
Address Calculation for Retargetable Compilation and
Exploration of Instruction-Set Architectures

Clifford Liem1,2, Pierre Paulin2, Ahmed Jerraya1

(1) TIMA Laboratory, Inst. Nat. Polytech. de Grenoble (INPG) (2) Central R&D, SGS-Thomson Microelectronics (ST)
46, ave Félix Viallet, 38031 Grenoble, France 850, rue Jean Monnet, 38921 Crolles, France
liem@verdon.imag.fr jerraya@verdon.imag.fr pierre.paulin@st.com

Abstract
The advent of parallel executing Address Calculation Units (ACUs)

in Digital Signal Processor (DSP) and Application Specific Instruction-
Set Processor (ASIP) architectures has made a strong impact on an
application’s ability to efficiently access memories. Unfortunately,
successful compiler techniques which map high-level language data
constructs to the addressing units of the architecture have lagged far
behind. Since access to data is often the most demanding task in DSP,
this mapping can be the most crucial function of the compiler. This
paper introduces a new retargetable approach and prototype tool for
the analysis of array references and traversals for efficient use of ACUs.
The ArrSyn utility is designed to be used either as an enhancement to
an existing dedicated compiler or as an aid for architecture exploration.

 1  Introduction
As data intensive algorithms push for higher speeds on Digi-

tal Signal Processing (DSP) architectures, access to data memo-
ries become the limiting factor. In response to this, designers
have conceived the Address Calculation Unit (ACU) (some-
times termed Address Generation Unit (AGU), Address Arith-
metic Unit (AAU), or Memory Management Unit (MMU)), an
arithmetic unit which works in parallel to the main Data Calcu-
lation Unit (DCU). The ACU works solely on address genera-
tion to ensure efficient retrieval and storage of data that is
calculated on the DCU. In most cases, the ACU works in a post-
increment/decrement fashion to ensure high speed. Pre-incre-
ment/decrement addressing is rare because this would require at
least two operations to occur in the same instruction cycle,
namely the address calculation, then the memory access.

Post-increment/decrement address units are present on count-
less general-purpose DSPs and cores, for example the SGS-Th-
omson D950 core [1] (shown in Figure 1), the Motorola 56000
series, the Texas Instruments TMS320C25 [2], and the Lode
DSP Engine [3], to name a few. They are also common in Ap-
plication Specific Instruction-Set Processors (ASIPs) used in
applications such as MPEG audio [4][5], Dolby decoding [6],
and DSP for telecommunications [7].

Although ACUs have existed for some time, the compiler
techniques for mapping high-level language constructs onto the
register structures are immature. This is immediately reflected
in the poor performance of today’s DSP compilers [9]. The
problem of mapping array structures onto these calculation units
manifests itself in two ways:
1. difficulties of dealing with special registers and connections.

2. difficulties in treating the disjunction in dependency between
the use of addresses and the calculation of new addresses, in-
herent in the post-modify operation of the unit.

The lack of adequate compilation techniques has forced design-
ers to write assembly-level programs, which has disadvantages
in maintenance and design evolution to new processors.

Previous experience [5] has shown that lowering array-based
C code to pointer-based code can significantly improve perfor-
mance. This paper addresses this type of transformation.

 2  Traditional Compiler Approaches

 2.1 Address Pre-calculation
A straight-forward method of calculating addresses for arrays

is on-the-fly generation. For a simple array reference, this in-
volves the addition of a base address with an induction variable
(assuming the data size is 1; otherwise, a multiplication by a
constant is needed) as depicted in the example of Figure 2. The
shortcoming with this approach is that the value of the address
must be calculated before the reference because the operation is
data dependent. Within the context of loop bodies, array calcu-
lations of this sort can be an enormous performance penalty.

An improvement to the straight-forward approach is loop
pipelining [8], where addresses for iterationi are calculated at
iterationi-1. This can be extended depth-wise for the number of
operations of the induction variables. However, the incremented
values of the induction variables themselves must still be calcu-
lated for each iteration of the loop (usually at the end of the
loop). Moreover, this type of pipeline does not offer a natural
mapping to a DSP type of ACU (Figure 1), especially within the
context of the address register connections.

