of the

additive strategy in sequential decision-making with two options. We also discuss its

opportunities; and conceptual, inferential, and generalization issues. Furthermore, we

suggest future studies that will reveal the potential and serve the further development of

the MIX model as a general model of value-based choice making.

Keywords: additive strategy, uncertain and volatile environment, normalized utility, state belief, value-based

decision making, one-armed bandit task, MIX model

INTRODUCTION

A fundamental assumption in classical economics is that reward magnitudes and reward
probabilities (computational components), following the expected utility theory (von Neumann
and Morgenstern, 1947), are integrated in optimal way, that is,multiplicatively, for deriving option
values andmaking choices. To explain systematic violations of optimal decisionmaking in humans,
behavioral economists have developed the prospect theory (Kahneman and Tversky, 1979).
According to this theory, humans perform optimal combination (integration) of computational
components, as described in the expected utility theory, but make computations operating on
distorted representations of rewards and their probabilities (subjective valuation). This approach
cannot dissociate the sub-optimality of the computation and the distortion of computational
components since the suboptimality can be hidden behind variations in distortions. Hence, the
prospect theory may lead to models that fit human choices but are not indicative of underlying
computational mechanisms. This tends to undermine the core aim of behavioral economics, that
is, to understand human behavior per se, and limit the potential of model-based studies of neural
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mechanisms (Love, 2015). A recent study (Rouault et al., 2019)
hypothesized an alternative view, that is, the additive strategy
of option value derivation (MIX model) and contrasted it with
both the multiplicative strategy (OPT model) and the subjective
valuation (DISTmodel). The key aspects of the models are shown
in Figure 1.

According to the OPT model, the probability p of choosing an
option varies with the expected value of the choice option based
on multiplying its reward magnitude and reward probability
(leftmost panel of Figure 1). Following the conventional
reinforcement learning (RL) framework, we assume agents
observe options available in the environment; make a choice
acting in the instructed way for that; and receive reward.
The latter is both the reinforcer and the feedback information
about the environment (the reward hypothesis). This means
we focused on how the reinforcer guides behavior but not on
what exact utilities are obtained from the options (Juechems
and Summerfield, 2019). That is why, we consider the optimal
combination of reward magnitude and reward probability
attributes as a variable guiding behavior in the OPT model.
The DIST model assumes that the probability p of choosing
an option varies with the subjective expected value of the
choice option based on multiplying the subjective estimates of
the reward magnitude and reward probability (middle panel
of Figure 1). Whereas the MIX model hypothesizes that the
probability p of choosing an option varies proportional to
the linear combination of the state belief (rationally derived
mapping of reward probabilities onto choice options) and the
normalized utility associated with the choice option. Parameter
ω weighs the contribution of the state belief against the
normalized utility to the choice probability p (rightmost panel
of Figure 1). Hence, ω can be viewed as an analog of
the risk-aversion measure in the expected utility framework.
Relatively high values of parameter ω favor high reliance on
state beliefs compared to utility information, thus yielding
relatively safe choices, whereas the opposite indicates risk-
seeking choices. Both state beliefs and utilities of choice options
are derived through a multi-step computational algorithm,
which as it was shown by Rouault et al. (2019) represent
a mechanistic neurocomputational account of human choices
in an uncertain and volatile environment of value-based
decision making.

In the next section, we review behavioral and neural
findings supporting the additive strategy hypothesis of value-
based decision making and the rationale behind the additive
strategy. To make clear the reasoning behind choices, we
next present the algorithmic implementation of the MIX
model as well as those of the DIST and OPT models.
Conceptual connections of the free parameters of the models
are explained. Afterward, we discuss research questions and
opportunities in light of the sub-optimal computational strategy
of additively combining state beliefs and normalized utilities;
and briefly address conceptual and inferential issues arising
from the shift of the framework of human behavior estimation
from the subjective valuation to the additive strategy. In
the final section, we specify main directions for further
development of the MIX model which would allow us to

generalize it to more complex and real-life environments of
decision making.

