
Address Generation for Nanowire Decoders
Jia Wang Ming-Yang Kao Hai Zhou

Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208, USA

ABSTRACT
Nanoscale crossbars built from nanowires can form high den-
sity memories and programmable logic devices. To inte-
grate such nanoscale devices with other circuits, nanowire
decoders are needed. Due to the stochastic output of the
nanoscale fabrication, the decoder addresses to select the
nanowires must be generated after fabrication. In this pa-
per, we develop a mathematical model of the nanowire de-
coders for the generation of the proper addresses. Assum-
ing a simple testing approach called on-off measurement, we
prove that the maximum number of the proper addresses
can be generated in finite time. We design the algorithms to
generate a required number of the proper addresses. Exper-
imental results confirm the efficiency of our algorithms.

Categories and Subject Descriptors: J.6
[Computer-Aided Engineering]: Computer-Aided Design
General Terms: Algorithms
Keywords: Nanowire, Decoder, Testing

1. INTRODUCTION
Nanoelectronics is one of the emerging technologies to en-

able the fabrication of ultra high density electronic devices
beyond the current CMOS technology. Prototype nano scale
devices were created in laboratories [1, 2, 3] and system
architectures were explored in literatures [4]. Due to the
difficulty of fabricating interconnects precisely in the cur-
rent nanotechnology and the high defect rate of the nano-
electronic [5], leveraging the mature CMOS technology is
promising to build a heterogeneous system with high device
density, reliability, and yield.

Nanowire crossbar is a nanoscale structure that provides
ultra high density memory functionality and can be con-
nected to CMOS circuits through nanowire decoders. Such
structure can be configured to become a programmable logic
device with FPGA-like functionality [4]. A nanowire cross-
bar consists of two perpendicular nanowire arrays. Special
molecules are inserted to the the cross-points of the two
arrays to form bistable junctions. The nanowires in an ar-
ray are connected to external CMOS interconnects through
a nanowire decoder. Once proper addresses are applied to
the decoders, individual nanowires can be selected and then
voltages can be applied to individual junctions to change or
sense their states.

As summarized by Rachlin et al. [6], there are a few meth-
ods to construct nanowire decoders. The common practice
is to have a mechanism to allow a single CMOS wire, i.e.
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mesowire, to control a subset of the nanowires by raising the
resistance of them when an electric field is applied on that
mesowire. Generally speaking, more nanowires are individ-
ually addressable if there are more mesowires. The problem
of determining the necessary number of the mesowires such
that most likely the required number of the nanowires are in-
dividually addressable was studied by many research works,
e.g., for randomized–contact decoders, Chen et al. [7] con-
ducted an empirical study and Rachlin et al. [6] provided a
theoretical bound. In this paper, we focus on the problem
of generating a required number of proper addresses that
address the nanowires individually. The motivation is that
if we consider the tremendous number of chips and decoders
where those proper addresses should be generated after fab-
rication, to design efficient address generation algorithms is
a critical issue for volume production. Similar problems had
been studied by Chen et al. [7]. They proposed a heuristic
approach for address generation of randomized–contact de-
coders with a single contact group by performing random
testing trails. The heuristic can generate most proper ad-
dresses efficiently. However, if all the proper addresses are
required to be generated, special configurable junctions are
necessary. Without such special junctions, the heuristic can-
not guarantee to generate the required number of the proper
addresses in finite time when such proper addresses are pre-
sented.

Our contribution in this paper is that we design the algo-
rithms that can generate most proper addresses efficiently
while guarantee to generate all the proper addresses in fi-
nite time if required, without the special junctions. We de-
velop a mathematical model first for the nanowire decoders
and then the concept of measurement to model the testing
approaches that inspect the nanowire decoders. Assuming
a simple testing approach called on-off measurement, we
design an algorithm for the nanowire decoders with a sin-
gle contact group. Assuming the “Take What You Get”
addressing strategy [6] with randomized–contact decoders,
we extend the algorithm to handle multiple contact groups.
Experimental results show that our algorithms can generate
the required number of the proper addresses efficiently in
terms of the number of the measurements performed. Note
that the problems investigated by Rachlin et al. [6] are dif-
ferent from address generation – the existence of the proper
addresses does not mean that they can be generated.

