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Abstract— Fresnel zone plate (FZP) lens antenna, consisting
of a set of alternative transparent and opaque concentric rings
arranged on curvilinear or flat surfaces, have been widely used
in various fields for sensing and communications. Nevertheless,
the state-of-art FZP lens antennas are limited to a single band
due to the frequency-dependent feature, which hinders their
use in multi-band applications. In this work, a shared aperture
dual-band FZP metalens antenna is proposed by merging two
single-band FZP metalens antenna operating at distinct fre-
quency bands seamlessly into one. Instead of using conventional
metallic conductors, double-screen metagrids are devised in this
work to form the concentric rings. Because the metagrids show
distinct transmission/reflection properties at different frequen-
cies, the performance of one set of concentric rings operating
at the one band will not be affected by the other operating at
the different band. In addition, to compensate for the phase shift
introduced by the metagrids, an additional dielectric ring layer is
added atop the FZP taking advantage of additive manufacturing.
Thus, the radiation performance of the dual-band FZP lens
antenna is comparable to that of each single FZP metalens
antenna. For proof-of-concept, an antenna prototype operating
at the dual band, 75 and 120 GHz with a frequency ratio of 1.6,
is fabricated using an integrated additively manufactured elec-
tronics (AME) technique. The measured peak gains of 20.3 and
21.9 dBi are achieved at 75 and 120 GHz, respectively.

Index Terms— Additive manufacturing, dual-band, Fresnel
zone plate (FZP), metalens antenna, millimeter-wave (mm-wave).
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I. INTRODUCTION

M ILLIMETER-WAVE (mm-wave) and terahertz (THz)

technologies create a new era of many emerging

research areas, such as high-resolution imaging, high-speed

big data communications, and ubiquitous sensing [1]–[6].

Since the mm-wave spectrum is located between the

microwave and optical regions, its development provides an

opportunity to consolidate and reconcile the paradigms of

microwave engineering with optics and photonics [7]–[9].

Nevertheless, the general hurdles of mm-wave technology are

the tremendous loss and the quasi-optical propagation path of

communication link [10]. In addition, mm-wave signals also

experience extra atmospheric attenuation when compared with

lower electromagnetic (EM) frequencies. As a result, mm-

wave communications are mainly restricted to line-of-sight

(LOS). To tackle these challenges, large-scale antenna arrays

are tightly packed in the transceiver front-end to compensate

for the high path loss and bridge the gap of link budget, albeit

rather bulky. As an alternative approach, lenses or transmi-

tarrays that can collimate the EM waves from the source

are used to obtain highly directional beams. Over the past

decade, various kinds of mm-wave lenses and transmitarrays

based on the concept of metasurface have been proposed

to meet the requirement of different mm-wave application

scenarios [11]–[24]. Nevertheless, to achieve flexible phase

control over a broad span covering the range [−π , π] of

the wavefront, the “meta-atoms” are usually implemented by

cascading several resonant cells in a multilayered form with

bonding process. Moreover, many state-of-art mm-wave metal-

enses and transmitarrays are limited to a single band [15]–[22].

To achieve dual-band feature, most of the metalenses or trans-

mitarrays use orthogonal polarization for phase control over

two bands [23]–[26]. Dual-band single-polarization mm-wave

metalenses and transmitarrays are rarely reported because it

is difficult for the “meta-atoms” to achieve dual-band/multi-

band phase control of the wavefront independently in a single

polarization. As for prototyping, state-of-the-art mm-wave

lenses and transmitarrays use printed circuit board (PCB) to

fabricate each layer independently and stacked them together.

