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Abstract: It is known that the mechanical properties of bone-mimicking porous 

biomaterials are a function of the morphological properties of the porous structure, 

including the configuration and size of the repeating unit cell from which they are made. 

However, the literature on this topic is limited, primarily because of the challenge in 

fabricating porous biomaterials with arbitrarily complex morphological designs. In the 

present work, we studied the relationship between relative density (RD) of porous Ti6Al4V 

EFI alloy and five compressive properties of the material, namely elastic gradient or 

modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. 

Porous structures with different RD and six different unit cell configurations (cubic (C), 

diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron 

(RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting.  

Each of the compressive properties increased with increase in RD, the relationship being of 

a power law type. Clear trends were seen in the influence of unit cell configuration and 
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porosity on each of the compressive properties. For example, in terms of Es20–70, the 

structures may be divided into two groups: those that are stiff (comprising those made 

using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those 

made using D and RD unit cell). 

Keywords: cellular solids; selective laser melting; compressive properties; and porous  

Ti alloy 

 

1. Introduction 

In orthopaedic surgery, cellular structures are used as three-dimensional porous biomaterials that try 

to mimic the structure and function of bone [1]. The porous biomaterial could be used either as a bone 

substitute or a cell-seeded scaffold used as a part of a tissue engineering approach. In either case, the 

porous biomaterial should be designed such that its mechanical properties match those of bone,  

while considering the other factors that maximize bone ingrowth. For example, the permeability of the 

porous structures used in bone tissue engineering could influence cell migration and mass transport 

and should be carefully designed [2,3]. During the last two decades, several design principles have 

been proposed for the design of bone tissue engineering scaffolds that consider the mechanical 

properties, biocompatibility, biodegradability, and bio-functionality of the scaffold biomaterials [4–9]. 

In this study, we focused on the compressive properties of porous titanium biomaterials aimed for 

application in orthopaedic surgery. Solid titanium alloys are often very stiff, exceeding the mechanical 

properties of bone by up to one order of magnitude [10,11]. The mismatch between the mechanical 

properties of bone and those of the biomaterial could hinder bone ingrowth, result in stress shielding, 

bone resorption, and ultimately cause loosening of orthopaedic implants [12–15]. Creating porous 

structures out of bulk materials, however, results in much lower stiffness values that are comparable 

with those of bone [10,16,17]. Traditionally, various techniques have been used for fabrication of 

porous biomaterials including space-holder method, hot isostatic pressing, gel casting, and chemical 

vapor deposition/infiltration [18–21]. Recently, additive manufacturing techniques have been 

introduced for manufacturing of porous biomaterials and have several advantages over conventional 

techniques including their ability to create arbitrarily complex 3D structures, highly accurate and 

predictable porous structure, and wide materials selection [22–25]. Two widely used AM methods are 

selective laser melting [26–30] and electron beam melting [31–34]. In addition to favorable 

mechanical properties, highly porous biomaterials have a large pore space that could be used for 

controlled release of growth factors [35] as well as huge surface area that could be treated using 

chemical and electrochemical techniques for obtaining desired bio-functional properties [36–39]. 

The mechanical properties of additively manufactured porous biomaterials are highly dependent on 

the type of unit cell from which they are made [40–45]. Optimizing the mechanical properties of 

porous biomaterials for different applications may require combining various types and dimensions of 

unit cells in one single porous structure. It is therefore important to have a good understanding of  

the relationship between the type and dimensions of unit cell and the resulting mechanical properties of 



Materials 2015, 8 1873 

 

 

the porous structure [46]. Many different types of unit cells are available. However, data on the 

mechanical properties of porous structures from many different unit cell configurations are limited. 

In the present work, we used six different unit cell configurations, namely, cubic, diamond, 

truncated cube, truncated cuboctahedron, rhombic dodecahedron, and rhombicuboctahedron are 

considered in the current study. For each of these configurations, we used selective laser melting to 

manufacture porous structures with different porosities. Micro-CT imaging and compression testing 

were performed to determine the morphological and mechanical properties of the porous materials and 

to study the relationship between these parameters. 