2. REVIEW OF NANOWIRE DECODERS
The detailed review of nanowire decoders can be found

in [6]. An example nanowire decoder is shown in Figure 1,
which is a part of a nanowire crossbar structure. There are
another set of nanowires (not shown in the figure) perpen-
dicular to the shown ones connected to another nanowire
decoder. The components and interconnects in the decoder
except the nanowires are fabricated via the current CMOS
technology. The nanowires shown are grouped into contact
groups and connected to ohmic contacts, shown as “oc0” to
“oc3”. The demultiplexer “demux” activate the nanowires



Figure 1: A nanowire decoder. Narrow wires are
nanowires. Other wires are mesowires and buses.

in one particular contact group. Each mesowire perpendic-
ular to the nanowires controls a subset of the nanowires: if
a “1” is applied to the mesowire, the resistances of the con-
trolled nanowires are raised. We assume an ideal control
where the resistance of one nanowire is either 0 if there is
no “1” applying to the controlling mesowires or +∞ oth-
erwise. The “address translation circuit” (ATC) translates
external addresses into internal addresses that select indi-
vidual contact groups and nanowires. As suggested in [6],
the ATC could be the most area consuming component be-
cause the addresses are stored in the ATC. We assume a
“Take What You Get” addressing strategy so that the area
overhead of the ATC is minimal. The internal address bus
is separated into two part: one chooses a contact group and
the other controls the nanowires. For example, suppose the
ATC translates an external address “0100” into an internal
address “10111000”. The highest two bits “10” activates
“oc2” and the lowest six bits “111000” selects some nano-
wires from that contact group.

3. PROBLEM FORMULATION

3.1 Modeling Nanowire Decoders
We use the set theory for defining terminologies, formu-

lating problems, and providing proofs. Suppose there are
OC contact groups. Let M be the set of the mesowires. For
the i’th contact group, where 1 ≤ i ≤ OC, let Ni be the set
of the nanowires in the contact group. Let M and Ni be
the power sets of M and Ni respectively, i.e.,

M 4
= {w : w ⊆M} and Ni

4
= {u : u ⊆ Ni},∀1 ≤ i ≤ OC.

A nano address w ∈M, abbreviated as address when there
is no ambiguity, is a pattern of activated mesowires, i.e. “1”
is applied to the mesowire m if m ∈ w or “0” is applied
otherwise. The function Ki : M → Ni defines the on-sets
of the addresses in the i’th contact group: Ki(w) is the set
of the nanowires in the i’th contact group whose resistance
is 0 when the address w is applied. Assume Ki(∅) = Ni. It
is straightforward that

Ki(x ∪ y) = Ki(x) ∩Ki(y). (1)

We can use a set of addresses to control the nanowires in a
contact group if every nanowire belongs to at most one on-
set of those addresses. Formally, such sets of addresses are
defined as proper sets of addresses, or abbreviated as proper
addresses. For the i’th contact group, a set of addresses W
is proper iff: first, ∀w ∈ W , Ki(w) 6= ∅; second, ∀x, y ∈ W ,
Ki(x) ∩Ki(y) = ∅.

According to Eq. (1), Ki(w) for any w can be computed
if Ki({m}) is known for every m ∈ M . Then proper ad-
dresses can be generated. However, it is not cost effective
and practical to obtain all the Ki({m}). Instead of requir-

ing the exact Ki, partial information regarding Ki can be
obtained by performing measurements. We are interested
in a measurement with highly limited ability, called the on-
off measurement, which can be implement in a similar way
as proposed in [7] but requires no special junction. Once
an address is given, the on-off measurement determines if
all the resistances of the nanowires are +∞ in a particular
contact group. Formally, the on-off measurement in the i’th
contact group is defined by a function fi :M→ {0, 1} such
that fi(w) = 0 if Ki(w) 6= ∅ and f(w) = 1 if Ki(w) = ∅.
One important property of fi is that it is non-decreasing,

Lemma 1. ∀x, y ∈M, if x ⊆ y, then fi(x) ≤ fi(y).