3-D printing, also known as additive manufacturing, has
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Fig. 1. (a) Design concept of the proposed dual-band FZP metalens antenna, which is implemented by merging two single-band FZP metalens antennas (FZP
metalens A: operating at the high band and FZP metalens B: operating at the low band. R1 = 8.75 mm, R2 = 11.13 mm, R3 = 12.5 mm, R4 = 15.4 mm,
R5 = 16 mm, R6 = 18 mm, R7 = 19.9 mm, R8 = 20.34 mm, R9 = 22.5 mm, R10 = 23.32 mm, R11 = 24.5 mm, R12 = 26.45 mm, R13 = 28.21 mm, and
R14 = 29.5 mm). (b) Configurations of the proposed dual-band FZP lens antenna (not scaled in z-direction). (c) High-band y-polarized EM wave transmits
through region III and region IV and reflects at region I and region II. (d) Low-band y-polarized EM wave transmits through region II and region IV and
reflects at region I and region III.

offered a new and economical way to build the lenses and

transmitarrays. Various kinds of lenses have been proposed

using additive manufacturing [27]–[40]. Nevertheless, most of

them are dielectric-based. In fact, state-of-the-art works using

additive manufacturing are either dielectric printing (coated

with metal if required) or directly metal printing. Lenses

or transmitarrays using conductive and dielectric integrated

additively manufactured electronics (AME) technique have

not been reported. However, the one-stop integrated printing

can provide more design freedom, that is, both metallic and

dielectric structure can be printed simultaneously without post-

processing procedure such as bonding, alignment, and coating.

Fresnel zone plate (FZP) lens antenna, implemented by

a set of alternative transparent and opaque concentric rings

either transmitting or blocking the incident EM wave, has

the advantages of a thinner profile and lighter weight than

a traditional lens antenna with a drawback of 50% back

reflection of energy [41]–[47]. Generally, each zone of the

FZP lens antenna is divided into an even number of subzones.

The radii (Ri) of each transparent and opaque zone can be

determined using [47]

Ri =

√

iλ0 F +

(

iλ0

2

)2

, i = 1, 2, . . . , N (1)

where λ0 is the design wavelength, and F is the focal length.

Because of spatial dispersion, the diffraction of the FZP lens

antenna is frequency-dependent. Thus, a conventional FZP

lens antenna can only support a single operating bandwidth.

A reconfigurable FZP lens antenna at the microwave region

was proposed by using pin diodes to control different states

of metasurface to realize dual-band operation [45], but still
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Fig. 2. (a) Grid-A with raised dielectric layer forming region III. (b) Grid-B
forming region II (h1 = 35 µm, h2 = 0.5 mm, h3 = 0.5 mm, h4 = 0.65 mm,
w1 = 0.6 mm, w2 = 0.42 mm, Px = 1.2 mm, Py = 1.2 mm, Px1 = 1.7 mm,
and Py1 = 1.7 mm).

Fig. 3. (a) Simulated transmission magnitude of grid-A with/without raised
dielectric layer and dielectric substrate only. (b) Simulated transmission phase
of grid-A with/without raised dielectric layer and dielectric substrate only.

only one diffractive pattern can generate on the aperture at a

given state. In addition, the cut-off frequency of the lossy pin

diodes hinders the concept from being applied to the mm-wave

regions.

In this article, a shared aperture dual-band single-

polarization FZP metalens antenna is proposed. Two sets of

Fig. 4. (a) Simulated transmission magnitude of dielectric with/without
grid-B. (b) Simulated transmission phase of dielectric with/without grid-B.

Fig. 5. (a) Radiation performance comparison between the proposed dual-
band FZP metalens antenna and the single-band FZP metalens B at 75 GHz.
(b) Radiation performance comparison between the proposed dual-band FZP
metalens antenna and the single-band FZP metalens A at 120 GHz.

concentric opaque rings of FZP metalens antennas operating at

low-band and high-band are formed using double-screen meta-

grids, which show distinct transmission/reflection properties at
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Fig. 6. Boresight gain comparison at two bands. (a) Low band. (b) High
band.

two bands. Then, they are merged in the same aperture seam-

lessly without affecting each other. Taking advantage of addi-

tive manufacturing, an additional dielectric ring layer is added

atop the FZP to compensate for the phase shift introduced by

the metagrids. Thus, the radiation performance of the dual-

band FZP lens antenna is comparable to that of each single

FZP metalens antenna. For proof-of-concept, a dual-band FZP

metalens antenna operating at 75 and 120 GHz is fabricated

using an integrated AME technique. The performance of the

FZP metalens antenna has been experimentally verified. It is

noted that the design is only chosen as a demonstrative

example, and it has the potential to be configured to other

frequencies with different frequency ratios.