2. Materials and Methods 

2.1. Materials and Manufacturing 

Selective laser melting (SLM) method (Layerwise NV, Leuven, Belgium) was used for processing 

of Ti6Al4V-ELI powder (according to ASTM B348, grade 23) on top of a solid titanium substrate and in 

an inert atmosphere. Porous titanium structures were thereby manufactured based on six different  

unit cells configurations, namely, cubic, diamond, truncated cube, rhombicuboctahedron, rhombic 

dodecahedron, and truncated cuboctahedron (Figure 1). The details of the laser process technique were 

reported in our previous studies [10,16,40,47,48]. For each unit cell, different porosities were achieved 

by changing the strut thickness and pore size (Table 1). Cylindrical specimens with the length of  

15 mm, diameter of 10 mm and unit cell size of 1.5 mm were manufactured for static compression 

testing (Figure 2). After fabrication, electro discharge machining (EDM) was used to remove the 

specimens from the substrate. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Schematic drawings of the unit cells used in the porous structure: (a) Cubic;  

(b) Diamond; (c) Truncated cube; (d) Truncated cuboctahedron; (e) Rhombic dodecahedron; 

(f) Rhombicuboctahedron. 
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Table 1. Morphological properties of the porous structures used. 

 Strut Diameter (μm) Pore Size (μm) 
 Nominal (Design) μCT (SD) Nominal (Design) μCT (SD) 

Cubic (C)     

C-1 348 451 (147) 1452 1413 (366) 

C-2 540 654 (190) 1260 1139 (359) 

C-3 612 693 (200) 1188 1155 (354) 

C-4 720 823 (230) 1080 1020 (311) 

Diamond (D)     

D-1 277 240 (46) 923 958 (144) 

D-2 450 416 (65) 750 780 (141) 

D-3 520 482 (70) 680 719 (130) 

D-4 600 564 (76) 600 641 (137) 

Truncated Cube (TC)     

TC-1 180 331 (76) 1720 1625 (398) 

TC-2 240 363 (80) 1660 1615 (392) 

TC-3 304 395 (88) 1596 1593 (382) 

TC-4 380 463 (126) 1520 1535 (370) 

TC-5 460 568 (183) 1440 1497 (360) 

TC-6 530 620 (200) 1370 1426 (357) 

Truncated Cubeoctahedron (TCO)     

TCO-1 324 350 (60) 876 862 (349) 

TCO-2 460 416 (64) 1040 1142 (383) 

TCO-3 520 452 (65) 980 1098 (386) 

TCO-4 577 482 (70) 923 1079 (391) 

TCO-5 621 516 (82) 862 1065 (361) 

TCO-6 693 564 (76) 807 1049 (383) 

Rhombicdodecahdron (RD)     

RD-1 250 246 (53) 1250 1299 (449) 

RD-2 310 305 (97) 1190 1224 (455) 

RD-3 370 440 (126) 1130 1168 (364) 

RD-4 430 461 (163) 1070 1305 (554) 

RD-5 490 430 (122) 1010 920 (300) 

RD-6 550 506 (144) 950 1058 (356) 

Rhombic Cubeoctahedron (RCO)     

RCO-1 380 348 (59) 820 877 (355) 

RCO-2 410 369 (59) 790 847 (349) 

RCO-3 440 486( 113) 760 1089 (402) 

RCO-4 470 437 (61) 730 754 (359) 

RCO-5 500 539 (120) 700 1043 (401) 

RCO-6 530 438 (61) 670 794 (368) 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Sample specimens from the porous structures based on different types of unit 

cells: (a) Cubic; (b) Diamond; (c) Truncated cube; (d) Truncated cuboctahedron;  

(e) Rhombic dodecahedron; (f) Rhombicuboctahedron. 