ADDITIVE STRATEGY FITTING HUMAN
CHOICES

Rouault et al. (2019) used a sequential decision-making task
(Dayan and Daw, 2008), where subjects were not provided with
information about reward probabilities but could learn them over
trials. Subjects also had to adjust their choices as the reward
probabilities switched between options over a random number
of trials. Thus, the authors used a variation of the one-armed
bandit task (hereafter, MIX task), which recreated an uncertain
(reward frequencies were not known to subjects) and volatile
(switches were not signaled to subjects) environment of decision
making (unstable uncertainty). The structure of a typical trial is
presented in Figure 2A and the implementation of uncertainty
and volatility is schematically explained in Figure 2B

Rouault et al. (2019) found that the MIX model (reflecting the
additive strategy) accounted for human choices better than the
OPT and DIST models did although choice simulations of the
DIST model were quite close to human choices (subjects acted
as if they followed the subjective valuation model). The study
also showed the neural signature of the MIX model. The brain
region that exhibited activations varying with decision entropy
according to the MIX model was the dorsomedial prefrontal
cortex (dmPFC). Besides, its activation decreased when state
beliefs or normalized utilities associated with chosen options
increased, with no interactions between these two effects. These
neural findings are strong evidence that the dmPFC guides
choices and computes them through combining normalized
utilities and state beliefs additively as proposed by the MIX
model.1 On the other hand, no neural evidence was observed
to support the notion of subjective probabilities assumed in the
DIST model. Taken together, these findings provide significant
evidence that behavioral models of expected utility with multiple
distortions of computational components may fit human choices
but they do not necessarily reflect the reasoning behind (neural
and computational mechanism of deriving and making choices).
In several previous studies with various value-based decision-
making tasks (Kolling et al., 2014; Scholl et al., 2015) or various
protocols of the MIX task (Donahue and Lee, 2015) researchers
have also noticed that humans’ and non-human primates’ choices
are better explained by models which derive option values as
linear rather than optimal combinations of reward magnitude
and reward probability attributes. Furthermore, a recent study
(Farashahi et al., 2019) which utilized an experimental paradigm
close to the MIX task and was conducted with primates both
human and non-human reported findings largely coinciding with
and complementing conclusions by Rouault et al. (2019).

In a complementary study, Farashahi et al. (2019) used
a gambling task (requiring decision making under risk), a

1The encoding of computational components (state beliefs and normalized
utilities) and their constituents (the reinforcement learning values and proposed
rewards) are also described by Rouault et al. (2019)
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FIGURE 1 | Probability of choosing an option according to classical economics view (the leftmost panel), behavioral economics view (the middle panel), and a

recently developed MIX model (the rightmost panel).

mixed learning task (requiring decision making under stable
or volatile uncertainty), and probabilistic reversal learning tasks
(PRL, requiring decision making under low or high volatility).
The authors proposed a hybrid model that comprises both
additive and multiplicative strategies, with a free parameter
weighing their relative contribution to choices. Accordingly,
parameter estimation allowed the authors to measure the relative
contribution of the additive and multiplicative strategies; and
within the additive strategy, to measure the relative contribution
of reward magnitudes and reward probabilities to choices.
Farashahi et al. (2019) found that both monkeys and humans
predominately adopt a multiplicative strategy under risk (reward
probabilities are provided explicitly). And both switch to an
additive strategy under uncertainty (reward probabilities are not
provided explicitly and should be learned). Moreover, Farashahi
et al. (2019) found that within the additive strategy, both humans
and monkeys increasingly rely on reward magnitudes relative to
probabilities as the environment changes from stable uncertainty
to low volatility and from low to high volatility. Hence, the
volatility level appears to affect the level of reliance on reward
magnitudes relative to probabilities, whereas the multiplicative
relative to additive strategy is used according to the availability of
probability information: if explicitly provided, both humans and
monkeys appear to predominantly use themultiplicative strategy;
otherwise, the additive strategy is adopted regardless of whether
the uncertain environment is stable or volatile. Farashahi et al.
(2019) also found that the changes in the difference between
reward magnitudes of options were associated with changes
in the activation of dorsolateral prefrontal cortex. Importantly,
the strength of the association increased with the increase of
the behavioral weighting of the reward magnitude relative to
the reward probability under high volatility. So, the change
of the neural signal associated with the difference of options
with respect to their reward magnitudes is accompanied by
the change of subjects’ reliance on that information. Consistent
neural findings are reported by a previous study with PRL task in
non-human primates (Donahue and Lee, 2015;Massi et al., 2018).

How findings by Farashahi et al. (2019) and Rouault et al. (2019)
are related is discussed next.