II. DUAL-BAND FZP LENS ANTENNA DESIGN

A. Antenna Geometry

The basic geometry and concept are illustrated in

Fig. 1(a) and (b). The proposed dual-band single-polarization

FZP metalens antenna is realized by merging two single-band

FZP metalens antennas operating at distinct frequency bands

into a shared aperture. Since the radii of the concentric rings

of two FZP metalens antennas are different, simply placing the

rings together will destroy the performance of FZP metalens

antenna at both bands. Therefore, instead of using conventional

metallic conductors, the concentric rings of two FZP metalens

Fig. 7. (a) Proposed dual-band FZP metalens antenna fabricated using
integrated conductive/dielectric additive manufacturing. (b) Fabrication steps
of the conductive/dielectric one-stop additive manufacturing.

antennas are realized using different double-screen metagrids

(grid-A and grid-B), as shown in Fig. 1(a). In this way,

the opaque concentric rings of the high-band FZP metalens

(formed by grid-B) can reflect the EM waves at the high

band while allowing the EM waves at the low band to pass.

Similarly, the opaque concentric rings of the low-band FZP

metalens (formed by grid-A) can reflect the EM waves at the

low band while allowing the EM waves at the high band to

pass. Once these opaque concentric rings are combined to form

the dual-band FZP metalens, there are four different regions

on the aperture of the dual-band FZP metalens, namely,

Region I: the overlapped area of grid-A and grid-B, presented

by fully conductive layers, reflects the EM wave at both

bands. Region II: An opaque area (grid-B) reflects high-band

waves, while keeping low-band waves transmitted. Region III:

An opaque area (grid-A) reflects low-band waves, while keep-

ing high-band waves transmitted. Region IV: The transparent

area (neither grid-A nor grid-B exists) for waves at both bands

transmitting through the metalens, as depicted in Fig. 1(a).

Thus, for the high band, the transparent part (allowing EM

wave to pass) is formed by region III and region IV. Similarly,

the transparent part is formed by region II and region IV for

low band, as depicted in Fig. 1(c) and (d).

B. Metagrids Design

The crucial factor determining the performance of the

proposed dual-band FZP metalens antenna is the double-

screen metagrids (grid-A and grid-B) forming concentric



ZHU et al.: ADDITIVELY MANUFACTURED mm-WAVE DUAL-BAND SINGLE-POLARIZATION 6265

Fig. 8. Photographs of the 3-D printed metalens antenna. (a) 3-D view.
(b) Top view.

rings operating at low band and high band, as shown in

Fig. 2(a) and (b), respectively. EM simulations are carried out

in ANSYS HFSS with periodical boundary conditions (PBC).

As we know, the function of the metagrids is determined by

the period between the parallel grid element. If the metagrid

period is long compared with the wavelength, the meta-

grid functions as a diffraction grating and diffracts both

x- and y-polarizations [48]. However, when the metagrid

spacing is much smaller than the wavelength, the metagrid

functions as a polarizer reflecting incident waves with polar-

ization parallel to the metagrid and transmits the EM wave of

the orthogonal polarization. Here, the period of the metagrid

is smaller than the wavelength at low band (75 GHz) and

the grid-A functions as the polarizer to reflect the EM waves

along the y-direction at low band with transmission magnitude

as low as around 0.1, as shown in Fig. 3(a). While at high

band (120 GHz), the double-screen metagrid functions as an

anti-reflection coating with improved transmission magnitude

reaching 0.88, demonstrating it allows the high-band EM wave

to pass. Nevertheless, the double-screen metagrids also intro-

duce phase abruption into the high-band transmission phase,

making it 76◦ difference compared with the transmission phase

Fig. 9. (a) Block diagram of the measurement system. (b) Proposed FZP
metalens antenna under test.

of the one without grid-A (region IV) at 120 GHz, as seen

from Fig. 3(b). Since region IV and region III (forming

by grid-A) are both transparent for the EM waves at high

band, additional phase compensating is required, enabling

two regions to have the same transmission phase. Taking

advantage of additive manufacturing, a dielectric layer with

a thickness of 0.65 mm is added atop of grid-A for phase

compensating. After adding the phase-compensating dielectric

layer, the transmission magnitude only slightly shifts to a

higher frequency while the transmission phase of region III

and region IV becomes nearly the same at 120 GHz, as shown

in Fig. 3(b).