Proper addresses can be redefined with fi:

Theorem 1 (Proper Set of Addresses). For the i’th
contact group, a set W of addresses is proper iff fi(w) =
0,∀w ∈W and fi(x ∪ y) = 1,∀x, y ∈W .

3.2 Problem Definition
We formulate the Nano Address Generation problem as

follows.

Problem 1 (Nano Address Generation). Suppose
M is a finite set representing mesowires andM is the power
set of M . There are OC contact groups. Non-decreasing
functions fi :M→ {0, 1} represent the on-off measurement
for the i’th contact group, i.e. fi(x) ≤ fi(y),∀x ⊆ y where
x, y ∈ M. Let maxA be the number of the proper addresses
to be generated and to be stored in the ATC. For the i’th
contact group, generate a set of proper addresses Wi, i.e.,
Wi ⊆ M satisfying that fi(w) = 0,∀w ∈ Wi and fi(x ∪
y) = 1,∀x, y ∈ Wi, such that either

POC
i=1 |Wi| ≥ maxA orPOC

i=1 |Wi| is the maximum.

In the Nano Address Generation problem, the details con-
cerning the nanowires are hidden via the functions fi. The
only requirement is that fi should be non-decreasing. The
advantage of the abstraction is that the model and the ap-
proach in this paper may be applied to similar problems
while the disadvantage is that more specific but efficient
algorithms could be designed with more details. The nan-
otechnology is in its infancy. We prefer the abstraction be-
cause it could be proper for or even could guide the future
development of the nanoscale systems.

4. ADDRESS GENERATION ALGORITHMS

4.1 Maximal Addresses
For the ease of presentation, an address w is called blocking

for the i’th contact group if fi(w) = 1 and non-blocking if
fi(w) = 0. For a non-blocking address w, if ∀w ⊂ x, x ∈M,
the address x is blocking, then w is defined as a maximal
address. Denote the set of all the maximal addresses in the
i’th contact group by W>

i , i.e.,

W>
i

4
= {w : (fi(w) = 0) ∧ (∀w ⊂ x : fi(x) = 1)}. (2)

For any x, y ∈ W>
i where x 6= y, we must have x ⊂ x ∪ y

– otherwise x = x ∪ y and then y ⊂ x, which contradicts
that y is a maximal address. Thus f(x ∪ y) = 1 from the
definition of the maximal addresses. So,

Lemma 2. W>
i is a proper set of addresses for the i’th

contact group.

It is straightforward that for every non-blocking address,
there is a maximal address containing it. If there is a set of
more than |W>

i | non-blocking addresses for the i’th contact
group, according to the pigeonhole principle, there must be



two of them, say x and y, and a maximal address a such that
x ⊆ a and y ⊆ a. Thus x∪y ⊆ a. Then fi(x∪y) ≤ fi(a) = 0
and therefore fi(x ∪ y) = 0. This set of addresses is not
proper as stated in Lemma 3.

Lemma 3. A proper set of addresses for the i’th contact
group contains no more than |W>

i | elements.

According to Lemma 2 and 3, all the W>
i are the solution

of the Nano Address Generation problem.

Theorem 2. For the i’th contact group, 1 ≤ i ≤ OC,
the set of all the maximal addresses W>

i is a proper set of
addresses with the maximum number of elements. For all
the contact groups,

POC
i=1 |W

>
i | is the maximum number of

all the proper addresses.

4.2 Partial Maximal Address Generation
First we design the MaxExpand subroutine as shown in

Figure 2 that returns a maximal address w′ for the i’th con-
tact group such that w ⊆ w′. Note that the order to enumer-
ate the a ∈M −w on line 2 will not affect the correctness of
the subroutine but may result in different w′ since w could
be the subset of multiple maximal addresses.