2.2. Morphological Characterization 

For morphological characterization, we scanned the titanium scaffolds using a micro-CT (Quantum 

FX, Perkin Elmer, Waltham, MA, USA). The scans were made under tube voltage of 90 kV, tube 

current of 180 μA, scan time of 3 min, and resolution of 42 μm. The 3D images of the porous structures 

were automatically reconstructed using the in-built software of the micro-CT. The reconstructed images 

were then transferred to the Caliper Analyze 11.0 (provided by the manufacturer) to align the geometry 

along the major axis of the specimens and to acquire 2D slices. The 2D slices contained transverse 

views of the scaffolds, i.e., circular cross-sections. The 2D slices were then imported into the ImageJ 

1.47v (http://imagej.nih.gov/ij/) in order to create region of interests (ROIs) and segment the titanium 

volume using the optimal thresholding algorithm available in the boneJ [49] plugin of ImageJ 1.47v 

(16 bit images). Segmented images were then exported to the boneJ plugin to calculate the ratio of the 

void volume to the 3D ROI volume that was ultimately reported as the structure relative density of the 

porous structures. 

In addition, the Archimedes technique and dry weighing were used for determining the structure 

relative density of the specimens (Table 2) using five specimens from each porous type of porous 

structure, except for the case of rhombic dodecahedron unit cells that only 2 samples were used for 

measurement of the Archimedes porosity values. In both cases, an OHAUS Pioneer balance was used 

for weight measurements that were performed in normal atmospheric conditions in room temperature. 

As for the dry weighing, the weight of the porous specimens was divided by the theoretical weight of 

the corresponding solid specimens assuming a theoretical density of 4.42 g/cm3 for Ti6Al4V-ELI [50]. 
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In the Archimedes technique, the specimens were weighed both in dry conditions and in pure ethanol 

to determine the actual and macro volume and calculating overall porosity of the porous structures. 

2.3. Compressive Testing 

The mechanical properties of the porous structures were obtained by static compression test using a 

static test machine (INSTRON 5985, 100 kN load cell) by applying a constant deformation rate of  

1.8 mm/min. The compression test was carried out in accordance with ISO standard 13314:2011 [51] 

which refers to mechanical testing of porous and cellular metals. The tests were continued until 60% 

strain was applied to the specimens. Five specimens were tested for every variation of the porous 

structures. The stress-strain curves were obtained and the mean and standard deviation of each of five 

compressive properties were determined. According to the above-mentioned standard, the elastic 

gradient (Eσ20–70) was calculated as the gradient of the elastic straight line between two stress values, 

namely σ70 and σ20. The first maximum compressive strength (σmax) that corresponds to the first local 

maximum in the stress-strain curve was also calculated. The plateau stress (σy) was defined according 

to the same standard as the arithmetical mean of the stresses between 20% and 40% compressive strain 

and was calculated for all specimens. [40,51]. Energy absorption, which is defined as the energy 

required for deforming a specimen to a strain (ε), was calculated from the area under the strain-stress 

curve up to 50% strain [52,53]. 

In order to analyze the compressive properties of porous structures more systematically, power laws 

relating structure relative density (the weight per unit volume of a material, including voids that exist 

in the tested material” as defined in ASTM D1895) to different compressive properties were fitted to 

the measured experimental data: 𝑿 = 𝒂𝛒𝒃 (1) 

where X is any of the above-mentioned compressive properties measured for the porous structures and 

ρ is structure relative density. The parameters a and b are dependent on the type of the unit cell. 

2.4. Correlational Analysis 

MATLAB and Simulink R2014a, The MathWorks Inc., Natick, MA, USA, and Microsoft Excel, 

Microsoft Corporation, Redmond, WA, USA, were used to determine the correlation between the 

compressive properties of specimens and relevant density. Closeness of the data to the fitted regression 

line was measured by coefficient of determination. 

3. Results 

The structure relative density of each unit cell configuration is presented in Table 2. The trends 

observed in the stress strain curves of the specimens with different types of unit cells were quite 

different (Figures 3–8). There were also differences in the shape of stress-strain curves of specimens 

with the same type of unit cell configuration but different relative density (RD) (Figures 3–8). In many 

cases, the typical stress-strain response of porous alloy was observed including the initial linear 

response that was followed by a plateau region and the subsequent fluctuations of the stress-strain 

curve (Figures 3–8). The final part of the stress-strain curves was often associated with stiffening of 
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the porous structure (Figures 3–8). In general, the level of fluctuations following the plateau region 

tended to decrease as the structure relative density of the porous structures increased (Figures 3–8). 

However, this was not, the case for porous structures based on the truncated cube unit cell (Figure 8). 