 2.2 Address Post-calculation
A second approach to this problem involves reducing an ar-

ray reference to an address (pointer) reference and increment-
ing/decrementing the resulting address for the next reference of
the array. This optimization has a two-fold advantage. The ad-
dress calculation can be done in parallel to any principal opera-
tions and there is no more need for an induction variable or
induction variable calculation (assuming it is not needed for
other purposes). An example is shown in Figure 3, where for in-
stance, the next use of the pointerbp is one position higher than
the current position of bp.

This approach maps most naturally to the ACU post-incre-
menting structure described earlier. The approach requires, as is
also true for loop pipelining, a careful semantic analysis of the
subscript dependencies through the various control constructs of
the source program.

+
b i

= b[i]

address
read value

Figure 2. Pre-calculation of Array Addresses
from memory

33rd Design Automation Conference 
Permission to  make digital/hard  copy of all  or part of this work  for personal or class-room use is granted without fee provided that copies are  not made 
or distributed for profit or commercial advantage, the  copyright notice, the title of the  publication and its date appear,  and notice is given that  copying is 
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists,  requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA             1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50



Previous work related to this area is found in [10][11]. Meth-
ods include loop manipulations and transformations where the
loops are strongly restricted to certain behaviours. These meth-
ods do not directly take into account the target architecture.

 3  Array Transformation Approach
The following approach is aimed towards array to pointer re-

ducing type of optimizations described in Section 2.2, with the
following goals:
• Retargetability: ability to reconfigure for other architectures.
• Designer Feedback: a maximum of information useful for ar-

chitecture exploration.
• Efficient Analysis: a minimum of complex semantic analysis.
• Facility to Integrate: ease of integrating into existing compiler

systems.

 3.1 Overall Flow
The proposed array analysis flow is depicted in Figure 4.

From the user’s viewpoint, only the shaded boxes are visible. A
C source containing array references and a specification file in-
dicating the addressing resources in the target architecture are
provided. The system then transforms the array references of
the source to pointer references and appropriate increments and
decrements of those pointers optimized for the provided ACU
specification. In addition, statistics are provided to the user dur-
ing compilation and as comments embedded in the target (C
source with addressing). These statistics include basic block fre-
quencies, array reference frequencies, and the number of point-
ers created. For the created pointers (of which the number may

+

1 bp
= *bp

address
read value

bp

bp++

Figure 3. Post-calculation of Array Addresses
from memory

Test
Data

Workstation
Compile

Instrument

Execute

Array
Analysis

Static

Dynamic
Image

Image

Statistics

C
Source

Address
Resource

Spec

C Source
with

Addressing
Trace

Stability Analysis

Pointer Creation
and Combination

Address and Index
Assignment

Figure 4. Array Analysis Flow

not correspond directly to the number of arrays), the system also
provides the reference frequencies and the frequencies of incre-
ment/decrement operations.

The choice of the C language as the target provides the fol-
lowing benefits:
• the target can be compiled and verified against the behaviour

of the source.
• the target can be fed directly to a processor-specific compiler.
• the semantics are easily understood by a human reader.
However, a drawback of generating C is that fine-tuning for par-
allelism is not possible. Parallelization (compaction) is left for
the back-end architecture compiler.

The central analysis block uses both a static and dynamic
(run-time) image of the source algorithm. The advantages of us-
ing static and dynamic information versus only static informa-
tion are:
• the ability to determine non-obvious linear relationships.
• the ability to allow calculated loop variables and array refer-

ences, provided the calculations do not come from input data.
• the simplicity and speed of the analysis.
• the availability of relative frequencies of basic blocks, which

provide a realistic cost function of the insertion of operations.
The dynamic image of the source is created through instrumen-
tation of the original source, compilation, and execution on the
workstation. Details are provided in Section 3.3. As a result of
this methodology, the following items are required:
• source must be compilable and executable on the workstation.
• data must be provided that exercises all the basic blocks to be

analyzed.
• execution on the workstation must have reasonable run-time.
In our experience, these items are common in an embedded sys-
tem development methodology, where firmware is simulated on
a desk-top platform before being used in the field. This differs in
nature from a general computing environment.

