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Abstract: The way address sequences and data patterns
appear on the outside of a memory may differ from their in-
ternal appearance; this effect is referred to as scrambling,
which has a large impact on the effectiveness of the used
tests. This paper presents an analysis of address and data
scrambling for memory chips, at the layout and at the elec-
trical level. A method is presented to determine the data
backgrounds to be used for the different memory tests. It
will be shown that the required data backgrounds are fault
model, and hence, also test specific. Industrial results will
show the influence of the used data backgrounds on the fault
coverage of the tests.

Keywords: Address-scrambling, data-scrambling, data
backgrounds, fault models, memory tests

1 Introduction

The problems with testing memories are very different from
testing logic. The main reason is that the fault behavior of
memories is inherently analog; while the used fault models,
such as stuck-at faults, typically have a digital (logical) na-
ture. In addition, because of the internal analog operation
of memories, their faulty behavior can be very complex, re-
sulting in large classes of logical fault models [1]. Much
has been published on modeling memory faults and tests
[2, 3]. Most of the published tests have been designed for
bit-oriented memories, which have a word-width of a single
bit; i.e., B = 1.

However, a systematic method has been designed to
cover word-oriented memories, which are more than one
bit wide [4, 5]. This means that any of the published tests
can be modified to be applicable to a memory with B-bit
words (B � 2). The published method is based on the
use of Data Backgrounds (DBs) [6], which are B-bit binary
patterns written into a word. It has been shown [4, 5] that
coupling faults within a word, which can occur in word-
oriented memories, are detectable by march tests using the

appropriate DBs. The to-be-used set of DBs is shown to
depend on the assumed coupling fault model between cells
within the same word of the word-oriented memory.

In addition to the modification of memory tests for cov-
ering word-oriented memories, tests also have to be modi-
fied in order to take scrambling into account. Scrambling
means that the logical structure, as seen by the user from
the outside of the chip, differs from the physical or topolog-
ical internal structure of the chip. The consequence is that
logically adjacent addresses may not be physically adjacent
(this is called address scrambling) and that logically adja-
cent data bits are not physically adjacent (this is called data
scrambling). It has been demonstrated experimentally [7, 8]
that the fault coverage of a test varies by about 35% by us-
ing different addressing sequences and/or by using different
DBs, while it has become an industrial practice to apply a
set of test algorithms several times, every time using a dif-
ferent pair of DBs [9] in order to compensate for the effects
of scrambling. In spite of the large impact of scrambling on
the effectiveness of memory tests, no paper has been writ-
ten in which the causes of scrambling, the different forms it
can have, together with the consequences for the used tests,
have been analyzed. These are the subject of this paper.

Section 2 describes the reasons and different forms of
scrambling. Section 3 shows the consequences of scram-
bling for the to-be-used data backgrounds, and Section 4
for the to-be-used addressing. Section 5 shows the impact
scrambling has on the fault coverage of memory tests. Sec-
tion 6 ends with conclusions.

2 Reasons for scrambling

This section describes the industrial memory design and
layout practices, which are the main causes for scrambling.
These causes are:

1. Geometry optimisation introducing folding;

2. Address decoder optimisation;
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3. Cell area optimisation by sharing contacts and well ar-
eas;

4. Speed and robustness optimisation based on bitline
twisting;

5. Yield optimisation by introducing redundancy;

6. Achieving I/O pin compatibility utilising address or
data line swap.

Strictly taken, the sharing of contacts and well areas
by neighboring cells does not automatically lead to scram-
bling; but like scrambling, it impacts test implementation.

2.1 Folding

For a memory of a given size, the memory cell array (MCA)
area has to be laid out such that it approaches a square in
order to balance the lengths (and therefore the capacitances
and delays) of the bitlines and the wordlines. However, this
requires the number of words and the number of bits per
word (referred to asB) to be about the same, which will not
always be the case. For example, consider the 64*4 logical
organization; the topology of such a memory would not be
acceptable, because the bitlines would be too long. A much
better topology would be 16*16; i.e., 16 rows, each contain-
ing 16 bits. The translation of the logical 64*4 organization
to the topological 16*16 organization (indicating 16 rows
with 16 bits each) is called folding. Several folding schemes
exist, depending on the layout of the bits in a row. We will
discuss the adjacent and the distributed folding schemes.