Table 2. Summary of the structure relative density results (in %). 

 Structure Relative Density (%) 

 
CAD File Dry Weighing (SD)  Archimedes (SD) μCT 

Cubic (C)     

C-1 10 11 (0.1) 12 (0.1) 13 

C-2 22 21 (0.2) 22 (0.2) 24 

C-3 27 26 (0.2) 26 (0.2) 28 

C-4 35 34 (0.1) 34 (0.2) 37 

Diamond (D)     

D-1 11 11 (0.1) 11 (0.2) 11 

D-2 21 20 (0.2) 21 (0.1) 21 

D-3 28 26 (0.4) 27 (0.3) 28 

D-4 37 34 (0.3) 35 (0.4) 36 

Truncated cube (TC)     

TC-1 6 7 (0.1) 7(0.1) 9  

TC-2 9 9 (0.1) 9 (0.1) 11 

TC-3 12 12 (0.1) 12 (0.1) 12 

TC-4 16 14 (0.2) 15 (0.2) 14 

TC-5 21 17 (0.2) 18 (0.1) 17 

TC-6 24 20 (0.2) 20 (0.2) 20 

Truncated Cubeoctahedron (TCO)     

TCO-1 18 20 (0.4) 20 (0.4) 19 

TCO-2 21 23 (0.2) 23 (0.2) 21 

TCO-3 26 25 (0.5) 25 (0.5) 23 

TCO-4 31 28 (0.2) 28 (0.3) 28 

TCO-5 34 31 (0.3) 31 (0.3) 32 

TCO-6 36 34 (0.2) 35 (0.3) 36 

Rhombicdodecahdron (RD)     

RD-1 10 11 (0.3) 11 (0.4) 11 

RD-2 15 17 (0.2) 17 (0.1) 16 

RD-3 20 23 (0.2) 23 (0.1) 22 

RD-4 25 27 (0.1) 27 (0.2) 27 

RD-5 29 28 (0.3) 28 (0.3) 28 

RD-6 34 33 (0.3) 33 (0.2) 32 

Rhombic Cubeoctahedron (RCO)     

RCO-1 16 18 (0.2) 18 (0.2) 18 

RCO-2 18 21 (0.2) 21 (0.2) 21 

RCO-3 21 23 (0.3) 23 (0.3) 24 

RCO-4 26 25 (0.3) 26 (0.4) 25 

RCO-5 31 29 (0.4) 29 (0.4) 27 

RCO-6 36 32 (0.3) 33 (0.5) 31 
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Figure 3. Compressive stress-versus-compressive strain curves for specimens based on the 

cube unit cell and with different porosities (see Table 2). 

  

  

Figure 4. Stress-strain curves for specimens based on the diamond unit cell and with 

different porosities (see Table 2). 
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Figure 5. Compressive stress-versus-compressive strain curves for specimens based on the 

truncated cube unit cell and with different porosities (see Table 2). 

  

Figure 6. Cont. 
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Figure 6. Compressive stress-versus-compressive strain curves for specimens based on the 

truncated cuboctahedron unit cell and with different porosities (see Table 2). 

  

  

Figure 7. Cont. 
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Figure 7. Compressive stress-versus-compressive strain for specimens based on the 

rhombic dodecahedron unit cell and with different porosities (see Table 2). 

  

  

  

Figure 8. Compressive stress-versus-compressive strain curves for specimens based on the 

rhombicuboctahedron unit cell and with different porosities (see Table 2). 
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As expected, each of the compressive properties increased with increase in structure relative density 

(Figures 9–13). The exponent of the power law fitted to the experimental data points (Figures 9–13) 

varied between 0.93 and 2.34 for the elastic gradient (Figure 9), between 1.28 and 2.15 for the first 

maximum stress (Figure 10), between 1.75 and 3.5 for the plateau stress (Figure 11), between 1.21 and 

2.31 for the yield stress (Figure 12), and between 2.18 and 73 for energy absorption (Figure 13). 

