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It is widely known that pattern sensitive faults are the most difficult faults to detect during the RAM testing process. One
of the techniques which can be used for effective detection of this kind of faults is the multi-background test technique.
According to this technique, multiple-run memory test execution is done. In this case, to achieve a high fault coverage, the
structure of the consecutive memory backgrounds and the address sequence are very important. This paper defines require-
ments which have to be taken into account in the background and address sequence selection process. A set of backgrounds
which satisfied those requirements guarantee us to achieve a very high fault coverage for multi-background memory testing.
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1. Introduction

The rapid development in semiconductor technology has
led to larger and dense semiconductor memories on a sin-
gle chip. As more and more memory cells are packed
into a single chip, the number of failure modes increases
and the need for efficient algorithms to detect faults in
them becomes more critical. One of the most difficult
fault diagnoses problems is the problem of the detection
of neighbourhood pattern sensitive faults (NPSFs) (Goor,
1991; Suk and Reddy, 1980; Cheng et al., 2002). The
neighbourhood pattern sensitive fault model is not new,
but it is still widely discussed in the literature and is be-
coming more and more important for memory testing.
As has been shown earlier (Hayes, 1975), the attempts
to detect unrestricted pattern sensitive faults in large se-
miconductor random-access memories (RAMs) based on
classical memory tests are impractical. However, by ta-
king into consideration new solutions and new appro-
aches (Hayes, 1980; Franklin and Saluja, 1996; Cock-
burn, 1995; Yarmolik et al., 1998) mostly derived on the
basis of transparent memory testing, it appears to be possi-
ble to achieve a high fault coverage even for unrestricted
NPSFs. In this paper we use the unrestricted neighbo-
urhood pattern sensitive fault model and consider only a
random-access memory with N = 2m bits, m being a po-

sitive integer. Furthermore, it is assumed that the RAMs
are 1 bit wide, i.e., only one bit of information is read or
written into the memory at a time.

Some approaches to detect NPSFs, such as the tiling
method (Goor, 1991; Hayes, 1975), the two-group me-
thod (Goor, 1991; Hayes, 1980), the row-March algori-
thm (Franklin and Saluja, 1996), and a multi-background
method (Cockburn, 1995; Yarmolik et al., 1998), have
been proposed. The new publications deal with reduction
in the costs of memory testing (Bernardi et al., 2006; Ber-
nardi et al., 2005), fault detection by output response com-
parison of identical circuits using half-frequency compa-
tible sequences (Pomeranz and Reddy, 2006), transpa-
rent memory testing (Li, 2007). Traditional March al-
gorithms (Goor, 1991) have been widely used in me-
mory testing because of their linear time complexity, high
fault coverage, and ease in built-in self-test (BIST) im-
plementation. It is known that traditional March algo-
rithms do not generate all neighbourhood patterns that
are required for testing NPSFs. However, as has been
shown in previous publications (Cockburn, 1995; Yarmo-
lik et al., 1998; Yarmolik and Yarmolik, 2006b; Yarmolik
and Yarmolik, 2006a; Sokol and Yarmolik, 2006; Yarmo-
lik and Sokol, 2006), classical March tests can be modi-
fied based on multiple address orders and multiple data
backgrounds to increase the NPSFs fault coverage.
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A well-known property of March tests is that for
one run memory test execution there are no specific re-
quirements for the address order as well as for memory
background (Goor, 1991). For any address order and
memory background, the number of detectable memory
faults including the NPSF will be the same and can be
calculated according to the memory test detection abi-
lity (Niggemeyer et al., 2000; Niggemeyer et al., 1998).
In the case of multiple-run memory test execution, the
consecutive memory address order and background are
very important for the achievement of a high fault cove-
rage (Yarmolik and Yarmolik, 2006b). The high efficiency
of this memory testing is obtained due to the detection of
an additional portion of the complex memory faults, first
of all NPSFs. Any new run of the same memory test sho-
uld be done with new initial conditions, namely, with a
new memory background or an address order, or both the
background and the address order. Let us concentrate on
the efficient sequences of the address order and backgro-
unds for multiple memory test runs.

2. Fault models

Memory faults can be divided on the basis of the num-
ber of cells being faulty into one-cell faults (e.g., stuck-at
faults, transition faults) and multiple-cell faults (e.g., co-
upling faults) (Goor, 1991). The latter are more difficult to
detect. The general case of a fault belonging to the second
group is the NPSF (Goor, 1991). A pattern-sensitive fault
is a multicell coupling fault. It occurs when the content
of a memory cell, or the ability to change the cell content,
is influenced by a certain pattern of other cells in the me-
mory (Goor, 1991). As has been shown in numerous pu-
blications, to consider all possible patterns of all memory
cells is both impractical and unnecessary.

An NPSF is a special case of the general multi-cell
coupling fault, wherein the coupling cells are the neigh-
bourhood of the coupled cell. In general, the coupled
cell is called the base cell and the coupling cells are
called the deleted neighbourhood cells. The base cell
and the deleted neighbourhood cells together are called
the neighbourhood cells. The three-cell NPSF (NPSF3)
five-cell NPSF (NPSF5) and nine-cell NPSF (NPSF9) are
shown in Fig. 1 and have been regarded as the most often
used models (Goor, 1991; Suk and Reddy, 1980; Cheng
et al., 2002). They will be considered in the paper.

Fig. 1. Three-cell, five-cell and nine-cell NPSFs.