The results of the two studies coincide in finding that humans
adopt an additive computational strategy when making choices
under uncertainty. The additive strategy was dominant under
uncertainty not only in condition of stable reward frequencies
but also in conditions of low and high volatility of reward
frequencies, as reported by Farashahi et al. (2019). Furthermore,
Farashahi et al. (2019) provides rich evidence of variations in
human behavior by manipulating the level of volatility and by
manipulating the environmental uncertainty vs. riskiness. The
hybrid model applied by Farashahi et al. (2019) is a composition
of hierarchically nested computational strategies and effectively
captured behavioral switches between those strategies without
revealing the neurocomputational mechanism of the switches
but allowing for linear and non-linear transformations of
computational components. Whereas Rouault et al. (2019)
proposes a mechanistic account – a multi-step computational
algorithm of deriving computational components upon which
the additive strategy is implemented. As such, the MIX model
extends the evidence in support of the additive strategy to
the reasoning behind, specifically, processing of incomplete
information from the environment into choice making; learning
the environment; and adapting to changes in it. A key step
of the MIX algorithm is the normalization of utilities, which
makes them commensurable to state beliefs like probabilistic
variables (see the justification of the step in section “Algorithmic
Implementation of the Additive Strategy”) and mitigates the
influence of very large rewards with very low probability.
Importantly, the OPT model (the optimal combination) with
normalized utilities and state beliefs (rationally derived under
uncertainty) is equivalent to the sum of normalized utilities
and state beliefs with a specific value of the weight parameter
ω in the MIX model. And since Rouault et al. (2019) found
that the average estimate of the parameter ω was significantly
higher than its critical level whereby the MIX model reduces
to the OPT model with utilities normalized across choice
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FIGURE 2 | (A) Trial structure. In each trial, subjects see two forms (options), a diamond and a square, each proposing a reward in euros randomly chosen from the

set {2, 4, 6, 8, and 10}. After making a choice, subjects only see the chosen option on the screen, followed by a display of the outcome of the choice in the center of

the screen. The average duration of a trial was 4.15 s. After displaying two available options on the screen, subjects were given 1.5 s for thinking and responding by

pressing one of two instructed buttons on the keyboard, left button for choosing the option on the left side of the screen and right button for choosing the option on

the right side of the screen. The outcome of the trial was displayed 1.0 s. The delay of the outcome display was 0.1–0.2 s. The inter-trial delay was 0.4–0.6 s.

(B) Experimental design. The outcome could be zero or equal to the proposed reward (shown on the first screen of each trial) with some probability that subjects

were not informed about. However, they could derive the reward frequencies through experience. By experimental design, 20 and 80% reward frequencies were

assigned to two options and switched between them after a random number of trials (16, 20, 24, or 28). Subjects were not informed about switches but could

detect them throughout the experiment based on feedbacks (outcomes). Each subject went through 19 switches of reward frequencies, which divided the task into

20 episodes (a series of trials within which no change of reward frequencies occurs).

options, they proposed the MIX model is a general model that
encompasses the OPT model as a special case. This ensures
the MIX algorithm has the capability of detecting behaviors
resorting to the OPT model, hence it is also not devoid of
flexibility of the composite design of the hybrid model by
Farashahi et al. (2019). However, the MIX model was tested and
contrasted with classical economics and behavioral economics
views, both behaviorally and neuraly, only at one volatility
level of an uncertain environment. Probed in various decision-
making contexts [environments which are known to give rise
to behavioral variations formulated as cognitive phenomena

(particularly, loss aversion, reference-dependency) underlying
the suboptimality according to the prospect theory (the subjective
valuation model)] and supported by neural evidence, the MIX
model purports to be the general neurocomputational model of
value-based decision-making.