In the adjacent folding scheme, the B bits of the logical
word are still adjacent topologically in the row; i.e., the row
is filled with a set of W words, W = (Number of bits in a
row)/B. For our example this means that each row contains
W = 4 logical B = 4-bit words, whereby the bits of each
word are physically adjacent; see Figure 1.
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a) Adjacent folding
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b) Distributed folding

Figure 1: Adjacent and distributed folding

In the distributed folding scheme theB bits of the logical
word are distributed over the entire row in such a way that
the W bits numbered ‘0’ of the W logical words in a row
are physically adjacent, etc. The result is that two logically
adjacent bits are separated byW �1 bits of the other words
in that row, see Figure 1.

2.2 Address decoder optimisation

Depending on their implementation, the row- and col-
umn decoders of a memory can introduce scrambling.
Implementing a separate row/column decoder with all
row/column addresses as imputs for every row and every
column of an MCA would be very impractical for large
memories; the required silicon area would be prohibitive,
and it would be very difficult to make the row decoder
height and column decoder width less than the height and
width of a single memory cell. Fortunately, it is not nec-
essary to spend all this silicon area, since the address de-
coders for individual rows and columns are for a large part
identical and can thus be shared. This sharing of circuitry,
in combination with further area optimisation, can lead to
scrambling.

An example of this principle is shown in Figure 2. On
the left-hand side of the figure, the two logical address in-
puts AL1 and AL0 are pre-decoded into the signals AL1,
AL1, AL0 and AL0 by two inverters. These signals are
then further decoded by local decoders, in this case simply
AND gates. The local decoders on the left show a situa-
tion without scrambling; in this case, it is not possible to
share any interconnect, especially contacts between differ-
ent metal layers, between them. Since the physical address
bits AP1 and AP0 are always identical to the logical ad-
dress bits AL1 and AL0 there is no scrambling.

00 111001 00 10 1101

AL0

AL1

& && & & &&&

no scrambling scrambling

AL0

AL0

AL1

AL1

AP1 AP0 =

selected if

00 111001 00 11 1001AL1 AL0 =

Figure 2: Address decoder scrambling

The local decoders on the right, however, have been re-
organised to be able to share as many contacts as possible;
this way, a smaller decoder can be built. As a side effect,
scrambling is introduced. This can be seen by inspecting the
differences between the logical and physical addresses, that
obey the following scrambling equations, which are typical
for many industrial products [10]:

AP0 = AL0�AL1

AP1 = AL1
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Note: � stands for the XOR function andX for the nega-
tion ofX . The example of Figure 2 is of course very simple;
real-life address decoders usually will be much more com-
plex.

2.3 Contact and well sharing

For all but the smallest RAMs the cell area plays an impor-
tant role. In addition to using aggressive design rules, some
layout measures can be taken to reduce the cell area. These
measures include the sharing of contacts (such as power,
ground and bitline contacts) and P- and N-well areas be-
tween groups of cells. Both contacts and well boundaries
take silicon area; contacts also form a yield and reliability
exposure, such that reducing their number is very desirable.

Figure 3 shows an example layout of a 6-T SRAM cell in
a standard CMOS process. Only the active area, polysilicon
and first metal layers are drawn; the N-well and P-well im-
plantation areas are indicated. A transistor is formed where
the poly runs over active area. This leads to two PMOS
pull-up transistors (P1 between V DD and the true node,
and P2 between V DD and the complement node, both in
the N-well area) and four NMOS transistors; two pull-down
transistors (N1 between V SS and the true node, and N2

between V SS and the complement node), and two access
transistors (N3 between BL and the true node, and N4 be-
tweenBL and the complement node), all in the P-well area.
The true node (T ) is formed in metal to the left and at the
top of the figure, and in polysilicon as the gate of P2 and
N2; the complement node (C) is shown in metal to the right
and bottom of the figure, connecting to the poly gate of N1

and P1.