Subroutine MaxExpand(w, i)
1 w′ ← w
2 For each a ∈M − w:
3 If fi(w

′ ∪ {a}) = 0:
4 w′ ← w′ ∪ {a}
5 Return w′.

Figure 2: The MaxExpand subroutine.

Then we design the Partial Maximal Address Generation
algorithm as shown in Figure 3. For the i’th contact group,
the algorithm returns a set of the maximal addresses A′. The
key idea is to generate a non-blocking address w such that
MaxExpand(w, i) always returns a maximal address that is
not generated already. Lemma 4 and Lemma 5 summarize
the idea.

Lemma 4. In the i’th contact group, for a set of the max-
imal addresses A′, if a non-blocking address w satisfies that
w * a,∀a ∈ A′, then MaxExpand(w, i) returns a maximal
address w′ /∈ A′.

Lemma 5. In the i’th contact group, for a set of the max-
imal addresses A′, if A′ 6= W>

i , then there is a non-blocking
address w satisfying that w * a,∀a ∈ A′.

The condition a ⊂ w on line 3 is used to save a measure-
ment fi(w) since we must have fi(w) = 1 according to the
definition of the maximal addresses. The correctness of the
Partial Maximal Address Generation algorithm is stated in
Theorem 3.

Theorem 3. For the i’th contact group, the Partial Max-
imal Address Generation algorithm terminates and when it
terminates, A′ is a set of the maximal addresses. If maxA′ <
|W>

i |, then |A′| = maxA′; otherwise A′ = W>
i .

The order to enumerate the elements ofM will not affect
the correctness of the algorithm. However, it will affect the
practical running time in terms of the number of the mea-
surements performed since the measurement of a blocking
address could be avoided if there is a maximal address gen-
erated being its subset. Thus we enumerate the element w
of M with smaller |w| first in our implementation.

Algorithm Partial Maximal Address Generation
Inputs i and maxA′. Outputs A′.
1 A′ ← ∅
2 For each w ∈M:
3 If ∃a ∈ A′ such that w ⊂ a or a ⊂ w:
4 Continue the For loop.
5 If f(w) = 0:
6 w′ ←MaxExpand(w, i)
7 A′ ← A′ ∪ {w′}
8 Terminate If |A′| = maxA′.

Figure 3: The Partial Maximal Address Generation
algorithm.

4.3 Maximal Address Generation
According to Theorem 2, Problem 1 can be solved by ap-

plying the Partial Maximal Address Generation algorithm
to each contact group separately with the parameter maxA′

set to +∞. However,the experimental results in Section 5
show that to generate most of the maximal addresses is effi-
cient but to generate all of them requires significantly more
measurements. Intuitively, to guarantee the yield of the
nanowire decoders, the required number of the proper ad-
dresses to be generated, i.e. maxA, will be smaller thanPOC

i=1 |W
>
i | for most decoders. The number of the measure-

ments performed can be reduced by requiring most but not
all the maximal addresses to be generated for most contact
groups. Since it is impossible to determine the number of
the proper addresses to be generated for each contact group
in advance, we propose to interleave the address enumera-
tion and the address generation for all the contact groups
in the Maximal Address Generation algorithm as shown in
Figure 4. Although for the worse case the number of the
measurements performed will be the same as that of apply-
ing the Partial Maximal Address Generation algorithm sep-
arately, the average number of the measurements performed
is reduced.

Algorithm Maximal Address Generation
Inputs maxA. Outputs A.
1 A← ∅
2 For each w ∈M:
3 For i = 1 to OC:
4 For each (i′, a) ∈ A such that i′ = i:
5 If w ⊂ a or a ⊂ w:
6 Continue the For loop on line 3.
7 If fi(w) = 0:
8 w′ ←MaxExpand(w, i)
9 A← A ∪ {(i, w′)}

10 Terminate If |A| = maxA.

Figure 4: The Maximal Address Generation algo-
rithm.

The Maximal Address Generation algorithm solves the
Nano Address Generation problem as stated in Theorem 4.