 3.2 Address Resource Specification
An example resource specification is shown in the left side of

Figure 5. The specification includes two main parts: a declara-
tion of resources (address and index registers) and the opera-
tions that can be performed on these resources. This
specification is represented internally as a structural connection
of registers, adders, and constants. This behavioural representa-
tion describes naturally the full operation of the unit and it is
used for allocation and assignment, where pointers and incre-
ments can be bound to registers and constants.

 3.3 Instrumentation and Tracing
Instrumentation is defined as the transformation of the origi-

IX0

X Data
X Address
Y Data
Y Address

IX1

IX2

IX3

Add

Figure 1.  Linear Post-Indexing ACU of the SGS-Thomson D950 Core [1]

IY0

IY1

IY2

IY3

AX0

AX1

SP

AY0

AY1

Add



nal source code to a duplicate plus the addition of tags. Tagging
is formulated as a lexical and semantic analysis of the source
program for the annotation of output statements that indicate
run-time information. The tags include: function entries, func-
tion exits, loop entries, loop begins, loop-exits, array references
including induction variables and run-time values of induction
variables. The run-time values of the induction variables is the
key component which allows analysis of the array traversals.

Execution of the instrumented code produces a trace that is
consumed by the main analysis block of the system. In this
manner, the array access patterns can be determined quickly and
with a minimum of semantic analysis. Tracing has also been
used in other contexts to improve run-time performance [12].

 3.4 Stability Analysis
Given a reference to an array at a static position in the source

program, stability analysis determines if this reference is visited
in a linear fashion within a loop hiearchy throughout the execu-
tion of a program. If so, it may be replaced by a pointer and an
increment/decrement set. The analysis makes use of the dynam-
ic trace of the program which quickly evaluates the characteris-
tics of the array reference run-time progression. Array
references which are stable within a set of loops may be re-
placed by a pointer reference and a set of increment/decrement
operations or combined with another pointer reference.

 3.5 Pointer Creation and Combination
Pointer creation and combination is the allocation phase of

the analysis. The goal is to produce an appropriate number of
pointers which match the capabilities of the address calculation
unit. The approach begins by creating a pointer for each stable
static array reference of the source program. From this starting
point, static pointers are combined (i.e. the references use the
same pointer) until a reasonable number exist for the architec-
ture at hand. The combination strategy uses the following rules:
• pointers created for array references with exactly the same

signature within the same nest of loops may be combined.
• pointers with non-overlapping lifetimes may be combined.
• pointers referencing the same array at different relative posi-

tions within the same nest of loops may be combined.
As these transformations have various effects on the resulting
code, rules are executed with the following objectives in mind:
• reduce the number of pointers to an amount equal or below

the number of available address registers.
• minimize the frequency of inserted increments/decrements of

pointers.
• minimize the number of different valued increments/decre-

ments for each pointer.

ACU_REGISTERS
{

ADDRESS: AX0, AX1;
INDEX: IX0, IX1;

}

ACU_OPERATIONS
{

AX0++;
AX0--;
AX0 += IX0;
AX1++;
AX1--;
AX1 += 2;
AX1 -= 2;
AX1 += IX0;
AX1 += IX1;

}

1
-1

2
-2

Add

AX0

1
-1

IX0

Add

AX1

ACU Internal Represenation

IX1

ACU Specification

Figure 5. ACU Specification and Representation

 3.6 Address and Index Register Assignment
Following their creation is the assignment of pointers and in-

crements to address registers and index registers or constants.
Lifetime analysis has already been done in the combination
stage; therefore, the problem is to find the best one-to-one
matching of pointers to address registers and their respective in-
crements to constants or index registers. If the number of point-
ers that exist after combining is less than the number of address
registers, a direct mapping is usually possible. If the number of
pointers exceeds the number of address registers, then some
pointers will be assigned to memory and must be loaded/stored
into a free address register. Pointers which are referenced more
frequently will reside directly in registers, while those which are
referenced infrequently may reside in memory and be retrieved
for usage.