T C

VDD

N1 N2

P2P1

VSS

N4N3 POLY WORDLINE

BL BL

PWELL

NWELL

= ACTIVE AREA = METAL= POLYSILICON

Figure 3: Example layout of a single SRAM cell

Figure 4 shows how this cell layout can be used in an
MCA, saving silicon area by introducing cell mirroring. As
can be seen from this figure, the layout of the single SRAM
cell has been mirrored across the X-axis as well as across

the Y-axis. In this case, the X-axis mirroring is absolutely
necessary; it allows for sharing of the BL, BL and V DD
contacts by two neighboring cells in the same column. In
addition, the P- and N-wells can now be shared between
adjacent rows. Without this sharing, twice as many P-well
and N-well rows would be needed at the expense of extra
silicon area, mainly due to minimum design rule distances
for the P-well to N-well boundary, and to a lesser extent
because of well contacts.
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BL BL BL BLX-AXIS
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= POLYSILICON

Figure 4: A group of 4 SRAM cells showing mirroring with respect to
X-axis and Y-axis

In Figure 4, also Y-axis mirroring is indicated. For the
layout of Figure 3, however, this is not necessary for sharing
contacts or wells; it is just shown as an example. For some
real-life SRAM cell layouts, however, this mirroring may
be required; e.g., to share V DD or GND contacts or to
optimise for certain lithography effects. Note that, although
the cell layout has been mirrored accross the Y-axis, the
BL is still to the left and the BL is still to the right; for a
symmetric SRAM cell design, BL and BL can be chosen
arbitrarily.

The layout of Figures 3 and 4 shows just one example of
area optimisation by sharing contacts and well areas; many
other configurations are possible, such as sharing of GND
instead of V DD contacts and/or between row instead of
column neighbours. This type of contact sharing has an im-
pact on testing word-oriented memories, as will be shown
in Section 3.

2.4 Bitline twisting

Bitlines in memory arrays are very sensitive to disturbs, be-
cause during read operations only a small differential volt-
age (in the order of 100 mV) between BL (the true bitline)
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and BL (the complement bitline) is used by the sense am-
plifiers; a larger differential voltage would increase the read
time. Because of the fact that BLs of neighboring columns
are physically close together, they tend to have a large mu-
tual capacitance and therefore a large coupling effect; see
Figure 5a. It shows that BL1 and BL0, as well as BL1
and BL2, have a large mutual capacitance (the capacitance
between BL1 and BL1 is not drawn). Speed and/or design
robustness can be improved by reducing this capacitive cou-
pling.

BL0 BL1BL0 BL2BL1 BL2

a) no twisting

BL0 BL1BL0 BL2BL1 BL2

b) twisting

Figure 5: Bitline twisting

By twisting BL/BL of the even BL pairs once in the
middle, and BL/BL of the odd BL pairs twice, at 1=4
and 3=4 of their lengths, the capacitive coupling is reduced
to 1=4th, because any two BLs/BLs not belonging to the
same pair are only adjacent for 1=4th of their total length.
In addition, because differential sense amplifiers use the
BL/BL pairs for sensing differential voltages, the effective
coupling capacitance is reduced to zero, because a given
BLx is coupled to theBLy and to theBLy of the neighbor-
ing BL pair; see Figure 5b. For example, BL1 is coupled
to BL2 and to BL2 such that a disturbing signal on BL1
impacts BL2 and BL2 in the same way; i.e. the difference
between BL2 and BL2 does not change.

Twisting BL/BL means that the left-to-right order of
BL and BL are switched, which does not change the array
operations; i.e., it is transparent to the user of the memory.
However, it changes the adjacency of BLs; for example
BL1 in the untwisted design was only neighboring BL2,
while BL1 was not neighboring neither BL2 nor BL2. In
the twisted design BL1 is adjacent to BL2 and BL2, as
well as to BL0 and BL0, which means that a resistive de-

fect between BL1 and BL0, BL0, BL2 or BL2 can cause
a coupling fault.