As for region II, although the configuration of grid-B

forming region II is similar to grid-A, the reflection principle

is different. The reflection of y-polarized incident waves is

based on half-wavelength resonance, that is, the width of the

grids is about half of the dielectric wavelength at high band.

Thus, it can reflect the EM waves at high band and allow

the EM waves at low band to pass. As shown in Fig. 4(a),

the transmission magnitude is low than 0.1 at 120 GHz and

higher than 0.85 at 75 GHz. The transmission phase with and

without grid-B is given in Fig. 4(b). The transmission phase

difference between the structure with and without grid-B at

75 GHz is less than 15◦. Thus, no additional dielectric layer

is added atop of the grid for phase compensating between

region II and region IV.
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Fig. 10. (a) Simulated and measured radiation patterns at 75 GHz. (b) Simulated and measured radiation patterns at 120 GHz. (c) Simulated and measured
boresight gain of the proposed dual-band FZP metalens antenna and the gain of the source at two bands.

C. Dual-Band FZP Lens Antenna

The proposed dual-band metalens is simulated in ANSYS

HFSS. Because of the symmetry, only one-quarter of the

structure is simulated using symmetry boundary conditions.

The convergence criteria of adaptive solution in HFSS sim-

ulation are set to be the maximum Delta S < 0.005 at two

solution frequencies of 75 and 120 GHz. The number of

tetrahedral elements is around 2.2 × 105 and 1.1 × 106 at

75 and 120 GHz, respectively. The focal length is set as

30 mm for both bands with a focal-to-diameter (F/D) ratio

of 0.5. The dielectric material is made of ultraviolet (UV)

curable acrylates with a dielectric constant of 2.8 and a loss

tangent of 0.02 at 120 GHz. The radiation performance of

the dual-band FZP metalens antenna at 75 and 120 GHz is

compared with that of the single-band FZP metalens antennas

A and B, as shown in Figs. 5 and 6. The radiation patterns

of the dual-band FZP metalens antenna and single-band FZP

metalens antenna A (B) are nearly the same and the boresight

gain differences are less than 1 dB, which demonstrates that

two FZP metalens antennas are successfully merged into

one dual-band FZP metalens antenna with a shared aperture.

Figs. 5(b) and 6(b) also give the radiation patterns and gain

comparison between the proposed dual-band FZP metalens

antenna with and without raised dielectric layers at high band,

respectively. It is seen from Fig. 5(b) that after adding the

phase compensating rings, the sidelobe levels of the radiation

patterns improved from −6 to −12 dB. Meanwhile, the bore-

sight gain improved by 2.4 dB at 120 GHz after adding the

phase compensating rings, as shown in Fig. 6(b).

III. FABRICATION, MEASUREMENT, AND DISCUSSION

A. AME Fabrication

The prototype is fabricated using DragonFly 2020

PRO [49], which has two printing heads for metal

and dielectric printing, respectively. Each head consists

of 512 piezoelectric-based nozzles connecting to an ink-filled

chamber (one chamber is filled with silver nanoparticle ink

for conductor printing (conductivity of 2 × 107 S/m) and

the other is filled with ultraviolet (UV)-curable acrylates ink

for dielectric printing. An ultrathin dielectric layer is printed

first at the bottom as the soldering mask. Then, the dielectric

and conductive inks can be simultaneously jetted to form the

dielectric and conductive layer (thickness of 35 µm) according

to the pre-designed patterns. Infrared radiation (IR) lamps and

UV lights are turned on to solid the silver ink and curable

acrylates ink, respectively, as shown in Fig. 7(a) and (b).

The prototype of the proposed FZP metalens antenna is

shown in Fig. 8, which has a circular aperture with a radius

of 32.5 mm.