For direct mappings, assignment proceeds in two steps:
1. An estimated cost of all possible assignments of pointers to

address registers is determined.
2. Pointers are assigned to address registers using a heuristic

based on the estimated costs in an attempt to reduce the over-
all real cost.

The real cost is sometimes dependent on the order of assign-
ment, which explains why step 1 is an estimate.

The cost of an assignment is based on the frequency of incre-
ment/decrement instructions in the final code. This is best ex-
plained through an example (Figure 6). The assignment cost
function is defined as the frequency of ACU operations that will
be executed in the final code, making use of the dynamic infor-
mation provided by tracing. Two example assignments are
shown in Figure 6. Pointerbp is incremented 12 times by +1
and decremented 4 times by -1. The assignment to the address
registerAX0and constant indices of +1 and -1 gives an assign-
ment cost of 17, since the operationsAX0++ will be executed 12
times,AX0-- will be executed 4 times and an initializationAX0
= &b[n]  will be executed one time (the value ofn and the num-
ber of initializations is dependent on the context in the pro-
gram). This cost function does not correspond directly to the
number of whole instructions that will be executed in the final
code, since these instructions are likely to be compacted and ex-
ecuted in parallel with other operations; however, the function is
a good reflection of the trade-off between different assignments.

For index registers, an assignment cost is defined in the same
manner. In Figure 6, pointerxp is incremented 25 times by +4
and 14 times by +13. The assignment to the address register
AX1, the constant index of +2 and the index registerIX1 gives
an assignment cost of 66, since the operationAX1 += 2 will be
executed 50 times,AX1 += IX1 will be executed 14 times, and
the initializationsAX1 = &x[n], IX1 = 13 will each occur once.
Note that the assignment cost for index registers is a value de-
pendent on the order of pointer assignment. In this example, if
IX0 were chosen for the assignment to +13, then an earlier as-

1
-1

2
-2

Add

AX0

1
-1

IX0

Add

AX1

ACU Internal Structure

IX1

*bp : 10 references
12 increments (+1)
4 decrements (-1)

*xp : 4 references
25 increments (+4)
14 increments (+13)

Assignment Cost = 12 + 4 + 1

Assignment Cost = 2(25) +14 +1 + 1
= 66

Figure 6. Address and Index Assignment Cost Function

= 17



signment of another pointer and increment toAX0 and IX0 in
the same region of code may causeIX0 to be reloaded with an-
other increment value. This would be an expensive instruction
especially inside loops.

This estimated cost guides the assignment heuristic since it
can determine the best places for potential savings. As well,
during assignment for index registers, the algorithm attempts to
share common index values in index registers wherever possible
to reduce the number of initializations.

 4  Results
The array analysis flow has been implemented in a prototype

called ArrSyn and tested on a set of benchmark examples to-
gether with a dedicated compiler for an MPEG VLIW processor
[5]. These examples include various DSP functions, some spe-
cific to MPEG Audio, others for standard DSP tasks such as in-
terpolation and noise addition. Table 1 shows code size results,
while Table 2 shows performance results. Speed is calculated as
one cycle per instruction multiplied by the frequency a basic
block is executed. These frequencies are luckily found in the
target C source produced from tracing. This is a first order esti-
mate of the execution time, which does not take into account
conditional paths.

Table 1. Code Size comparison of C compilerwith and
without the ArrSyn utility.

Table 2. Performance comparison of C compiler with and
without the ArrSyn utility.