An NPSF, e.g., NPSF5, includes the base cell (b) as
well as the deleted neighbourhood cells (n1, n2, n3, n4).
This fault model can be further categorized into three sub-
types of faults as follows (Goor, 1991; Cheng et al., 2002).

A static NPSF (SNPSF) occurs if the base cell is for-
ced to a certain state due to the appearance of a certain
pattern in the deleted neighbourhood. To detect SNPSF3
and SNPSF5, 8 SNPSF3 and 32 SNPSF5, static neigh-
bourhood patterns must be applied and the generation of
these patterns by the test algorithm must be verified.

A passive NPSF (PNPSF) occurs if the base cell can-
not change its state from 0 to 1 or from 1 to 0 due to the
appearance of a certain pattern in the deleted neighbour-
hood. To detect PNPSF3 and PNPSF5, 8 PNPSF3 and 32
PNPSF5, static neighbourhood patterns must be applied
and the generation of these patterns within neighbourhood
cells by the test algorithm must be verified.

An active NPSF (ANPSF) occurs if the base cell is
forced to a certain state when a transition occurs in a de-
leted neighbourhood cell, while other deleted neighbour-
hood cells assume a certain pattern. To detect ANPSF3
and ANPSF5, 16 ANPSF3 and 128 ANPSF5, static ne-
ighbourhood patterns must be applied and the generation
of these patterns by the test algorithm must be verified.

As has been shown in previous publications (Goor,
1991; Suk and Reddy, 1980; Cheng et al., 2002; Hayes,
1975; Hayes, 1980; Franklin and Saluja, 1996), the detec-
tion of NPSFk depends on the abilities of the memory test
to generate all 2k−1 possible patterns within the deleted
neighbourhood cells for both state transitions in the base
cell and to verify the fault-free or faulty base cell content.
These conditions allow us to obtain a precise fault cove-
rage of the March test to detect a PNPSF and an SNPSF,
as well as to estimate the efficiency for the ANPSF.

We concentrate our attention on the PNPSF as the
most difficult fault to be detected. First of all, it should be
emphasized that due to scrambling information, as well as
specific optimization techniques, there is a huge amount
of such faults that should be consider. Any arbitrary k
memory cells out of all N memory cells can be involved
into PNPSFk. One out of k cells is the base cell. For
the deleted neighbourhood pattern there are 2k−1 different
patterns and there are two states for the base cell. Then the
exact number of PNPSFk is determined according to the
equation (Yarmolik and Sokol, 2006)

L(PNPSFk) = 2k2k−1

(
n

k

)
. (1)

It is quite important to emphasize that there is an
enormous amount of such faults due to the random loca-
tions of the cells involved into the fault.
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3. March test efficiency analyses

March tests are superior in terms of the test time and the
simplicity of hardware implementation, and they consist
of sequences of March elements. The March element inc-
ludes sequences of read/write (r/w) operations, which are
all applied to a given cell before proceeding to the next
cell. The way of moving to the next cell is determined
by the address sequence order. During the testing, March
tests use address sequences called “up” and “down” se-
quences, denoted by ⇑ and ⇓, respectively. The notation
� means “don’t care the direction of address order”. The
address sequences do not necessarily have to be counting
sequences.

Consider the well-known March tests such as
MATS+ (Goor, 1991), March C− (Goor, 1991; Suk
and Reddy, 1980; Cheng et al., 2002) and March
PS(23N) (Yarmolik et al., 1998), which can be represen-
ted for the random background B = b0b1b2 . . . bN−2bN−1

as follows:

MATS+
{� (wb);⇑ (rb, wb̄);⇓ (rb̄, wb)}

March C−
{� (wb);⇑ (rb, wb̄);⇑ (rb̄, wb);
⇓ (rb, wb̄);⇓ (rb̄, wb);� (wb)},

March PS (23)
{� (wa);
⇑ (rb, wb̄, rb̄, wb, rb, wb̄);⇑ (rb̄, wb, rb, wb̄, rb̄);
⇓ (rb̄, wb, rb, wb̄, rb̄, wb);⇓ (rb, wb̄, rb̄, wb, rb)},

(2)

where b ∈ {0, 1} and b̄ is an inverse value compared
with b.

To investigate the memory March tests, suppose that
PNPSFk includes memory cells with the increasing order
of addresses α(0), α(1), α(2), . . . , α(k − 1) and the base
cell has the address α(i), where 0 ≤ i ≤ k − 1. Then,
due to the consecutive access to the memory cells during
the March test, there are four possible patterns within the
deleted neighbourhood cells:

1 b̄α(0), b̄α(1), . . . , b̄α(i−1), bα(i+1), . . . , bα(k−1)

2 bα(0)bα(1), . . . , bα(i−1), b̄α(i+1), . . . , b̄α(k−1)

3 b̄α(0), b̄α(1), . . . , b̄α(i−1), b̄α(i+1), . . . , b̄α(k−1) (3)
4 bα(0)bα(1), . . . , bα(i−1), bα(i+1), . . . , bα(k−1).

The base cell has two possible transitions from state
0 to state 1 (↑) and from state 1 to state 0 (↓). From
this it can be concluded that there are eight possible pat-
terns within neighbouring memory cells, which can be

used as the definition of eight possible PNPSFk fault ty-
pes (Cheng et al., 2001) and detected on the basis of me-
mory March testing. For the case of all zero background
B = b0b1b2 . . . bN−2bN−1 = 000 . . .00, the eight types
of PNPSFk are shown in Table 1.