B. Measurement

The radiation performance is measured using a far-field

mm-wave measurement system shown in Fig. 9. The signal

from the signal generator is up-converted to 75 and 120 GHz

through the frequency extension module. Then, the signal

is fed to the dual-band FZP metalens antenna by standard

waveguide (WR-12 and WR-07). On the other side, the stan-

dard horns are used as the receive antennas at far-field for

75 and 120 GHz, respectively. The receiving horn antenna is
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TABLE I

COMPARISON OF STATE-OF-ART FZP LENSES AND OTHER DUAL-BAND LENSES

connected to a signal analyzer through a frequency extension

module. For the gain measurement, two identical standard gain

horns are used for making the direct gain comparison to obtain

the gain value. The FZP metalens antenna gain (GFZP_lens) can

be obtained by [50]

(

G F Z P_lens

)

d B
= (Ghorn)d B + 10 log10

(

PF Z P_lens

Phorn

)

(2)

where Ghorn is the gain of the standard gain horn, Phorn is the

received power from the standard gain horn, and PF Z P_lens is

the received power from the FZP metalens antenna.

The performance of the proposed dual-band FZP metal-

ens antenna is experimentally verified. The simulated and

measured radiation patterns at 75 and 120 GHz are given

in Fig. 10(a) and (b), respectively, which are matched well.

The peak gains are fixed at boresight and the sidelobe levels

are kept below −10 dB. The simulated and measured gains

at two bands are given in Fig. 10(c). The measured gains are

20.3 dBi at 75 GHz and 21.9 dBi at 120 GHz, respectively.

The measurement shows 12.7 and 12.9 dB improvement

compared with the waveguide source (WR-12 and WR-07),

demonstrating the FZP metalens antenna collimates the beams

at two bands.

To analyze the ratio of the portions of regions I, II, III,

and IV on the radiation performance, two additional cases

with different focal lengths of the FZP metalens are simulated

since the portions of regions I, II, III, and IV on the aperture

depend on the focal length; see Appendix. For case I, the focal

lengths are set as 20 and 30 mm for 75 and 120 GHz

bands, respectively. For case II, the focal lengths are set as

30 and 40 mm for 75 and 120 GHz bands, respectively. The

results demonstrate that the proposed dual-band FZP metalens

solution is still effective when the ratio of the portions of

regions I, II, III, and IV changes.

IV. DISCUSSION

Table I compares the proposed dual-band FZP metalens

antenna with other related works. The general drawback of

metallic FZP lens antenna is the low aperture efficiency

because it only uses 0◦/180◦ phase correction, and 50% energy

is reflected [47]. Therefore, for the high gain antenna with high

aperture efficiency demand, transmitarray antennas with better
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Fig. 11. (a) Configurations of the dual-band FZP metalens antenna. Case I: focal length of 20 mm at 75 GHz band and 30 mm at 120 GHz band (FZP
metalens A: operating at the high band and FZP, metalens B: operating at the low band. R1 = 8.75 mm, R2 = 9.16 mm, R3 = 12.5 mm, R4 = 13.26 mm,
R5 = 15.46 mm R6 = 16.6 mm, R7 = 18 mm, R8 = 19.6 mm, R9 = 20.35 mm, R10 = 22.5 mm, R11 = 24.5 mm, R12 = 24.9 mm, R13 = 26.5 mm,
R14 = 27.5 mm, R15 = 28.3 mm, and R16 = 30 mm). (b) Radiation patterns and gain comparison between the proposed dual-band FZP metalens antenna
and the single-band FZP metalens B at 75 GHz band. (c) Radiation patterns and gain comparison between the proposed dual-band FZP metalens antenna and
the single-band FZP metalens A at 120 GHz band.

phase correcting should be used [23]–[26], [51]. Nevertheless,

to achieve [−π , π] full phase correcting, the transmitarrays

generally require cascading several resonant phasing elements.

This can be easily achieved by stacking several PCB layers in

order in the microwave region. However, in the mm-wave/THz

band, a complicated bonding structure may be required and the

cost increases significantly as the number of layers increases.