  

  

  

Figure 9. Summary of the elastic gradient results for porous structures basedon different 

types of unit cell configurations (cubic (C); diamond (D); truncatedcube (TC); truncated 

cuboctahedron (TCO); rhombic dodecahedron (RD); rhombicuboctahedron (RCO)) and 

different structure relative densities (see Table 2) (Es indicates the elastic gradient of the 

structure if it was solid).  
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Figure 10. Summary of the first maximum stress results for porous structures based on 

different types of unit cell configurations (cubic (C); diamond (D); truncated cube (TC); 

truncated cuboctahedron (TCO); rhombic dodecahedron (RD); rhombicuboctahedron 

(RCO)) and different structure relative densities (see Table 2).  

  

Figure 11. Cont. 
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Figure 11. Summary of the plateau stress results for porous structures based on different 

types of unit cell configurations (cubic (C); diamond (D); truncated cube (TC); truncated 

cuboctahedron (TCO); rhombic dodecahedron (RD); rhombicuboctahedron (RCO)) and 

different structure relative densities (see Table 2).  

  

  

Figure 12. Cont. 
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Figure 12. Summary of the yield stress results for porous structures based on different 

types of unit cell configurations (cubic (C); diamond (D); truncated cube (TC); truncated 

cuboctahedron (TCO); rhombic dodecahedron (RD); rhombicuboctahedron (RCO)) and 

different structure relative densities (see Table 2).  

Among all the unit cells studied here, the structure with the diamond unit cell was the most 

compliant, especially at RD > 0.15, whereas the stiffest structure was that having a truncated cube unit 

cell, especially when RD > 0.30 (Figure 9). When RD was small (RD < 0.2) the structures may be 

divided into two groups, with those in the first group (truncated cube, truncated cuboctahedron, 

rhombicuboctahedron, and cube unit cells) having larger stiffness than those in the second group 

(diamond and rhombic dodecahedron unit cells) (Figures 9 and 14a). 

  

  

Figure 13. Cont.  
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Figure 13. Summary of the energy absorption results for porous structures based on 

different types of unit cell configurations (cubic (C); diamond (D); truncated cube (TC); 

truncated cuboctahedron (TCO); rhombic dodecahedron (RD); rhombicuboctahedron 

(RCO)) and different structure relative densities (see Table 2).  

With regard to σmax, there is also separation of the structures into two groups. When RD < 0.2, the 

structures with the highest and lowest value of this compressive property were built using 

rhombiccuboctahedron and rhombic dodecahedron unit cells, respectively (Figure 10). However, when 

RD > 0.2, the structures with the highest and lowest value of this compressive property were built 

using the truncated cube and diamond unit cells, respectively (Figures 10 and 14b). When RD < 0.2, 

there is no difference in plateau stress between the different structures, but, when RD > 0.2, the highest 

and lowest value of this compressive property were built using the truncated cube and diamond unit 

cells, respectively (Figures 11 and 14c). The four remaining unit cells are relatively close in terms of 

the plateau stress values they exhibit (Figures 11 and 14c). 

Regarding σy, structures with the diamond unit cell show the lowest value throughout the  

RD range (Figures 12 and 14d). The one group comprising structures having the truncated cube 

rhombicuboctahedron, and cube and cube and the other group comprising structures having truncated 

cuboctahedron and rhombic dodecahedron, When RD < 0.2, the former group has clearly higher yield 

stress values as compared to the latter group, but, when RD > 0.2, the results for the two groups 

overlapped (Figures 12 and 14d). When RD < 0.2, Energy absorption (EA) for the structures with 

different unit cell configurations are practically the same, but, at higher RD, EA of structure with 

diamond unit cell is much lower than that of a structure with any other type of unit cell configuration 

(Figures 13 and 14e). 

  
(a) (b) 

Figure 14. Cont. 
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(c) (d) 

 
(e) 

Figure 14. Comparison between the mechanical properties measured for different types of 

porous structures based on the six different unit cells studied here including (a) Elastic 

gradient; (b) First maximum stress. (c) Plateau stress; (d) Yield stress; (e) Energy absorption. 

In these figures, the power laws fitted to the experimental data points, and not the 

experimental data points themselves, are compared with each other. 