Table 1. Types of PNPSFk.
Type α(0) . . . α(i-1) α(i) α(i+1) . . . α(k-1)

#1 1 . . . 1 ↑ 0 . . . 0

#2 1 . . . 1 ↓ 0 . . . 0

#3 0 . . . 0 ↑ 1 . . . 1

#4 0 . . . 0 ↓ 1 . . . 1

#5 1 . . . 1 ↑ 1 . . . 1

#6 1 . . . 1 ↓ 1 . . . 1

#7 0 . . . 0 ↑ 0 . . . 0

#8 0 . . . 0 ↓ 0 . . . 0

It should be noted that for every type of PNPSFk
there are k subtypes of PNPSFk depending on the po-
sition of the base cell. For example, in the case
of PNPSF5 for the type #1 there are five subtypes
↑0000, 1↑000, 11↑00, 111↑0 and 1111↑ of PNPSF5 detec-
table via March testing. The entire set of all subtypes of
PNPSF3 and PNPSF5 is shown in Tables 2 and 3.

Table 2. PNPSF3 types.

Type PNPSF3

#1 ↑00, 1↑0, 11↑
#2 ↓00, 1↓0, 11↓
#3 ↑11, 0↑1, 00↑
#4 ↓11, 0↓1, 00↓
#5 ↑11, 1↑1, 11↑
#6 ↓11, 1↓10, 11↓
#7 ↑00, 0↑0, 00↑
#8 ↓00, 0↓0, 00↓

Table 3. PNPSF5 types.

Type PNPSF5

#1 ↑0000, 1↑000, 11↑00,111↑0, 1111↑
#2 ↓0000, 1↓000, 11↓00, 111↓0, 1111↓
#3 ↑1111, 0↑111, 00↑11, 000↑1, 0000↑
#4 ↓1111, 0↓111, 00↓11, 000↓1, 0000↓
#5 ↑1111, 1↑111, 11↑11, 111↑1, 1111↑
#6 ↓1111, 1↓111, 11↓11, 111↓1, 1111↓
#7 ↑0000, 0↑000, 00↑00, 000↑0, 0000↑
#8 ↓0000, 0↓000, 00↓00, 000↓0, 0000↓

A brief analysis of the PNPSFk shown in Tables 1–3
allows us to make the conclusion that the maximal number
of PNPSFk that can be detected via one run March testing
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can be estimated as 8k−8. All sets of PNPSFk detected by
the March testing twice as representatives of two different
classes include eight faults: ↑ 000 . . .00, ↓ 000 . . .00,
↑ 111 . . .11, ↓ 111 . . .11, 000 . . .00 ↑, 000 . . .00 ↓,
111 . . .11 ↑, 111 . . .11 ↓ .

Then the maximal fault coverage which can be achie-
ved through one-run March memory testing can be calcu-
lated as

FCMAX =
8k − 8
k2k

100% =
k − 1
k2k−3

100%. (4)

Some of the March tests allow us to get the maximal
value of the fault coverage. Among those there are March
PS(23N) (Yarmolik et al., 1998), March 17N (Cheng
et al., 2001) and March 18N:

{� (wb);
⇑ (rb, wb̄, rb̄, wb);⇓ (rb, wb̄);⇑ (rb̄, wb, rb, wb̄);

⇑ (rb̄, wb);⇑ (rb, wb̄);⇓ (rb̄, wb, rb)}.

The above tests activate and detect all detectable
PNPSFk during the sequential access to memory cells (see
Table 1). It should be noted that for one-run March testing
it is impossible to get a high fault coverage. Only in the
cases of known memory topology (Yarmolik et al., 1998;
Cheng et al., 2001), multi-background and multi-address
orders (Yarmolik and Yarmolik, 2006b; Yarmolik and Yar-
molik, 2006a; Sokol and Yarmolik, 2006; Yarmolik and
Sokol, 2006) is it possible to increase these values.

A sufficiently low value of fault coverage can be ob-
tained for MATS+ type March tests, which allows us to
detect only one type out of the eight types of PNPSFk.
For the zero background it is only type #1 of PNPSFk (see
Table 1). Then

FCMATS+ =
k

k2k
100% =

1
2k

100%. (5)

A slightly high fault coverage can be achieved by
March C− type March tests due to the detection ability
of four types of PNPSFk,

FCMarchC− =
4k

k2k
100% =

1
2k−2

100%. (6)

The exact values of FCMAX for different k and fault
coverages for the tests shown in (2) are presented in Ta-
ble 4.

To summarize the above results, it can be concluded
that one-run March testing has restricted abilities to de-
tect PNPSFk. The only solution to increase the efficiency
of March testing for the case of unrestricted PNPSFk (for
the case of an unknown memory topology due to the data
scrambling) is the application of multi-run memory te-
sting (Yarmolik and Yarmolik, 2006b) with different ad-
dress sequences or memory backgrounds.