While the metallic FZP lens antenna basically requires only
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Fig. 12. (a) Configurations of the dual-band FZP metalens antenna. Case II: focal length of 30 mm at 75 GHz band and 40 mm at 120 GHz band (FZP
metalens A: operating at the high-band and FZP, metalens B: operating at the low-band. R1 = 10.1 mm, R2 = 11.13 mm, R3 = 14.36 mm, R4 = 16 mm,
R5 = 17.72 mm, R6 = 19.9 mm, R7 = 20.61 mm, R8 = 23.21 mm, R9 = 25.61 mm, R10 = 26.46 mm, R11 = 27.86 mm, R12 = 29.39 mm, and
R13 = 30 mm). (b) Radiation patterns and gain comparison between the proposed dual-band FZP metalens antenna and the single-band FZP metalens B at
75 GHz band. (c) Radiation patterns and gain comparison between the proposed dual-band FZP metalens antenna and the single-band FZP metalens A at
120 GHz band.

one or two metal layers. Therefore, in some scenarios where

antenna layers are restricted, and aperture efficiency is not the

primary concern, the FZP lens antenna can be a good substitute

for the transmitarray antenna.

Because of the frequency-dependent feature, previous FZP

lens antennas are limited to a single band [41], [44], [46].

Although a reconfigurable dual-band FZP lens is proposed

using switch [45], only high gain at one band can generate
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on the aperture at a given state. In addition, the lossy pin

diodes hinder the concept from being applied to the mm-

wave regions. Because it is difficult for the phasing element

to achieve dual-band/multiband phase control of the wavefront

independently in a single polarization, most of the lenses use

polarization to provide a more degree of freedom to realize

dual band [23], [26], [47]. In contrast, the proposed ultra-

thin FZP metalens antenna can operate at two bands with the

same polarization. The radiation performance at the two bands

is comparable to that of each single FZP metalens antenna.

Regarding the frequency ratio, the current unit cells forming

the opaque region are suitable for a relatively large frequency

ratio. To achieve a very small frequency ratio, unit cells with

higher frequency selectivity can be used, but the number of

the layers may increase as well.

The general advantage of the dielectric/metal joint printing

over PCB fabrication is that: 1) multiple metal layers can be

printed in a single dielectric substrate with fewer constraints

of the distance between metal layers; 2) no bonding process is

required among multiple metal layers; and 3) the fabrication

cost will not increase as the layer increases. The 3-D printing

solution provides the designers with more design flexibility

than the traditional multilayer PCB solutions, especially for

designs with small form factor expectations at mm-wave and

THz frequencies. Take the proposed design as an example,

to compensate for the metagrids’ phase shift, an additional

dielectric ring layer is added atop the FZP. The dielectric

ring layer can be easily and seamlessly printed on the top of

the metallic layer. In contrast, a bonding structure is required

if the PCB solution is used. Besides, the distance between

the metallic layers and the dielectric layer thickness can

be flexibly selected to meet the desired dimensions, which

cannot be easily achieved using PCB or low-temperature co-

fire ceramics (LTCC) solutions.

V. CONCLUSION

In summary, a shared aperture dual-band FZP metalens

antenna operating at 75 and 120 GHz is proposed and exper-

imentally verified. The concentric rings of two FZP metalens

antennas made of different kinds of grid polarizers are merged

seamlessly, forming the dual-band FZP metalens antenna in a

shared aperture. High directional radiation is achieved at two

bands with the measured peak gains of 20.3 and 21.9 dBi at

75 and 120 GHz, respectively. The proposed FZP metalens

antenna has the merits of lightweight, low profile, and fast-

prototyped using conductive/dielectric integrated AME tech-

nique. Potential applications of the FZP metalens antenna

include multiband mm-wave communications, sensing, and

imaging.

APPENDIX

Two FZP metalenses with different focal lengths are simu-

lated for further demonstration. For case I, the focal lengths are

set as 20 and 30 mm for 75 and 120 GHz band, respectively.

The configuration of the metalens is given in Fig. 11(a),

and the radiation patterns and gain comparison are given

in Fig. 11(b) and (c). For case II, the focal lengths are set

as 30 and 40 mm for 75 and 120 GHz band, respectively.

The configuration of the metalens is given in Fig. 12(a),

and the radiation patterns and gain comparison are given

in Fig. 12(b) and (c).
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