The effectiveness of twisting depends on other design
properties. If, for example, a V DD or V SS line runs be-
tween adjacent BL pairs in the same metal layer, twisting
does not make sense. For small memories, which typi-
cally have short BLs and strong signal levels, twisting is
not used, while more complex BL twisting schemes are
currently used for large memories, whereby groups of 3 or
more BL pairs are twisted.

2.5 Redundancy

Chips with a larger area usually have a lower yield than
smaller chips, since the larger ones are more likely to
‘catch’ defects. For large memories, the situation is even
more critical, since especially for these memories the cell
area has been minimized using aggressive design rules;
consequentially, even smaller defects can cause opens and
shorts. Given the fact that many current ASICs (and mi-
croprocessors) contain several large memory arrays, those
arrays effectively determine the yield of such ASICs.

Because of the regular structure of the memory array,
redundancy can be introduced in order to achieve an ac-
ceptable manufacturing yield. For example, spare rows and
columns can be added, so that a limited number of defec-
tive rows and columns can be repaired [11]; any access to
these defective rows/columns is rerouted to the spare ones.
Typically, about 2% of the array area is allocated to spare
rows/columns.

The repair can be performed statically, i.e., as part of
the manufacturing process, or dynamically, every time upon
power-on of the ASIC [12]. It consists of detecting and lo-
cating any defective rows/columns, calculating a repair so-
lution if it exists and, if so, replacing them using the spares;
the latter can be done by programming the repair solution
into fuses (static repair) or latches (dynamic repair) that
control multiplexing circuitry in the memory.

Since the spares only logically replace the defective
rows/columns, using redundancy changes the relation be-
tween logical and topological neighborhoods for subse-
quent tests. One would expect that high quality tests would
compensate for this; however, this is not the case. First of
all, such tests would depend on the redundancy-concept of a
certain memory type, requiring a large test development ef-
fort. Much worse, such tests would depend on the specific
repair solution, which varies from chip to chip; this would
require reading the repair solution from the chip and then
selecting or calculating the required test, a very impracti-
cal if not impossible task. Finally, quite often many chips
are tested in parallel (current DRAM chip testers allow for
testing 256 chips in parallel!) by applying the same algo-
rithm to all chips, which clearly makes a chip-specific test
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impossible. Therefore, production tests typically ignore the
changed topology due to repairs.

2.6 I/O pin compatibility

Commodity memory chips are specified such that they are
footprint and pin compatible with similar parts of competi-
tors. This facilitates the replacement of a given memory
chip of one manufacturer by that of another. It allows for
easy entry in an established market and for the availability
of second suppliers (as required by many system houses).

Naturally, the internal designs and layouts of compatible
chips may differ radically. The address and data pads of
the chip may be connected to different internal address and
data signals, since a memory remains logically equivalent
if address(data) lines are swapped with other address(data)
lines. The same holds for inverting the logical value of indi-
vidual address(data) lines. This swapping and/or inverting,
however, does influence the relation between the logical and
physical organisation.

For example, in case of a chip with B = 4, the first
manufacturer offers a chip whereby the data I/O pins of
the package are numbered D0, D1, D2 and D3, bonded
to the data I/O chip pads P0, P1, P2 and P3, respectively.
Next, another manufacturer produces a compatible version
whereby the data I/O chip pads are in the sequence: P3,
P0, P2 and P1. Because of bonding restrictions, these I/O
pads have to be swapped as follows: P3! D0, P0! D1,
P2 ! D2 and P1 ! D3, causing data scrambling. Simi-
larly, pin compatibility may also cause address scrambling.

3 Consequences of scrambling for
data backgrounds

Some topological DBs, like checkerboard, are very well
known; however some other DBs and the exact definition
of a DB in an SRAM are less obvious. These and other
issues, when using data backgrounds with scrambling, are
discussed in the next sections.