4. Multi-run memory testing

The efficiency of multi-run memory testing strictly de-
pends on the appropriate initial conditions for every con-
secutive March memory test execution. To achieve a high
fault coverage, it is quite important to choose an optimal
address order and memory background. As was shown
in (Yarmolik and Yarmolik, 2006a) even for the same ad-
dress sequence for all March test executions by apply-
ing different initial memory addresses for consecutive test
runs an increasing sequence of PNPSFk coverages was
obtained. Optimal seeds were selected and an algorithm
for their generation was presented (Yarmolik and Yarmo-
lik, 2006a; Yarmolik and Sokol, 2006). For the selection
of the address order, an arithmetic distance was proposed
as the numeric metric for the optimal address sequence
selection (Yarmolik and Yarmolik, 2006b; Sokol and Yar-
molik, 2006). The key idea of the proposed solutions is
based on the generation of sufficiently different address
sequences, which allow us to generate different neighbo-
urhood patterns for the same memory background. Some
attempts were made for restricted PNPSFk in (Cheng
et al., 2002; Yarmolik et al., 1998; Cheng et al., 2001).
As has been shown for the case of known topology it is
possible to achieve the 100% fault coverage for PNPSF5
due to the background selection on the basis of complete
information about logical memory addresses and the loca-
tion of memory cells. For unrestricted PNPSFk the opti-
mal address order and memory background are still open
issues.

To make a conclusion about the effectiveness of ap-
plying different memory address sequences and memory
backgrounds to achieve a high fault coverage, let us use
as the metric the so-called Hamming distance. The Ham-
ming distance HD[A(i), A(j)] between two binary vec-
tors A(i) and A(j) is calculated as a weight w[A(i) ⊕
A(j)] of the vector A(i) ⊕ A(j).

To estimate the effectiveness of the sequences of bi-
nary vectors as the representative metric, let us use an ave-
rage Hamming distance AHD[A(i), A(i + 1)] between
consecutive binary patterns A(i) and A(i+1) (a sequence
of memory addresses or backgrounds). This characteristic
will be calculated as

AHD[A(i), A(i + 1)]

=
1

2m − 1

2m−2∑
i=0

HD[A(i), A(i + 1)]. (7)

Suppose that a binary vector A(i) ∈ {0, 1, 2, E, 2m − 1}
represents the i-th memory address generated according
to some algorithm (a counter sequence, a Gray code, an
M-sequence, etc.) and each address consists of m bits.
Also, A(i) can represent the memory background as the
contents of N = 2m memory binary cells.
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Table 4. PNPSFk fault coverage.

k 3 4 5 6 7 8 9

FCMAX 66.6 37.5 20.0 10.4 5.1 2.7 1.4

FCMarchPS(23N ) 66.6 37.5 20.0 10.4 5.1 2.7 1.4

FCMarchC− 50.0 25.0 12.5 6.25 3.1 1.5 0.7

FCMats+ 12.5 6.25 3.12 1.56 0.8 0.4 0.2

The key idea of this paper is based on the Ham-
ming distance metric. The idea which is presented in
this paper is the following: For two consecutive address
sequences, namely, A1(i) and A2(i), for two-run me-
mory March testing, the fault coverage of PNPSFk will
be high in the case when the average Hamming distance
(7) AHD[A2(i), A2(i + 1)] is sufficiently higher compa-
red with AHD[A1(i), A1(i + 1)]. It is predicted that in
this case the new set of PNPSFk will be detected as a re-
sult of consecutive accesses to the memory cells during
the March test according to the different address sequence
A2(i). As a result, compared with (3), four new possi-
ble patterns within the deleted neighbourhood cells will
be generated during the second memory test run.

4.1. Multi-run memory testing with different ad-
dress sequences. At the beginning, as the address se-
quence algorithm let us use the Gray code (Gray, 1958).
An m-bit Gray code G0 lists all the binary m-bit pat-
terns (codewords) AG0(i) = am−1am−2 . . . a1a0, i ∈
{0, 1, 2, . . . , 2m − 1} so that consecutive patterns differ
in only one bit (Gray, 1958; Savage, 1997). In a cyc-
lic code, the first and last patterns differ also in one bit.
Moreover, the Gray codes can be viewed as Hamiltonian
paths on the hypercube graph and cyclic codes correspond
to Hamiltonian cycles. The transition sequence t(AG0) =
(t1, t2, t3, . . . , tN−1) of an m-bit Gray code enumerates
the bit positions tl ∈ {m − 1, m − 2, . . . , 2, 1, 0}, where
AG0(i) and AG0(i + 1) differ and N = 2m. When G0
is cyclic, its closing transition tN is the position where
AG0(2m − 1) and AG0(0) differ (Gilbert, 1958). For
example, when m = 3, the Gray code G0 has the form
000, 001, 011, 010, 110, 111, 101, 100, and the correspon-
ding transition sequence t(AG0) = 0, 1, 0, 2, 0, 1, 0. As
can be seen, in this case the transition sequence consists
of the sequences of index tl ∈ {2, 1, 0} for consecutive bi-
nary patterns a2a1a0. It is obvious that the transition sequ-
ence t(AG0) which determines any Gray code should sa-
tisfy the following statement proposed by Gilbert (1958).

Statement 1. The transition sequence t(AG0)=(t1, t2, t3,
. . . , tN−1), where tl ∈ {m − 1, m − 2, E, 2, 1, 0} and
N = 2m, generates an m-bit Gray code if and only if
every contiguous subsequence tk+1, tk+2, tk+3, . . . , tk+r

for any r ∈ {2, 3, 4, E, 2m−1} consecutive m-bit words
AG0(k + 1), AG0(k + 2), AG0(k + 3), . . . , AG0(k + r)

contains some element of tl ∈ {m − 1, m − 2, . . . , 2, 1,
0} an odd number of times.