Table 1 and Table 2 show that a significant improvement in
both the code size (23% reduction) and the performance (39%
speed-up) results from the ArrSyn transformation to the C code
for better utilization of the address calculation unit. Note that in
these examples, the hardware loops which are available on the
core have not as of yet been utilized. This will lead to an addi-

Example
Assembly
 Lines C
compiler

Assembly Lines
ArrSyn + C

compiler

%
Improvement
in Code Size

simple_loop 31 21 32 %

median 83 56 33 %

interpolate 72 49 32 %

addnoise 59 48 19 %

alloc 80 75 6 %

Total 325 249 23 %

Example
Number of

cycles C
compiler

Number of cycles
ArrSyn + C

compiler

%
Improvement

in Speed

simple_loop 103 69 33%

median 715 350 51%

interpolate 1017 499 61%

addnoise 1219 802 34%

alloc 10309 8526 17%

Average 39%

tional improvement due to both the replacement of expensive
branch instructions for hardware loop instructions as well as the
removal of looping variables.

 5  Conclusion
The contribution of this paper has been to introduce a new ap-

proach to transforming C code to make better use of address cal-
culation units on DSP and ASIP architectures. We believe this
to be one of the key improvements needed for today’s DSP
compilers [9]. The approach has been implemented in a proto-
type calledArrSyn and tested on benchmark examples to en-
hance a dedicated DSP compiler. Results show a significant
improvement in code size (23% reduction) and execution speed
(39% speedup) when comparing array-based code to pointer-
based code transformed using the ArrSyn utility.

In addition to enhancement of the existing algorithms, future
work includes extensions to hardware features such as the com-
monly found circular buffer (modulo addressing) modes and
bit-reversal addressing modes. Another hardware consideration
is the ability to hold a constant increment value in the instruc-
tion register as opposed to the value being hard-wired or in an
increment register. On the C-end of the system, extensions for
multiple-dimension arrays and structures are of significant inter-
est, especially for image data in the video domain.

References
[1] SGS-Thomson Microelectronics, “D950-CORE Prelimi-

nary Specification”, January 1995.
[2] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, “Code

Optimization Techniques for Embedded DSP Microproces-
sors”,Design Automation Conf., June, 1995, pp. 599-604.

[3] The Corporate Software Integrator, “Lode DSP Engine:
Preliminary Data Sheet”, May 1995.

[4] L. Bergher, X. Figari, F. Frederiksen, M. Froidevaux, J.M.
Gentit, O. Queinnec, “MPEG Audio Decoder for Consumer
Applications”,CICC, 1995.

[5] C. Liem, P. Paulin, M. Cornero, A. Jerraya, “Industrial Ex-
perience using Rule-driven Retargetable Code Generation
for Multimedia Applications”,Int. Symposium on System-
Level Synthesis,Sept. 1995.

[6] “ZR38500 Six-channel Dolby Digital Surround Processor:
Preliminary Specification”, Zoran Corporation, Nov. 1994.

[7] C. Liem, T. May, P. Paulin, “Instruction-Set Matching and
Selection for DSP and ASIP Code Generation”,European
Design & Test Conference,Feb 1994, pp. 31-37.

[8] D. Bacon, S. Graham, O. Sharp, “Compiler Transforma-
tions for High-Performance Computing”,ACM Computing
Surveys,Vol. 26, No. 4, December, 1994, pp. 345-420.

[9] V. Zivojnovic et al, “DSPstone: A DSP-Oriented Bench-
marking Methodology”,Proc. of the Int. Conf. on Signal
Processing and Technology (ICSPAT), Dallas, Oct. 1994.

[10]A. Aho, R. Sethi, J. Ullman,Compilers: Principles, Tech-
niques and Tools, Addison-Wesley, Reading, Ma., 1988.

[11]U. Banerjee,Loop Parallelization, Kluwer AcadJanc Pub-
lishers, 1994, 171 pages.

[12]J.R. Larus, “Efficient Program Tracing”,IEEE Computer,
May 1993, pp. 52-61.

[13]C. Liem, T. May, P. Paulin, “Register Assignment through
Resource Classification for ASIP Microcode Generation’’,
Int. Conference on Computer Aided Design, Nov 1994.

[14]P. Paulin, C. Liem, T. May, S. Sutarwala, “FlexWare: A
Flexible FirmWare Development Environment”, inCode
Generation for Embedded Processors, ed. by P. Marwedel,
G. Goossens, Kluwer Academic Publishers, 1995.