The ratio of plateau stress to yield stress was more or less constant and close to one for the diamond 

and rhombic dodecahedron unit cells (Figure 15a). For the other types of unit cells, the ratio of plateau 

stress to yield stress remarkably increased with the relative density (Figure 15a). As for the ratio of 

plateau stress to first maximum stress, it was relatively stable for diamond, rhombic dodecahedron, and 

rhombicuboctahedron (Figure 15b). For the three remaining types of unit cells, the ratio of plateau 

stress to first maximum stress drastically increased with the relative density Figure 15b). 

  
(a) (b) 

Figure 15. (a) The ratio of plateau stress to yield stress as well as (b) the ratio of plateau 

stress to first maximum stress for different types of unit cells. In these figures, the power 

laws fitted to the experimental data points, and not the experimental data points 

themselves, are compared with each other. 
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4. Discussion 

The results of this study clearly show the difference between the porous structures made using 

different types of unit cells. Not only do the mechanical properties of the porous structures differ 

drastically between the various unit cells studied here, the deformation and failure mechanisms change 

as well particularly at the plateau region as well as in the succeeding regions of the stress-strain curves. 

These different failure mechanisms are reflected in the different shapes of stress-strain curves. 

4.1. Comparison between the Different Types of Unit Cells 

Since all other parameters are kept constant during the manufacturing of the specimens, the only 

factor that differentiates the different classes of porous structures from each other is the geometry of 

unit cell. For example, it was observed that the unit cells that include vertical struts, exhibit a different 

failure mechanism as compared to the other unit cells. In the unit cells with vertical struts, failure of 

one (vertical) strut usually resulted in the collapse of the entire unit cell, causing a sudden drop of the 

measured force to values close to zero. Once one unit cell, that is often the weakest link in the 

remaining porous structure, has collapsed, the other unit cells take over the force-carrying function of 

the missing unit cell and the force increases again. This will continue until the next weakest link in the 

remaining porous structure has collapsed and the force drops to near-zero values again. The presence 

of vertical struts could not, however, explain all the cases where force repeatedly dropped to near-zero 

values. An important exception was the diamond unit cell. In this unit cell, the geometry of the unit 

cell is such that the failure of one strut could easily cause the collapse of the entire unit cell, as the 

shape of the unit cell is relatively simple and the different struts provide only limited support to each 

other. This could be also found back in all of the compressive properties measured for the diamond 

unit cell. Comparatively speaking, the diamond unit cell showed the lowest values of the compressive 

properties for the entire range of apparent densities. There are only two exceptions, elastic gradient and 

first maximum stress, where rhombic dodecahedron shows slightly lower compressive properties for 

the lowest values of the structure relative density. 

The stiffness of the porous structures made from different types of unit cells is probably the most 

important property of these structures when they are used as bone-mimicking biomaterials. The elastic 

gradient is the best indicator of the stiffness of the porous structure, among all the compressive 

properties presented here. For small apparent densities, i.e., < 0.15, one could speak of two groups of 

unit cells, namely strong unit cells and weak unit cells. The strong unit cells group includes truncated 

cube, truncated cuboctahedron, rhombicuboctahedron, and cube, while the weak unit cell group 

includes diamond and rhombic dodecahedron. Within each of the groups, there is not much difference 

between the different types of unit cells for small structure relative density values, meaning that they 

are interchangeable from mechanical viewpoint. The other considerations such as permeability [3,9] 

could therefore play more important role when deciding which of those unit cells is used in bone 

regeneration applications. For larger structure relative density values, i.e., >0.15, the truncated cube 

unit cell shows remarkably higher stiffness values and could therefore be used in the applications where 

high stiffness values are required. Since cube and truncated cube are relatively similar unit cells, it is 

remarkable that such small variation in the geometry of the cubic unit cells results in such improvement 

in the stiffness values for relatively large apparent densities. One could explain this by noting that in 
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the cube unit cell force transmission occurs at a few junction points that are also prone to stress 

concentration. Truncated cube replaces the single junction of the cubic unit cell with a supporting 

structure that could better distribute and transmit the forces. This improves the stiffness of the porous 

structure particularly for higher apparent densities where the thick struts at the truncation region of the 

truncated cube unit cell are particularly closed-pack and support the porous structure very efficiently. 