Proof. It is easy to see that if for any r < 2m the values
of the transition sequence tk+1, tk+2, tk+3, . . . , tk+r do
not contain any element from m − 1, m − 2, . . . , 2, 1, 0
an odd number of times, the sequence will contain at le-
ast two identical words AG0(k) and AG0(k + r). So in
this case the Gray code sequence will not contain all po-
ssible m-bit words and the Gray code sequence will be not
generated. �

As an example, consider the reflected Gray code for
m = 4. The sequences of binary m-bits codes consist of
all possible combinations 0000, 0001, 0011, 0010, 0110,
0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011,
1001, 1000, generated according to the transition sequ-
ence t(AG0) = (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0). As
has been mentioned above, the Gray code can be charac-
terized as sequences in which two consecutive words dif-
fer only in one bit. This means that these words have the
minimal value of the Hamming distance (Gray, 1958; Sa-
vage, 1997; Gilbert, 1958).

It is easy to show that the proposed characteristic (the
average Hamming distance) for the original Gray code
A(i) ∈ {0, 1, 2, E, 2m − 1} equals 1 (AHD[A(i), A(i +
1)] = 1) (Savage, 1997). Let us try to modify the Gray
code in such a way that the metric is changed drastically to
get the high degree of differences between the original se-
quences with AHD[A(i), A(i+1)] = 1 and the new one.
For this purpose, new sequences with a sufficiently high
average Hamming difference should be generated or, equ-
ivalently, with characteristic AHD[A(i), A(i + 1)] very
close to m where m is the size of the binary vector A(i).

To get address sequences with a maximum average
Hamming distance, let use the transition sequence of the
Gray code t(AG0) = (t1, t2, t3, . . . , tN−1) (Gilbert,
1958). It can be converted to a non-transition sequence
t∗(AG0) = (t∗1, t

∗
2, t

∗
3, . . . , t

∗
N−1), where t∗l ∈ {m −

1, m − 2, E, 2, 1, 0} is the index of the unchangeable bit
in two m-bit consecutive words. In this case, in two m-
bit consecutive words m − 1 bits are inverted. This me-
ans that the Hamming distance between two consecutive
m-bit words is m − 1. Let us define such sequences as
anti-Gray sequences. In Table 5 the anti-Gray codes for
m = 2, m = 3 and m = 4 and corresponding non-
transition sequences are shown.
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Table 5. Anti-Gray sequences.

i m = 2 t∗(AG0) m = 3 t∗(AG0) m = 4 t∗(AG0)

0 00 000 0000

1 10 0 110 0 1110 0

2 11 1 011 1 0011 1

3 01 0 101 0 1101 0

4 110 2 0110 2

5 000 0 1000 0

6 101 1 0101 1

7 011 0 1011 0

8 1100 3

9 0010 0

10 1111 1

11 0001 0

12 1010 2

13 0100 0

14 1001 1

15 0111 0

For m = 4 and m = 2 all possible m-bit combina-
tions are generated. So the anti-Gray sequence with the
maximum Hamming distance is generated. For m = 3
only four binary patterns have been generated, namely,
000, 011, 101 and 110. So, the anti-Gray sequence for
m = 3 does not cover all possible m-bit words. Let us
define the conditions of anti-Gray sequence generation as
the next statement.

Statement 2. For even numbers of m the non-transition
sequence t∗(AG0) = (t∗1, t∗2, t∗3, . . . , t∗N−1), where t∗l ∈
{m − 1, m − 2, . . . , 2, 1, 0} and N = 2m, generates an
anti-Gray sequence of 2m m-bit words with the Hamming
distance between two consecutive words equal to m − 1.

Proof. Consider two sequences of m-bit words A∗
G0(k +

1), A∗
G0(k + 2), A∗

G0(k + 3), . . . , A∗
G0(k + r) with even

and odd numbers of r < 2m words.
According to Gilbert (Gilbert, 1958), (Statement 1),

for any even number of r (r ∈ {2, 4, 6, . . . , 2m}) the va-
lues of the transition sequence tk+1, tk+2, tk+3,. . . , tk+r

include at least one element from {m − 1, m − 2, . . . , 2,
1, 0} an odd number of times. This means that at least one
bit of any m-bit classic Gray code word will be inverted
an odd number of times. According to this statement, an
arbitrary bit of any m-bit anti-Gray code word will be also
inverted an odd number of times. It should be noted that if
r is even, then for its value r ∈ {2, 4, 6, . . . , 2m} we have
A∗

G0(k) 
= A∗
G0(k + r).

In the case when r is odd, at least one bit of m-
bit words of the sequence A∗

G0(k + 1), A∗
G0(k + 2),

A∗
G0(k+3), . . . , A∗

G0(k+r) will be inverted an odd num-

ber of times. The number of all transitions for r con-
secutive words of the anti-Gray sequence is r(m − 1),
where r and m − 1 are both odd numbers, so r(m − 1)
is also an odd number. As a result, the common num-
ber of all transitions for consecutive words of the anti-
Gray sequence is an odd number. Consequently, the in-
equality A∗

G0(k) 
= A∗G0(k + r) is true for any r ∈
1, 3, 5, . . . , 2m − 1. �

The two consecutive words of an anti-Gray sequence
have the Hamming distance m− 1, and the average Ham-
ming distance (7) also has the same value, m − 1.

It is easy to show that the maximal value of the
Hamming distance between two binary words am−1

am−2 . . . a1 a0 and ām−1 ām−2 . . . ā1 ā0, where aj ∈
{0, 1}, is m. One of these two binary words is the inver-
sion of the other one.