Several other studies have provided empirical evidence in
support of the additive model as opposed to the multiplicative
model in fitting human and non-human primates’ choices
in PRL tasks and enriched evidence of behavioral variations
in light of the additive strategy while varying the level of
uncertainty (closeness of reward frequencies of two options)
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and environmental volatility (frequency of switches of reward
probabilities between two options). Particularly, Blain and
Rutledge (2020) found that a parameter weighting the
contribution of reward probability information against the
reward magnitude information decreased as the environmental
volatility increased. Indirect evidence in support of this is
the finding that the increase of environmental volatility is
accompanied by the increase of the RL rate (Behrens et al.,
2007; McGuire et al., 2014; Blain and Rutledge, 2020). So,
subjects speed up the learning as the acquired mappings expire
quickly. This is exactly what was found by Farashahi et al. (2019);
follows the reasoning by Findling et al. (2021) and is designed to
emerge through the MIX model. Specifically, the MIX algorithm
rationally updates beliefs about reward probabilities of options
as the environment unfolds within trials (see the first and second
update of state beliefs in the MIX algorithm in the next section)
and across trials (see the third update of state beliefs according to
the MIX algorithm). And, the MIX algorithm assigns a measure
of reliance on those rationally derived beliefs. Conceptually, the
state belief update in the MIX model resembles a combination
of evidence-triggered updating and change point estimation of
environmental volatility (Gallistel et al., 2014). Alternatively,
another study (Farashahi et al., 2017) which also confirmed the
additive strategy of reward magnitude and reward probability
combination in a protocol close to the MIX task for non-human
primates (Donahue and Lee, 2015), proposed a hierarchical
structure between the learning of the environmental volatility
and the update of option values. So, the additive model manifests
as the strategy of option value derivation regardless of the state
belief derivation model. Overall, the evidence in support of
the additive computational strategy raises concerns regarding
conclusions of behavioral and neural studies of decision making,
which imply but do not explicitly check whether human choices
follow variations in the expected utility (Holt and Laury, 2002;
Christopoulos et al., 2009; Glimcher and Fehr, 2014; Blankenstein
et al., 2017; Blankenstein and van Duijvenvoorde, 2019). Hence,
further studies are needed that would allow us to rethink the
value-based decision making. In the upcoming sections, we
discuss issues and opportunities for such studies. Before that let
us review the rationale behind the additive strategy hypothesis.

The additive strategy hypothesis claims reward magnitude
and reward probability attributes independently contribute to
choices. Particularly, accordingly to the MIX model, choices are
guided by state beliefs (choose the most frequently rewarding
option), whereas normalized utilities act as additional appetitive
values of choice options [based on an efficient coding mechanism
of context-dependent value normalization (Carandini and
Heeger, 2012; Louie et al., 2013)]. As such, the additive strategy
hypothesis doubts the complex cross-product process of optimal
integration of reward magnitudes and reward probabilities under
uncertainty. As claimed by Farashahi et al. (2019), the latter
results in an integrated value difficult for revisions, whereas
derivation and multiple updates of states beliefs are required.
The additive strategy implies to separately compare options in
each of the two dimensions and flexibly adjust the reliance on
the reward probability attribute (the attribute under uncertainty)
relative to the reliance on the reward magnitude attribute.

So, it is advantageous for learning and choice making under
uncertainty. This interpretation by Farashahi et al. (2019) is
consistent with the finding by Rouault et al. (2019) that the
parameter ω weighting the reliance on the probability attribute
vs. magnitude attribute was not 0.5 (mean estimate was 0.69, and
the standard error of mean was 0.06 across subjects). And the
reliance on reward probabilities decreased with the increase of the
environmental volatility as reported by Farashahi et al. (2019). So,
subjects predominantly relied on the reward probability attribute
(the derived belief about them) under uncertainty (an indication
of risk-aversion) and reduced that tendency as the derived state
beliefs were discredited by the increased environment volatility.
Finally, as noticed by Koechlin (2020), an experimental condition
when subjects are explicitly instructed about reward probabilities
corresponds to a hyper-volatile situation (each trial is unrelated to
the preceding ones). And in such condition, choices confirming
the subjective value hypothesis still adhere to an additive strategy
with equal reliance on reward probability and reward magnitude
attributes. So, the additive strategy is a heuristic, an adaptive
behavior in uncertain and volatile environments which endows
with efficiency in inferring external contingencies and flexibility
in making choices.

ALGORITHMIC IMPLEMENTATION OF
THE ADDITIVE STRATEGY

The computational algorithm of the MIX model is schematically
presented in Figure 3. According to the MIX model, the
probability (p) of choosing an option varies with its state belief2

(B), whereas the option’s utility (v) additively contributes to that
choice probability:

p ∼ ω∗B+ (1− ω )∗ ν,

where, parameter ω is the relative reliance on state
belief information.