4.2. Ratio of Plateau Stress to Yield Stress 

One of the important findings of the current study is the point that the relationship between the 

plateau stress and yield stress is very different for different types of unit cells. In general, plateau stress 

has received more attention in the recent literature, partly because of the emphasis and explicit 

definition of the concept in the new ISO standard for the mechanical testing of metallic porous 

materials [51]. In comparison, there is less emphasis on the concept of yield (or compressive offset) 

stress in the standard, demoting it to the status of “optional information” in the standard test report [51]. 

As a consequence, a number of recent studies including our studies on porous structures made from the 

rhombic dodecahedron unit cell [16,40] and one study of the mechanical behavior of porous structures 

based on the diamond unit cell [10] have used the concept of plateau stress as a replacement for the 

yield stress. The results of the current study show that, interestingly, for both types of unit cells used in 

our previous studies, the plateau and yield stress are very close. Moreover, the ratio of plateau stress to 

yield stress is largely independent from the structure relative density. This justifies the use of plateau 

stress as a replacement for the yield stress for the porous structures based on those two types of unit 

cells. The results of this study, however, show that this is not necessarily the case for the other types of 

unit cells. Not only the plateau and yield stress are not close to each other for the other types of unit 

cells, their ratio could be very much dependent on the structure relative density. This is an important 

point in all future studies where one needs to choose a specific parameter for representing the elastic 

limit of additively manufactured porous structures based on the different types of unit cells. 

4.3. Energy Absorption 

Fracture toughness of bone is defined as the resistance to crack growth before the final fracture [54] 

and several studies on what can influence on fracture toughness of the human bone, cortical and 

trabecular [55–58] show the importance of this definition. Although tough bone resists more to fracture 

but it may have lower yield point and be considered weaker [59]. It is therefore important to select the right 

type of unit cell for bone-mimicking porous structure by comparing the energy absorption values of the 

porous structures based on the different types of unit cells with that of bone they are aimed to replace. 

This is an important design aspect has received less attention in the previous studies that look into the 

mechanical properties of bone-mimicking porous biomaterials and how they are related to those of bone. 

4.4. Anisotropy 

The mechanical properties of porous structures based on some of the unit cells included in the 

current study are anisotropic. In the current study, we only studied the mechanical properties of the 

porous structures in one direction (Figure 1). The mechanical properties of the porous structures may 



Materials 2015, 8 1890 

 

 

be therefore very different in the directions not tested in the current study. One needs to be careful  

when interpreting the results presented here, as they only pertain to specific directions of unit cells.  

The experiment required for characterizing the mechanical properties of the porous structures in all 

relevant directions is formidably large and expensive. A more feasible approach would be to develop 

analytical and computational models that are first validated against the experimental data presented 

here and could then be used for estimating the mechanical properties of the porous structures in all 

possible directions. In addition to the anisotropy caused by the geometry of the unit cells, the 

manufacturing process could also cause some directionality in the porous structure [44]. This 

directionality, which is dependent on the geometry of the unit cell, could also induce some additional 

anisotropy in the mechanical behaviour of the porous structures. 

4.5. Applications in the Design of Implants and Tissue Engineering Scaffolds 

The main application of the results presented in the current study is in the design of porous 

biomaterials used for bone substitution either as an implant or as a part of a bone tissue engineering 

scheme. The mechanical properties of the porous biomaterials are important from several viewpoints. 

First, one needs to ensure that there is a good match between the stiffness of porous biomaterial and 

those of the bone they replace. This could help in avoiding stress shielding. The elastic gradient values 

reported here for the different types of unit cells could be important in that context. Second, it is 

important to make sure that the porous biomaterials are capable of providing enough mechanical 

support and do not fail under the mechanical loading they are exposed to. The plateau stress as well as 

yield and first maximum stress values reported here could play important roles in that regard. 

From a design viewpoint, one needs to ensure that the mechanical properties of the porous 

biomaterials are favorable for bone regeneration and ingrowth. That is because bone tissue formation is 

known to be largely driven by mechanical loading [60–63]. The results of the current study clearly 

show that, for the same structure relative density, the mechanical properties of bone-mimicking porous 

biomaterials are very much dependent on the morphology of the porous structure including the type of 

unit cell and the unit cell dimensions. On the other hand, the same morphological properties determine 

the other important properties of the porous biomaterials such as permeability and diffusivity [2,3,8,9]. 