To get a sequence with the Hamming distance be-
tween two consecutive binary words greater than m − 1,
let us also consider the original Gray sequence. Like any
numerical counting sequence consisting of all possible m-
bit binary combinations, the Gray sequence AG0(i) ∈ {0,
1, 2, . . . , 2m − 1}, i = 0, 1, 2, . . . , 2m − 1 can be di-
vided into two subsequences AG0(i) = A1(j)+ A2(j),
j = 0, 1, 2, . . . , 2m−1 − 1. The subsequence A1(j),
0, 1, 2, . . . , 2m−1 − 1, consists of the first 2m/2 words
with the most significant bit equal to 0. The subsequence
A2(j) {2m−1, 2m−1 + 1, 2m−1 + 2, . . . , 2m − 1}, j =
0, 1, 2, . . . , 2m−1 − 1, consists of another part of words
with the most significant bit equal to 1. For example, a
Gray sequence for m = 3, A(i) ∈ {000, 001, 011, 010,
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110, 101, 101, 100}, can be divided into A1(j) = {000,
001, 011, 010} and A2(j) = {110, 101, 101, 100}. As
can be seen, the words from the set A1(j) are inversions
of those from A2(j).

This fact can be generalized as the following
property of any counting numerical sequence A =
am−1am−2 . . . a2a1a0 which consists of all possible 2m

binary combinations am−1am−2 . . . a2a1a0, generating in
arbitrary order, where aq ∈ {0, 1}, q ∈ {0, 1, 2, . . . , m −
1} and all combinations appear in A only once.

Property 1. Any numerical counting sequence A(i) ∈
{0, 1, 2, . . . , 2m − 1}, i = 0, 1, 2, . . . , 2m − 1, is divided
into two subsequences A1(j) and A2(j), where j = 0, 1,
2, . . . , 2m−1 − 1, on the basis of the value of aq ∈ {0, 1},
q ∈ {0, 1, 2, . . . , m − 1}, such that A1(j)aq = 0 and
A2(j)aq = 1, and all the binary words of the sequence
A1(j) are the inversions of the words of the sequence
A2(j).

This property follows from the definition of any nu-
merical counting sequences. For example, the counting
sequence A(i) ∈ {000, 001, 010, 011, 100, 101, 110,
111} is divided into A1(j) ∈ {000, 001, 100, 101} for
a1 = 0 and A2(j) ∈ {010, 011, 110, 111} for a1 = 1.

Based on Property 1, it is easy to construct an algo-
rithm for rearranging words within any numerical coun-
ting system A(i) in such a way that a word A belonging
to A1(j) will be followed by the word Ā from A2(j) as
the inversion of the word A. For a given numerical coun-
ting sequence (a counting sequence, a Gray code, an M-
sequence, etc.) and the size of the word m, Algorithm 1
can be used to generate a sequence with the maximal ave-
rage Hamming distance between two consecutive words
(Yarmolik, 2006).

Algorithm 1. Maximal average Hamming distance sequ-
ence generation.

Input: {m; numerical counting sequence
A(i), i = 0, 1, 2, . . . , 2m−1 − 1; and q}

Begin
1. For i = 0 do
2. Generate A(i) = am−2am−3 . . . a1a0;
3. According to the value of q insert 0 into the

word am−2am−3 . . . a1a0 to get AM (2i)
= A1 = am−1 am − 2. . . aq+10aq−1 . . . a1a0;

4. Generate AM (2i + 1) = A2 =
= a∗

m−1a
∗
m−2 . . . a∗

q+11a∗
q−1 . . . a∗

1a
∗
0

as negation of A1;
5. Increment: i = i + 1;
6. For i < 22−1 go to 2, else go to the End
End
Output:{Sequence AM (i), i = 0, 1, 2, . . . , 2m − 1

with maximal average Hamming distance}.

In Table 6 examples of sequences with maximal ave-
rage Hamming distances for the Gray code sequence with

m = 2, m = 3 and m = 4, and different values of q,
which have been obtained according to Algorithm 1, are
shown.

The Hamming distances between two consecutive
words of this sequence obtained on the basis of the ori-
ginal Gray code are m and m − 1. It follows from the
statement that the Hamming distance for the Gray code
equals 1. Then the Hamming distance between the inver-
ted Gray code word and the consecutive Gray code word
equals m− 1. There are the same numbers of consecutive
pairs of words within AM (i) obtained based on the Gray
code with the distances m and m − 1 Then the average
value of the Hamming distance AHD [AM (i), AM (i+1)]
is m − 0.5.

For experimental investigation, the common memory
March tests, MATS+ and March C− (9N) (Goor, 1991;
Suk and Reddy, 1980; Cheng et al., 2002), have been cho-
sen. For both tests the two-runs testing procedure was
implemented and the fault coverage for pattern sensitive
faults PNPSF3 and PNPSF5 was calculated. It should be
noted that the detection of all PNPSFk could be achieved
as a result of generating all possible 2k binary patterns in
any k out of N memory cells. In Tables 7 and 8 experi-
mental results for MATS+ and March C− are shown, re-
spectively, for counter and Gray (AC −AG) address sequ-
ences; counter and anti-Gray sequences (AC−A∗

G); coun-
ter and sequence AM with the maximal average Hamming
distance (AC − AM ); the Gray sequence and anti-Gray
(AG−A∗

G); Gray and AM −(AG−AM ) and (A∗
G−AM ).

For both tests the estimates of fault coverages were
obtained for two different sizes of the memory determined
by the value of m. The presented results show that the
fault coverage does not depend on memory size.