After the derivation of choice probabilities, the MIX
algorithm assumes soft-max rule of option selection with inverse
temperature β (Acerbi et al., 2014) and lapse rate ε in order to
incorporate the tendency of occasionally choosing a low value
option (as exploration or incorrect button pressing).

pi = (1− ε)∗
exp(β∗(w∗Bi + (1− w)∗vi))

∑

i=1,2
exp(β∗(w∗Bi + (1− w)∗vi))

+
ε

2
,

where, i = 1,2. From here, we can derive that the decision variable
relating choice probabilities of the available options, the log-
odds of two options, log p1

p2

, varies with the sum of the difference

between utilities (v1 andv2 ) and the difference between state
beliefs (B1 and B2 ) of two options assuming ε<<1.

log
p1

p2
∼ ω∗(B1 − B2)+ (1− ω)∗(v1 − v2)

2In uncertainty, subjects do not possess explicit information about reward
probabilities, hence, they are guided by beliefs, estimates of reward
probabilities of options.
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FIGURE 3 | Scheme of the computational algorithm of the MIX model.

The MIX model incorporates option value learning into the
computational algorithm rather than presumes the proposed
rewards (OPT model) or the distorted rewards (DIST model)
as values. Specifically, the learning passes through observing
proposed rewards of choice options; adjusting values of choice
options according to feedbacks (outcomes of choices) via RL;
deriving utilities of choice options as a linear combination
of proposed rewards and RL-values; and finally, normalizing
utilities of choice options. At the choice between options in a trial,
utilities of choice options are weighted averages of the RL-values
(νRL) and proposed rewards (νPR):

vi =
ϕ∗ vPRi +(1− ϕ)∗ vRLi

6
i
(ϕ∗ vPRi +(1− ϕ)∗ vRLi )

,

where, parameter ϕ is the reliance on the proposed rewards
relative to the RL-values (weighs proposed rewards in the current
trial against learned values up to the current trial), and i = 1, 2
denoting choice options. The RL-value of the chosen option is
updated according to the Rescorla–Wagner rule (Rescorla and
Wagner, 1972) with learning rate parameter α as follows:

νRL ← νRL + α∗ (reward − νRL).

Importantly, the MIX model assumes divisive normalization
of utilities of the available options before integrating them into
the decision variable computation. Rouault et al. (2019) suggested
that the context-dependent divisive normalization mechanism
(Louie et al., 2015) could underlie the distortion of monetary
rewards hypothesized in the subjective valuation. As previously
observed, the normalization is applied to various problems across
many brain regions, modalities, and systems (Carandini and
Heeger, 2012). Particularly, higher-order cortical areas involved
in valuation signaling demonstrate spatial context-dependence:
the neural signal of an option value depends not only on the

value of that option but also on the value of alternative options
(Louie et al., 2013). Removing the divisive normalization over
utilities in the model MIX degraded the fit as reported by
Rouault et al. (2019), which confirms the normalization as a
step in the computational algorithm of learning and choice
making. Similarly, the reduced variations of the model MIX,
particularly, pure RL and no RL compositions of utilities were
inferior to the full MIX algorithm in their fitting human choices.
Importantly, Rouault et al. (2019) found that the dmPFC which
encoded variations in the decision variable (computes choices)
exhibited activations associated with normalized utilities but not
with its value components, the proposed rewards and the RL-
values. Combining this finding with the linear association of
changes in the proposed rewards (a prospective value) and the
RL-values (a retrospective value) with changes in the activations
of vmPFC and lateral orbitofrontal cortex, respectively, Rouault
et al. (2019) concluded linear combination of two reward-related
variables (functionally distinct components of an option value)
into normalized utilities of choice options.

State beliefs are inferred as they would be inferred by a
rational agent (OPT model). Specifically, under uncertainty state
beliefs are updated as the subject gets new information from the
environment: first, when subjects observe the proposed rewards:

Bi ← e
γ∗(vRPi −v

PR
(3−i)) ∗ Bi,

where, i = 1, 2, and parameter γ is the interdependence bias
between reward frequency and reward magnitude;

second, when subjects see the outcome of their choice:

B1 ← qI∗(1− q)(1−I)∗B1andB2 ← (1− q)I∗q(1−I)∗B2,

where, I is the binarized outcome (zero or non-zero outcome),
and parameter q is the reward frequency of the best option (the
one with the highest reward frequency);

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 704728

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Ghambaryan et al. Additively Combining Utilities and Beliefs

third, at the completion of a trial according to environmental
volatility, the probability of switching reward frequencies
between two successive trials (Behrens et al., 2007):

B1 ← (1− vt)∗B1 + vt∗B2andB2 ← vt∗B1 + (1− vt)∗B2,

where, parameter vt is the environmental volatility. Free
parameters of the MIX model are summarized in Table 1.