3.1 Common data backgrounds

Using the proper topological DBs is important for detecting
the coupling effects between cells and between BLs, and
for detecting weaknesses in memory periphery [13]. Com-
monly the following topological data backgrounds are dis-
tinguished, see Figure 6:

� Solid DB (so): all memory cells are filled with ‘0’s;
and its inverse (so): all memory cells are filled with
‘1’s;

� Checkerboard DB (cb): an alternating pattern of ‘0’s
and ‘1’s in both row as well as column direction (its
inverse cb is not shown);

� Row stripe DB (rs): rows filled with ‘0’s alternating
with rows filled with ‘1’s (rs not shown);

� Column stripe DB (cs): columns filled with ‘0’s alter-
nating with columns filled with ‘1’s (cs not shown);

� Other DBs, such as double row stripe (drs), etc.
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Figure 6: Some common data background types

The proper DBs to use depend on the type of fault or
defect to be detected. In case of cell leakage in a DRAM,
for example, it may be desirable to use the cb and cb DBs.
To sensitize leakage between adjacent BLs from different
columns, the so or so DB might be better suited. If the
memory periphery is to be stressed, a cb/cb or rs/rs could
be best, provided fast-x addressing is used (see Section 4).

Note: The usage of all of these DBs not only depends on
the specific memory architecture and scrambling, but also
on the used algorithms.

3.2 DBs in SRAMs with bitline twisting

For DRAMs these DBs are quite clear, but for SRAMs the
situation is more complex, since each SRAM cell has two
nodes storing opposite logic values, and the bitlines also run
in pairs. For SRAMs, the DBs of Figure 6 define the value
for the left node (L) (the one closest to the adjacent column
with lower number); the value for the right node (R) is then
automatically the opposite. The result is shown in Figure 7.
As can be seen from this figure, leakage or coupling effects
between adjacent cells in the same row are better sensitized
using the rs than the cb topological DB.

The importance of defining topological DBs based upon
node location, using L and R nodes, instead of on stored
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Figure 7: The cb and rs DBs at SRAM cell node level

bit value, using T and C nodes, can be seen in Figure 8. It
shows the situation for a rs DB depending on bitline twist-
ing; the stored bit value is indicated as the large digit in the
center of each cell. As can be seen in part b of this fig-
ure, the stored bit value at a certain row and column has to
be modulated with the BL twisting information to obtain
the desired rs DB; e.g., to sensitize leakage paths. If in an
SRAM a DB is used without correcting the logic bit value
for twisting, the DB is called pseudo-topological.
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Figure 8: Stored bit value and node values for the rs DB at depending on
BL twisting

3.3 Which DBs to use with bitline twisting

If all scrambling information is available, the test can sim-
ply compensate for this by modifying logical data values to
obtain the desired topological DBs. Note that some tests
and DBs, however, are not aimed at the topological cell val-
ues. A test for SRAM access transistor leakage applied to an
SRAM withBL twisting will require the same logical value
on all T (C) nodes in a column, not on all L(R) nodes! Sim-
ilarly, a test for shorts between data lines applied to a mem-
ory with distributed folding, needs to take the logical values
of the data lines of the memory into account, regardless of
topological DBs.

Taking bitline twisting into account in a test implemen-
tation can be easy with suitable memory ATE. When us-

ing BIST or CPU-based memory test, however, this can be
much more difficult. Instead, a set of pseudo-topological
DBs (see Section 3.2) can be used to replace a topological
DB. For example, in case of the twisting scheme of Fig-
ure 5, the rs topological DB that covers cell neighborhood
effects can be replaced as follows:

� two adjacent cells in the same column, with no BL
twist in between, need the rs or cb pseudo-topological
DB;

� two adjacent cells in the same column, with aBL twist
in between, need the so or cs DB;

� two adjacent cells in the same row, with the same T
and F node orientation, need the so or rs DB;

� two adjacent cells in the same row, with opposite T
and F node orientation, need the cs or cb DB.

Therefore, by using either the so and cb, or the rs and cs
pseudo-topological DBs, any form of twisting is accounted
for, including no twisting! Then the test programmer does
not have to take the details of twisting into account.

To check whether any coupling, resistive as well as ca-
pacitive, between any pair ofBLs exists (in case of adjacent
folding), the so or rs, and the cs or cb pseudo-topological
DBs have to be used, because even in the case of no twist-
ing, they generate all 4 states on any two neighboringBLs.
Therefore, no additional DBs are needed.