In (Yarmolik and Sokol, 2006), it was shown that the
fault coverage for PNPSFk for multiple runs of March te-
sting with a change in the starting address (seed) for ad-
dress sequences has limitations. The value of the limit
cannot be reached using only one address sequence for
multi-run memory testing. At the same time the applica-
tion of different address sequences is allowed to increase
the fault coverage (see Tables 7 and 8). But the fault co-
verage largely depends on combinations of the address se-
quences used. For example, the application of the counter
sequence AC and the Gray sequence AG for two runs of
the March test MATS+ permits to detect only 17.4% of
all possible PNPSF3 while the application of the counter
sequence AC and the anti-Gray sequence A∗

G allows us to
detect 21.5% (see Table 7).

Experimental results show the efficiency of the
proposed metric of the average Hamming distance
AHD[A(i), A(i + k)] and the efficiency of using diffe-
rent combinations of address sequences for multiple runs
of March testing.
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Table 6. Sequences with maximal average Hamming distances.

i m = 2 m = 3 m = 4
q = 1 q = 0 q = 2 q = 1 q = 0 q = 3 q = 2 q = 1 q = 0

0 00 00 000 000 000 0000 0000 0000 0000

1 11 11 111 111 111 1111 1111 1111 1111

2 01 10 001 001 010 0001 0001 0001 0010

3 10 01 110 110 101 1110 1110 1110 1101

4 011 101 110 0011 0011 0101 0110

5 100 010 001 1100 1100 1010 1001

6 010 100 100 0010 0010 0100 0100

7 101 011 011 1101 1101 1011 1011

8 0110 1010 1100 1100

9 1001 0101 0011 0011

10 0111 1011 1101 1110

11 1000 0100 0010 0001

12 0101 1001 1001 1010

13 1010 0110 0110 0101

14 0100 1000 1000 1000

15 1011 0111 0111 0111

Table 7. Fault coverage for PNPSF3 and PNPSF5 for two-run
MATS+ testing

Address PNPSF3 PNPSF5

sequences m = 4 m = 8 m = 4 m = 8

AC − AG 17.4 17.7 4.9 5.0

AC − A∗
G 21.5 21.5 5.9 5.9

AC − AM 20.7 21.0 5.7 5.8

AG − A∗
G 20.6 20.3 5.6 5.7

AG − AM 18.8 19.0 5.3 5.4

A∗
G − AM 18.3 18.9 5.4 5.4

Table 8. Fault coverage for PNPSF3 and PNPSF5 for two-run
MarchC− testing.

Address PNPSF3 PNPSF5

sequences m = 4 m = 8 m = 4 m = 8

AC − AG 66.4 66.5 19.8 20.2

AC − A∗
G 72.1 71.7 22.1 22.0

AC − AM 69.1 68.8 21.0 20.9

AG − A∗
G 71.5 70.2 21.6 21.5

AG − AM 69.4 69.3 21.0 21.0

A∗
G − AM 70.6 69.6 21.5 21.4

4.2. Multi-background March memory testing. To
achieve a high fault coverage of PNPSFk for multi-run

memory testing it is quite important to choose appropriate
backgrounds depending on the type of memory test. Let
us concentrate on three types of memory tests (2). The
first one allows us to generate only one background wi-
thin neighbouring cells, like MATS+, the second, two
backgrounds (i.e., MarchC−), and the third, four back-
grounds, as was shown in the case of MarchPS (23N).
Obviously, for different types of memory tests the optimal
backgrounds will be different. For example, in the case
of the two-run testing of an eight-bit memory (see Table
10), 11111111 is the second optimal background for the
test MATS+ to detect PNPSF3, and for MarchPS (23N),
10101010 is one of the optimal backgrounds for detec-
ting the same PNPSF3. As the first background in
both the cases the all-zero background was applied, i.e.,
B = b0b1b2b3b4b5b6b7 = 00000000.

To select an optimal background, let us use the
proposed Hamming distances HD(Bg, Bd) between two
backgrounds Bg and Bd for multi-background memory
testing as the metric for background selection. The selec-
tion algorithm for optimal background selection forms a
basis for the following statements.

Statement 3. In the case of m runs of the me-
mory test which allows us to generate only one pat-
tern (3) within neighbouring cells based on backgrounds
B0, B1, B2, . . . , Bm−1, an optimal set of backgrounds
of this type should have the maximal Hamming distance
HD(Bg, Bd) between any pair (Bg, Bd),where g, d ∈
{0, 1, 2, . . . , m − 1}.
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Table 9. Two-background memory test fault coverage.

MATS+ March PS(23N)

Second Pattern FC Second Pattern FC

a0a1 · · ·a6a7 [%] a0a1 · · ·a6a7 [%]

00000001 4×17.1 00000001 4×72.9
00000010 01111111

· · · 10000000
10000000 11111110
00000011 4×20.5 00000111 4×80.1
00000101 00011111

· · · 11111000
11000000 11100000
00000111 4×22.8 00001011 4×81.9
00001011 00101111

· · · 11010000
11100000 11110100
00001111 4×24.1 00011011 4×83.9
00010111 00100111

· · · 11011000
11110000 11100100
00011111 4×24.8 4×85.1
00101111 00101011

· · · 11010100
11111000
00111111 4×25.0 01010101 4×86.9
01011111 01010110

· · · · · ·
11111100 10101010

This statement can be used for the selection of an
optimal value of the background for a MATS+ like me-
mory test.