Theorem 4. The Maximal Address Generation algorithm
terminates and when it terminates, A is a set of the max-
imal addresses. If maxA <

POC
i=1 |W

>
i |, then |A| = maxA;

otherwise A =
SOC

i=1 W>
i .

For the same reason as in the Partial Maximal Address
Generation algorithm, we implement the enumeration of the
elements of M by visiting the element w with smaller |w|
first. Most proper addresses are generated efficiently in
terms of the measurements performed.



Table 1: Simulations for Single Contact Group.
|M | |N |=30 |N |=20 |N |=15

maxA # meas. # fail. maxA # meas. # fail. maxA # meas. # fail.
512 450 33560 0 250 7312 19 80 957 26

400 14519 0 200 3822 3 60 706 6
350 9758 0 150 2481 0 40 475 3

256 240 21664 0 160 4933 20 80 1213 36
200 6244 0 120 2309 0 60 771 4
160 4059 0 80 1367 0 40 489 1

128 120 5212 0 100 5986 38 60 1028 38
100 2982 0 80 1614 1 40 526 3
80 2233 0 60 1082 0 20 265 0

Figure 5: The number of the measurements vs. the
number of proper addresses generated for a nano-
wire decoder with single contact group, 512 nano-
wires, and 30 mesowires.

5. EXPERIMENTAL RESULTS
We implement a simulation framework for the randomized–

contact decoders and the proposed algorithms in C++. The
simulation framework takes OC, |M |, and |Ni| where 1 ≤
i ≤ OC as the inputs and builds the nanowire decoder by
assigning Ki({m}),∀1 ≤ i ≤ OC, m ∈ M randomly. We as-
sume that mesowires control nanowires independently with
a probability p, i.e, the elements of Ni are assigned to each
Ki({m}) with a probability p. In our simulations, we set
p = 0.5 and set all the |Ni| to be equal to the same value
denoted by |N |.

We first experiment with a single contact group. Dif-
ferent combinations of |M |, |N |, and maxA are simulated
100 times each and the results are reported in Table 1. The
columns “# fail.” show the number of the simulations where
there are less than maxA proper addresses. The columns “#
meas.” show the average number of the measurements per-
formed among the simulations with at least maxA proper
addresses. Figure 5 shows the curve between the number of
proper addresses generated and the number of the measure-
ments performed for one of the simulations with |M | = 30
and |N | = 512. It shows that to generate most of the maxi-
mal addresses is efficient but to generate all of them requires
significantly more measurements.

We then experiment with multiple contact groups. We
use the same example as in [6] where |M | = 16, |N | = 8,
and maxA = 1024. Different values of OC are simulated
100 times each and the results are reported in Table 2 in a
similar format as in Table 1. Two approaches are compared:
for the columns “MAG”, the Maximal Address Generation

Table 2: Simulations for Multiple Contact Groups
where |M | = 16, |N | = 8, and maxA = 1024.

OC MAG PMAG
# meas. # fail. # meas. # fail.

200 16742 0 7836616 0
180 16912 0 7840608 0
160 17250 0 7843691 0
140 31408 0 7843442 0

algorithm is applied; for the columns “PMAG”, the Partial
Maximal Address Generation algorithm is applied to each
contact group separately with maxA′ set to +∞. It shows
that when maxA <

POC
i=1 |W

>
i |, the Maximal Address Gen-

eration algorithm is much more efficient than applying the
Partial Maximal Address Generation algorithm separately.
It is interesting that the number of the measurements de-
creases with the increase of the number of the contact groups
for the Maximal Address Generation algorithm.

6. CONCLUSION
In this paper, we developed a mathematical model of the

nanowire decoders for the problem of proper address gener-
ation. We proved that the maximum number of the proper
addresses can be generated via on-off measurement by gen-
erating all the maximal addresses. We designed algorithms
for such purpose and investigated the running time efficiency
in terms of the number of the measurements performed via
simulations. The experimental results showed that the pro-
posed algorithms generate the required number of the proper
addresses efficiently.
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