In the recreated volatile and changing environment of theMIX
task, a rational agent would follow the OPT model where reward
probabilities (state beliefs) are learned through rational updates
according to evolving information in the feedbacks upon choices.
The expected utilities (EU) in the OPT model are derived by
integrating reward probabilities and values:

EUi = V∗i Bi,

where, V and B denote proposed rewards and state beliefs,
respectively, and i = 1, 2.

In a subjective valuation model (model DIST) the choice
derivation repeats that in the OPT model except that the
computations are based on distorted probabilities and distorted
values. The distortions are implemented using a distortion
function by Zhang and Maloney (2012),

log

∼

x

1−
∼

x
= η∗ log

x

1− x
+ (1− η)∗ log

x0

1− x0
,

where, xis the distorted value of a variable x (probability
or value); parametersη>0 and x0 (0<x0<1) specify distortions:

η>1specifies S-shaped distortion, η<1 specifies inverted S-shaped
distortion, η=1means no distortion; x0→0and x0→1specify convex
and concave distortions, respectively.

The total number of free parameters of MIX, OPT, and DIST
models are 8, 5, and 9, respectively. This means the models
MIX and DIST are comparable in their complexity of explaining
systematic deviation of subjects from the optimal model. Rouault
et al. (2019) maximized model likelihoods when estimating free
parameters of models and selected the best model in fitting
human choices according to the Bayesian Inference Criterion.

Inferences about behavior with theMIXmodel revolve around
the following parameters of the model:vtα, ϕandω. Putting them
in a common algorithmic interdependence, the MIX model
turns into a tool for studying variations in decision-making
mechanisms. The RL rate α, which is an estimate of the
options’ value update according to new outcome observations,
has previously been shown to be affected by the level of
environmental volatility (Behrens et al., 2007; Blain and Rutledge,
2020). Parameter ϕ indicates how much one relies on a learned
value of an option when facing a next proposed reward
from that option. So, both α and ϕ may be affected by
the environmental volatility: α – retrospectively when relating
current factual outcome observations to those in the past, and
ϕ – prospectively when relating proposed rewards to what
has been learned up to the present trial. Furthermore, treating
volatility vt as a free parameter, the MIX model allows explicitly

estimating subjects’ inference of the environmental volatility.
Eventually, parameter ω (more precisely, its complement, one –
ω) indicates to what extent one considers the option utilities
derived via the chain of computations described above. If a
person predominantly relies on state beliefs or normalized
utilities, a tendency analogous to risk aversion or risk-seeking will
be suggested, respectively.

Manipulating environmental settings (magnitude and
frequency of rewards; levels of uncertainty and volatility of
reward magnitude and reward frequency attributes of options;
gain versus loss representation of rewards; task goals for
subjects, etc.), one can induce context-dependent changes
in choice preferences of subjects and associate them with
variations in model parameters. Inferences about behavioral
changes and underlying mechanisms can then be made (a)
based on variations in the strength and directionality of
correlations between parameters across experimental conditions;
(b) based on variations in model parameters’ configuration
within subjects with similar behavior according to model-
independent measures; and (c) by comparing sensitivity to
changes in reward magnitude and/or probability attributes
of options, especially in trials where they suggest opposite
preferences. The latter may reveal non-linear thresholding
mechanisms underlying the preferential weighting of reward
magnitude and probability attributes of options (Koechlin,
2020). Using these experimental and analysis opportunities
of the MIX task and algorithm, one can undertake studies
for deeper understanding of behavioral variations and further
develop the MIX model as an analytical tool for value-based
decision making.

FUTURE STUDIES. CONCEPTUAL AND
INFERENTIAL ISSUES

The MIX model, representing a multi-step computational
algorithm of the additive strategy was tested in an uncertain
and volatile environmental which was close to the low volatility
condition of experiments by Farashahi et al. (2019). A follow-up
study is required where the MIX task is performed in conditions
of low and high volatilities as well as in conditions of low and
high uncertainty. The aim is to check whether the results are
consistent with the behavioral variations reported by Farashahi
et al. (2019) and others (Farashahi et al., 2017; Massi et al., 2018;
Blain and Rutledge, 2020) and find out which MIX parameters
capture those variations with the perspective to associate them
with activation variations in the prefrontal cortex.