Statement 4. In the case of m runs of the memory test
which allows us to generate two patterns within neighbo-
uring cells based on backgrounds B0, B1, B2, . . . , Bc,
an optimal set of backgrounds of this type should have the
maximal Hamming distance HD(Bg, Bd) between any
background pair (B̄g, B̄d), where g, d ∈ {0, 1, 2, . . . , c −
1} and B

′
g is the background Bg or its negation B̄g.

This statement can be applied to background se-
lection for the second (two patterns) and third (four
patterns) types of March tests, like MarchC− and
MarchPS (23N), respectively.

Some experiments were performed to confirm those
statements. All possible combinations of three backgro-
unds B0, B1 and B2 for 8 memory cells were generated.
During this process the fault coverage of the discussed te-

sts for PNPSF3 was obtained. The Hamming distance be-
tween all pairs of the background was calculated and pre-
sented. The achieved results are shown in Tables 10 and
11. It should be noticed that the same fault coverage was
obtained for many different background sets. Therefore in
the tables there is only part of all obtained results.

Table 10. Correlation between the Hamming distance and the
fault coverage for MATS+.

Background Hamming FC
set distance [%]

B0 = 00000000 H(B0, B1) = 1 3×21.87

B1 = 00000001 H(B0, B2) = 1
B2 = 00000010 H(B1, B2) = 2
B0 = 00000000 H(B0, B1) = 3 3×33.03

B1 = 00000111 H(B0, B2) = 3
B2 = 10110000 H(B1, B2) = 6
B0 = 00000000 H(B0, B1) = 6 3×37.05

B1 = 11001111 H(B0, B2) = 5
B2 = 11110010 H(B1, B2) = 5

Table 11. Correlation between the Hamming distance and the
fault coverage for March PS(23N)

Background Hamming FC
set distance [%]

HD(B0, B1) = 1 6×79.16

HD(B0, B
∗
1) = 7

B0 = 00000000 HD(B0, B2) = 1
B1 = 00000001 HD(B0, B

∗
2) = 7

B2 = 00000010 HD(B1, B2) = 2
HD(B1, B

∗
2) = 6

HD(B0, B1) = 3 6×89.28

HD(B0, B
∗
1) = 5

B0 = 00000000 HD(B0, B2) = 3
B1 = 00000111 HD(B0, B

∗
2) = 5

B2 = 10110000 HD(B1, B2) = 6
HD(B1, B

∗
2) = 2

HD(B0, B1) = 4 6×96.42

HD(B0, B
∗
1) = 4

B0 = 00000000 HD(B0, B2) = 4
B1 = 11001001 HD(B0, B

∗
2) = 4

B2 = 10010011 HD(a1, B2) = 4
HD(a1, B

∗
2) = 4

In Tables 10 and 11 examples of experimental re-
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sults can be seen for multi-backgrounds MATS+ and
MarchPS (23N ) tests. Both tests were run three times
with different backgrounds, as shown in Tables 10 and
11. It can be noticed how important background selec-
tion is. In the first case (MATS+ test), the fault cove-
rage changes in the range from 21.87% to 37.05%. It can
be noticed that the minimal fault coverage (21.87%) was
obtained when the Hamming distance among all pairs of
backgrounds was minimal (HD(B0, B1) = 1, HD(B0,
B2) = 1, HD(B1, B2) = 2), and the maximal value of
the fault coverage (37.05%) was obtained for the backgro-
unds for which the Hamming distance among all pairs of
backgrounds was maximal (in this case HD(B0, B1) = 6,
HD(B0, B2) = 5, HD(B1, B2) = 5). It should be un-
derlined that to obtain the best fault coverage the value of
the Hamming distance between all pairs of backgrounds
should be maximized (see Statement (3) and Table 10).

The same conclusions can be drawn from the re-
sults shown in Table 11. However, it should be noticed
that in Table 11 the Hamming distance was calculated not
only between the original backgrounds, but also between
their inversions. This is because the test MarchPS(23N)
used generates more than one pattern within neighbour-
hood cells and, according to Statement (4), the Ham-
ming distance should be maximized between both the
original backgrounds and their inversions. In reality,
MarchPS(23N) generates four patterns where two of
them are the inverted versions of the other two patterns.

The results presented in Tables 10 and 11 prove that
Statements (3) and (4) can be used during the background
selection process. Those results show the high correla-
tion between the Hamming distance between all pairs of
backgrounds and the fault coverage of the multi-run te-
sting. Therefore we can use those statements in the multi-
background memory testing process.

5. Conclusions

In this paper the unrestricted neighbourhood pattern sen-
sitive fault model was considered and a subtype of this
model, the so-called passive neighbourhood pattern sensi-
tive faults (PNPSFk), was chosen as a target fault model
for multi-run memory testing. The efficiency of traditio-
nal March tests to detect PNPSFk was analyzed and their
low ability to detect such a type of faults was shown. As a
solution to increase the fault coverage, multi-run memory
testing was proposed. Any new run of the same memory
test should be done with new initial conditions, namely,
with a new memory background or a new memory ad-
dress sequence. To choose appropriate memory address
sequences for consecutive memory test execution, an ave-
rage Hamming distance was proposed and validated as the
metric. New address sequences with maximal values of
the average Hamming distance and algorithms for their
generation were obtained. Experimental results showed

that the high fault coverage could be reached for address
sequences with various values of this metric. For compa-
rable values of this metric, the fault coverage is lower. In
the case of multi-background memory testing, an optimal
background could be selected on the basis of the Ham-
ming distance between backgrounds. If the Hamming di-
stance between all pairs of backgrounds is high, then the
fault coverage also takes a high value.
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