The design of porous biomaterials for bone regeneration applications can therefore be defined as a  

multi-objective optimization problem. There are additional patient-specific aspects that need to be  

taken into account. It is therefore important to combine the computer models for optimal design of  

porous biomaterials with patient-specific finite element models of bones [64–66]. The complex and 

multi-objective nature of such an optimal design problem requires a high degree of flexibility in the 

design space. Studies such as the present study that help to establish the relationship between the 

morphological design and the different types of properties of porous biomaterials based on various 

types of unit cells are helpful in this context. That is because they enable the designers to use a larger 

library of unit cells for which the different types of properties including mechanical properties are 

known, thereby enlarging the design space for optimal design of bone substituting implants and tissue 

engineering scaffolds. Given the production flexibility offered by advanced additive manufacturing 

techniques such as selective laser melting, different types of unit cells could be combined in one single 

implant or scaffold so as to optimally distribute the properties within the entire implant or scaffold. 
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The results presented in this study are also valuable for corroboration of analytical and numerical 

models that are developed used for prediction of the mechanical properties of porous structures given 

their designed morphology. This type of experimental data is not currently available in the literature 

particularly for some of the unit cells studied here. 

4.6. Future Research 

In this study, all the manufacturing parameters such as building orientation and post processing of 

the samples [44] or laser power or energy density of the specimens processed by SLM [30] considered 

to be constant. Changing in any of these parameters will influence the results [42]. It is clear from the 

results of this study that the deformation and failure mechanisms of porous structures based on the 

considered unit cells are very different. Even though certain aspects of the deformation and failure 

mechanisms were studied in the current study, it was not the main focus of the paper. It is suggested 

that future studies should focus on the detailed deformation and failure mechanisms of additively 

manufactured porous biomaterials based on different types of unit cells. In particular, it would be 

useful to perform full-field strain measurement [67–70] during the mechanical testing of the structures, 

for example, using optical techniques such as digital image correlation (DIC). DIC has been previously 

used for measurement of strain in engineering [71–74] and biological materials [75–77] and is shown 

to be capable of capturing the detailed deformation and fracture mechanisms of both types of 

materials. For determining the mechanical properties only static compressive properties were 

determined in the present work. In future studies, other relevant mechanical properties, such as static 

bending strength [46], static torsional strength [46] and fatigue life [50], should be determined. 

5. Conclusions 

The relationship between morphological and mechanical properties of selective laser melted porous 

titanium alloy biomaterials based on six different types of space-filling unit cells were studied. It was 

observed that the mechanical behavior, mechanical properties, and failure mechanisms of the porous 

structures are highly dependent on the type and dimensions of the unit cells out of which the porous 

structures are made. As expected, compressive properties of all the porous structures increased with 

structure relative density. Moreover, for a given compressive property of a porous structure, the 

dependence on the structure relative density was of the power type. The exponent could be used for 

generalizing the relationships between structure relative density and the compressive properties of 

porous structures with different types of unit cells. When comparing the compressive properties of the 

porous structures based on the different types of unit cells, it was found that in many cases the 

comparative performance of the structures is different for low and high values of structure relative 

density with a separating structure relative density of 0.15–0.2. Among all unit cells, the diamond unit  

cell consistently showed lower compressive properties. Regarding the stiffness values, the unit cells  

were divided into a high stiffness group including truncated cube, truncated cuboctahedron, 

rhombicuboctahedron, and cube and a low stiffness group including diamond and rhombic 

dodecahedron. However, truncated cube showed remarkably higher stiffness than other members of its 

group for apparent densities exceeding 0.2. The results obtained in the present study revealed the 

relationship between the morphological and compressive properties of porous structures based on six 



Materials 2015, 8 1892 

 

 

different types of unit cells, many of which have been so far largely unexplored. Moreover, it could 

serves as a basis for validation of analytical and computational models developed for estimation of the 

mechanical properties of additively manufactured porous biomaterials. 
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