Despite the consensus and even the theorizing of the
divisive normalization (Steverson et al., 2019), we suggest an
experimental design with small and large reward magnitudes
would allow explicitly checking the utility normalization step
of the MIX algorithm and importantly, consider the impact of
stake size on uncertainty aversion both in gain and loss domains
of reward representation (Bouchouicha et al., 2017); check the
reward magnitude’s impact on learning (Wu et al., 2017) and
rethink interindividual variability of risk aversion (Fehr-Duda
et al., 2009; Kolling et al., 2014; Harrison et al., 2017). The results
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TABLE 1 | Free parameters of alternative models.

MIX model OPT model DIST model

Environmental volatility, νt Environmental volatility, νt Environmental volatility, νt

RL rate, α

Parameter weighing the proposed reward

against the RL-value,ϕ

Bias of reward frequency depending on the

proposed reward of the option, γ

Bias of reward frequency depending on

the proposed reward of the option, γ

Bias of reward frequency depending on the

proposed reward of the option, γ

Parameter weighing the state belief against the

normalized utility of the option, ω

Lapse rate, ε Lapse rate, ε Lapse rate, ε

Inverse temperature, β Inverse temperature, β Inverse temperature, β

Reward frequency of the best option, q Reward frequency of the best option, q Reward frequency of the best option, q

S-shaped or inverted S-shaped distortion of

probability, ηp

S-shaped or inverted S-shaped distortion of

reward, ηr

Convex or concave distortion of probability, x0p

Convex or concave distortion of reward, x0r

of these studies will outline the plausibility of the MIX model
algorithm and will lay the groundwork for future studies with
the aims to integrate the MIX model in the decision theory as
a general analytical model.

As for discovering the potential of the MIX model in
capturing behavioral variations, studies with a gain-versus-loss
representation of rewards, studies with and without a target
cumulative gain are suggested. With the application of the MIX
model these studies will enrich the current understanding of
the risk-aversion variability, also the loss aversion, reference
dependence, and diminishing sensitivity–cognitive phenomena
constituting in the variability and suboptimality of human
choices according to the prospect theory and replicated in
further studies (Kahneman and Tversky, 1979; Halevy, 2007;
Johnson and Busemeyer, 2010; Ruggeri et al., 2020), from
the perspective of underlying computational mechanisms (the
reasoning behind). Moreover, designed as decision making under
risk or uncertainty, the suggested studies will allow distinguishing
computational and neural mechanisms of behavior under the
two settings (Tobler et al., 2007). Once the MIX model is
confirmed to effectively account for the behavioral variations
in response to environmental changes, it can underlie further
model-based analysis of neural data and draw a general
neural computational mechanism of the choice variability and
suboptimality in the prefrontal cortex as advancement of what
has been found by Rouault et al. (2019) and others (Tobler
et al., 2009; Kolling et al., 2014; Chen and Stuphorn, 2018; Massi
et al., 2018; Soltani and Izquierdo, 2019; Jezzini et al., 2021;
Trudel et al., 2021).

Conceptual and Inferential Issues
We suggest two inferential directions for future studies
to follow: (a) test the MIX model for responsiveness to
behavioral variations, and (b) test for the presence of certain
behavioral variations in decision making under uncertainty
with the application of the MIX model. The two directions

are tightly interrelated and can be designed into the same
study. However, they emanate from opposite premises, and
the following inferential issue should be considered. Direction
(a) presumes that certain behavioral variations are present in
decision making under uncertainty. Hence, the MIX model is
tested on the ability to detect them via its free parameters.
By contrast, direction (b) presumes that the MIX model is
the appropriate model of behavior under uncertainty. Hence,
it can be used for detecting behavioral variations through
variations in its free parameter estimates. The abovementioned
is an issue of controlling confounding effects. Utilizing model-
independent measures of behavioral variations in direction
(a) (orange in Figure 4) and determining the best model
among alternatives in direction (b) (blue in Figure 4) may
resolve the issue. Model-independent measures will justify the
search for corresponding evidence in the MIX parameters
[direction (a)]. The better fitting to human behavior by
the MIX model compared to alternative models will justify
the search for behavioral variations in the MIX parameters
[direction (b)].