3.4 Effects of contact sharing and folding

In case V DD and/or GND contacts are shared between
cell pairs, coupling via a resistive V DD orGND contact is
possible and special attention, in terms of to-be-used DBs,
is required. Figure 9 shows two examples of cells sharing
the GND contacts.

b) sharing between row neighbors

GNDGND

L R L RL R

GNDGND

L R L RL R

L R

L R

GND

a) sharing between column neighbors

L R

L R

GND

L R

L R

GND

Figure 9: Sharing of GND contacts

Figure 9a shows how contact is shared between two cells
in the same column; faults can now occur because writing
or reading to one cell may sensitize a fault in the other cell.

In Figure 9b each cell has two GND contacts; the L
and R invertors, which form a cell latch, each have their
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own GND, which are shared with their row neighbors (see
also Section 2.3). In case of a word-oriented memory, using
adjacent folding (see Section 2.1), two cells sharing their
GND contact will be accessed simultaneously. This means
that a subset of the faults typical for two-port memories ap-
plies [14]. When reading two neighboring cells simultane-
ously, whereby theR node of the left cell and the L node of
the right cell both contain a ‘0’, a (deceptive) read destruc-
tive fault [15] can be sensitized.

4 Consequences of scrambling for
addressing

The common addressing schemes, as well as the conse-
quences of decoder srambling and folding, are discussed in
the next sections.

4.1 Common addressing schemes

In formal test algorithms [2] the address is usually con-
sidered to be one-dimensional, such that only the distinc-
tion whether to increment (an * address order) or to decre-
ment (a + address order) the current address can be made.
Note that when the address order is irrelevant, as is often
the case when the memory has to be initialized, then the
m symbol is used. However, in reality a memory cell has
a two-dimensional address: the X-address, specifying the
row of the cell, and the Y-address, specifying the column of
the cell; and many ways of counting exist, denoted as ad-
dress sequences. An almost infinite number of address se-
quences exist; however, for testing memories the following
has become an industry accepted set. Some of the address
sequences are shown in Figure 10, using a 4*4 cell array.
The number in each cell indicates the step in the address se-
quence; i.e., the address sequence goes from step 0, to 1, to
2, through step 15.
1. xA: Fast-X addressing.
The row address is incremented most frequently. Figure 10a
shows Fast-X addressing using an * address order; denoted
as x*. Figure 10b shows x+, its inverse.
2. yA: Fast-Y addressing.
The column address is incremented most frequently, see
Figure 10c.
3. gA: Gray code addressing.
The successive addresses differ in exactly one bit. Many
Gray codes are possible , depending on which bit is con-
sidered the least significant address bit. An example is
shown in Figure 10d. It depicts the following address
sequence (address bit order: X-MSB, X-LSB, Y-MSB,
Y-LSB): ‘0000’, ‘0001’, ‘0011’, ‘0010’, ‘0110’, ‘0111’,
‘0101’, ‘0100’, ‘1100’, ‘1101’, ‘1111’, ‘1110’, ‘1010’,
‘1011’, ‘1001’, ‘1000’.

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

73 1511

40 128
51 139
62 1410

a) fast-x, up

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

146 19

80 715
102 513
124 311

e) complement, up

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

98 1011

10 23
67 54

1415 1312

d) gray code, up

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

812 04

1115 37
1014 26
913 15

b) fast-x, down

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

19 146

715 80
513 102
311 124

f) complement, down

row 3

row 0
row 1
row 2

co
l 0

co
l 3

co
l 2

co
l 1

1312 1514

10 32
54 76
98 1110

c) fast-y, up

Figure 10: Some common addressing sequences

4. cA: Address complement addressing
Address increments/decrements of 1 are assumed for the
even address steps, whereby in every second address step
the inverse of the preceding address is used. Figure 10e
shows Fast-X cA, denoted by the cx* symbol; Figure 10f
shows its inverse cx+

Fast-X and Fast-Y addressing usually use incre-
ments/decrements of 1, because of the high probability
of coupling faults between cells who are topological row
and/or column neighbors. Fast-X and Fast-Y addressing
using address increments/decrements of 2i are used to de-
tect open faults in the address decoder paths [2, 16]. Gray
code addressing is essential for testing asynchronous mem-
ories because its address sequence contains the worst-case
patters for triggering the address-transition detection logic.
Address complement is used to check for worst-case delays
in the address decoding paths, because all predecoder gates
and the local decoder gate have to switch for each new ac-
cess.

4.2 Consequences of decoder scrambling and
folding

Implementing a test using suitable memory ATE makes it
easy to take decoder scrambling into account; the test al-
gorithms can simply be programmed using the logical X-
and Y-addresses (that exist separately because of folding)
as if there were no scrambling, after which the address de-
coder scrambling of the to-be-tested memory can be be pro-
grammed separately into the ATE. The ATE then takes care
of the correct logical to physical address translations.

In a BIST or CPU-test implementation, care must be
taken to generate the desired physical addressing sequences.
Partly, this can be done by just selecting carefully which
address bits are connected to which bits (MSB-LSB) of an
address counter; this way, basic fast-X or fast-Y addressing
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can be selected. In addition, the scrambling equations (see
Section 2.2) need to be implemented.

Figure 11a shows an example 8*2 bit memory. It has
adjacent folding, a straightforward Y (column) decoder, and
an X (row) decoder that has the scrambling of Figure 2. The
logical operations to be performed on this memory in order
to write a correct topological DB, are shown in Figures 11b
(for x* addressing) and 11c (for y* addressing).

AL5AL4AL4

AL6

AL2

AL0 AL1 AL1

AL2 AL3 AL3

AL6 AL7 AL7

AL5

D0 AL0

APx 0 APy 0
ALx 0 ALy 0

0
D1

APx 0 APy 0
ALx 0 ALy 0

1

D1

APx 1 APy 0
ALx 1 ALy 0

0
D0

APx 1 APy 0
ALx 1 ALy 0

1

D0

APx 2 APy 0
ALx 3 ALy 0

0
D1

APx 2 APy 0
ALx 3 ALy 0
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APx 3 APy 0
ALx 2 ALy 0

1
D1

APx 3 APy 0
ALx 2 ALy 0

0
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APx 3 APy 1
ALx 2 ALy 1
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ALx 2 ALy 1
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APx 0 APy 1
ALx 0 ALy 1
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APx 1 APy 1
ALx 1 ALy 1

1
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APx 2 APy 1
ALx 3 ALy 1

0
D1

APx 2 APy 1
ALx 3 ALy 1

1

D1

APx 1 APy 1
ALx 1 ALy 1

0

D1

APx 0 APy 1
ALx 0 ALy 1

1
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l 3

row 3

a) 4*2 bit memory, adjacent folding, x-decoder scrambling

row 0

row 1

row 2

co
l 0

co
l 2

co
l 1

step 1: address 0 write 10
step 2: address 1 write 10
step 3: address 2 write 01
step 4: address 3 write 01
step 5: address 6 write 10
step 6: address 7 write 10
step 7: address 4 write 01
step 8: address 5 write 01

c)

step 1: address 0 write 10
step 2: address 2 write 01

b)

step 3: address 6 write 10
step 4: address 4 write 01

step 8: address 5 write 01
step 7: address 7 write 10
step 6: address 3 write 01
step 5: address 1 write 10

AL[2-0] = ALx[1],ALx[0],ALy[0]
D[1-0] = D1,D0

x (w cb)

y (w cb)

Figure 11: Example 8*2bit memory with logical operation sequences for
x* and y* addressing with the cb DB

As can be seen from these figures, the exact logical op-
erations depend on the scrambling properties of a memory,
and thus are design dependent. Other desired address se-
quences, or distributed folding, or possible bitline twisting
will result in different logical operation sequences to be per-
formed.