Possible model-independent measures are: (1) variations in
learning dynamics (curves) and (2) significance of reward
frequencies and proposed rewards for a choice via regression
analysis. The former will reveal general variations in behavior
(number of trials before reaching learning curve plateaus, correct
choice proportion at learning curve plateaus), and the latter will
suggest the reliance on the reward magnitude attribute relative
to the reward probability attribute of options. Importantly,
the analysis via model-independent measures is limited for
two main reasons. First, the abovementioned measures are
not specific to a specific behavioral variation; rather, they are
general indicators of behavioral variations. Second, the use of
measures from normative frameworks of human behavior is
related to the following conceptual issue. If humans follow the
MIX algorithm for learning and action selection, they are not
supposed to reason in terms of EU or subjective values that
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FIGURE 4 | Research directions for the loss aversion as an exemplar behavioral variation compared with choices when outcomes are presented in gain domain.

Directions (a) and (b) are presented in orange and blue, respectively.

are inexorably linked to multiplicative integration strategies.
Alternatively, humans may continue computing them while
processing outcomes and actions (for instance, tracking them
as metacognitive landmarks) but act in accordance with the
MIX algorithm and switch to EU (or subjective values) only
when the reliability of the latter is high enough (suggesting
a dynamic switching between computational models (Steyvers
et al., 2009; Rushworth et al., 2012; Wan Lee et al., 2014;
O’Doherty et al., 2021). Both cases restrain us from the direct
use of behavioral measures inherent to the expected utility
or subjective valuation frameworks. Instead, risk-taking, loss-
aversion, and other measures should be defined in terms of
parameters of the MIX parameters which, in turn, is an essential
research problem in light of the consistent elicitation of the
additive strategy.

Further Development of the MIX Model
In the current experimental protocol of the MIX task, the PRL
task modified into an uncertain and volatile environment
is employed, where reward frequencies of options are
anti-correlated and stable throughout the experiment, and
only the mapping between options and reward frequencies
changes episodically. Modifying the MIX task into a more
complex decision-making environment mimicking real-life
situations and advancing the MIX algorithm to fit the human
adaptive computational inferences will essentially contribute
to current efforts in search of adaptive behavior models in
environments where optimality is computationally intractable
and physiologically implausible (e.g., Drugowitsch et al., 2016;
Bossaerts and Murawski, 2017; Kwisthout and van Rooij, 2020).

The availability of only two options in the MIX task is an
essential simplification of a decision-making environment,
moreover, it may motivate the use of the heuristic of the
additive strategy to take advantage of simple comparisons and
learning of one option based on feedbacks of choosing the
other option (Donahue and Lee, 2015). The MIX algorithm
can trivially be generalized to a PRL task with more than two
options. However, humans (and monkeys) may engage in
sophisticated strategies of exploration and choice making (Daw
et al., 2006; Payzan-LeNestour and Bossaerts, 2011; Gershman,
2019), thus challenging the MIX algorithm. Therefore, an
empirical study with, for instance, three choices in the MIX
task would test the applicability of the MIX algorithm or

underlie its further development. Other generalization issues
may arise if reward probabilities of relatively high- and low-
ranked options are set to vary throughout the experiment.
The strength of preferences for options may become volatile
and not necessarily follow the true ranking (Gans et al., 2007;
Yu and Cohen, 2009). Similarly, sensitivity to variations in
proposed rewards of options are worth considering (Lauriola
and Levin, 2001). Another critical research question is how
the MIX model and its whole computational algorithm can
be extended to environments with continuous rewards. Here,
the generalization problem is the problem of binning rewards
given computational and memory limitations of humans,
especially in case of variations in environmental contingencies.
So, endowing the experimental decision-making environment
with features effectively mimicking real-life situations, engender
new adaptive behaviors in subjects and advance the search for
neurocomputational algorithms.

SUMMARY

The findings by Rouault et al. (2019) and Farashahi et al. (2019)
have substantially extended behavioral and neural evidence that
monkeys and humans employ an additive strategy of weighting
reward magnitude and reward probability information into
a decision variable in uncertain and volatile environments.
Moreover, Rouault et al. (2019) have developed a learning
and action selection algorithm by integrating distinct aspects
of agent–environment interactions; confirmed it as a general
model of value-based decision making encompassing the
optimal model as a special case; and rejected the subjective
value model, importantly, supporting the conclusions with
both behavioral and neural evidence. The computational
algorithm of the MIX model renders an analytical tool
for studying the value-based decision making and modeling
its underlying neural mechanisms in the prefrontal cortex.
Further studies are needed to test and refine the MIX
model in effectively accommodating behavioral variations
and explaining corresponding neural activations in response
to variations in the decision-making environment. Finally,
gradually relaxing simplifications of the MIX task will allow
us to generalize the MIX model to complex real-life decision-
making environments.
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