5 Importance of scrambling

Industrial data, published in [7, 8], has shown the impact
scrambling has on the fault coverage. In addition, a strong
relationship between the fault models and the data back-
grounds has been shown to exist. An experiment was per-
formed whereby 800 4M*4 (16 Mbit) DRAM chips were
tested with a large number of tests, which identified a total
of 116 chips to be faulty. Many test were used in that ex-
periment, of which the results of the following tests will be
shown:

SCAN (4n): fm(w0); m(r0); m(w1); m(r1)g
March C- (10n): fm(w0); *(r0,w1); *(r1,w0); +(r0,w1);
+(r1,w0); m(r0)g
PMOVI (13n): f+(w0); *(r0,w1,r1); *(r1,w0,r0);
+(r0,w1,r1); +(r1,w0,r0)g
March LA (22n): fm(w0); *(r0,w1,w0,w1,r1);
*(r1,w0,w1,w0,r0);+(r0,w1,w0,w1,r1);
+(r1,w0,w1,w0,r0);+(r0)g

The above tests have been performed using the so, cb, rs,
cs, drs (see Figure 6), double checkerboard dcb and double
column stripe dcs (not shown in Figure 6, see [7, 8]) DBs.

The results of these tests, using fast-X and fast-Y ad-
dressing are shown in Figure 12. For the above 7 DBs and
the union of the 7 DBs; while address and data scrambling
is compensated for. The union represents the collective fault
coverage over all used DBs.

Variations of about 35% can be observed between fast-X
and fast-Y; as well as between the different DBs for fast-X
and fast-Y. Note that the fault coverage generally is high-
est for fast-Y, because that stresses the data retention of the
DRAMs most, because all words of the same row will be ac-
cessed before accessing, and therefore also refreshing, the
next row. In case of a very long sequence of operations per
row, this will have to be interrupted for refresh.
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SCAN March C- PMOVI March LA

fast-x so
fast-x cb
fast-x rs
fast-x cs
fast-x dcb
fast-x drs
fast-x dcs
fast-x union
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SCAN March C- PMOVI March LA

fast-y so
fast-y cb
fast-y rs
fast-y cs
fast-y dcb
fast-y drs
fast-y dcs
fast-y union

Figure 12: Effect of DBs on the fault coverage, using Fast-X and Fast-Y
addressing

It should be noted that the SCAN test is a very special
march test in the sense that it is well able to detect dy-
namic (i.e., speed related) faults, caused by slowness of the
sense amplifiers, the write drivers and/or the address de-
coders. In order to detect these faults, the test should be
performed using fast-X, and the DB should have alternating
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Figure 13: Fault overage of SCAN test as a function of DB, addressing
order and scrambling

values along a column (this can be the rs or cb DB). The
impact of the DBs and the address sequences on the fault
coverage of SCAN is shown in Figure 13. In addition the
fault coverage is shown for two applications of each test:
the light-grey bars (SNE) show test results whereby scram-
bling has not been compensated for (by using only logical
addresses and data patterns), and the dark-grey bars (SE)
show the tests results whereby scrambling has been taken
into account. From Figure 13 it is obvious that scrambling
should be compensated for. In addition, the rs and cb DBs
are the most effective, as could be expected, considering the
properties of the fault model.

6 Conclusions

This paper has shown that address as well as data scram-
bling occurs as part of the normal design practice of RAMs.
Industrial results have shown variations in fault overage of
about 35% due to the use of different address orders and due
to the use of different DBs. The impact of the used address
sequence and DB has also shown to be test specific; for ex-
ample, for the SCAN test the fast-X address sequence has to
be used together with the cb or the rs DB. In addition, it has
been shown that the fault coverage is reduced considerably
when scrambling is not taken into consideration (see Figure
13).

The effects of bit-line twisting and contact sharing can be
compensated for by repeating tests using different DBs. It
has become industrial practice to apply a set of tests, using
different address sequences as well as different DBs. The
fast-X and fast-Y address sequences, and the so, cb, rs and
cs DBs are used most often; they have shown to cover most
cases of data scrambling; provided that address scrambling,
as well as data scrambling due to I/O pin compatibility, is
compensated for.
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