
Address Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software

Chongkyung Kil∗, Jinsuk Jun∗, Christopher Bookholt∗, Jun Xu†, Peng Ning∗

Department of Computer Science∗ Google, Inc.†

North Carolina State University
{ckil, jjun2, cgbookho, pning}@ncsu.edu jxu3@ncsu.edu

Abstract

Address space randomization is an emerging and
promising method for stopping a broad range of memory
corruption attacks. By randomly shifting critical memory
regions at process initialization time, address space ran-
domization converts an otherwise successful malicious at-
tack into a benign process crash. However, existing ap-
proaches either introduce insufficient randomness, or re-
quire source code modification. While insufficient random-
ness allows successful brute-force attacks, as shown in re-
cent studies, the required source code modification prevents
this effective method from being used for commodity soft-
ware, which is the major source of exploited vulnerabilities
on the Internet. We propose Address Space Layout Permu-
tation (ASLP) that introduces high degree of randomness
(or high entropy) with minimal performance overhead. Es-
sential to ASLP is a novel binary rewriting tool that can
place the static code and data segments of a compiled exe-
cutable to a randomly specified location and performs fine-
grained permutation of procedure bodies in the code seg-
ment as well as static data objects in the data segment. We
have also modified the Linux operating system kernel to per-
mute stack, heap, and memory mapped regions. Together,
ASLP completely permutes memory regions in an applica-
tion. Our security and performance evaluation shows min-
imal performance overhead with orders of magnitude im-
provement in randomness (e.g., up to 29 bits of randomness
on a 32-bit architecture).

1 Introduction
Memory corruption vulnerability has been the most com-

monly exploited one among the software vulnerabilities that
allow an attacker to take control of computers. Examples of
memory corruption attacks include buffer overflows [19],
format string exploits [20], and double-free attacks [1]. In
an attack exploiting a memory corruption vulnerability (or,

a memory corruption attack), an attacker attempts to alter
program memory with the goal of causing that program to
behave in a malicious way. The result of a successful at-
tack ranges from system instability to execution of arbitrary
code. A quick survey of US-CERT Cyber Security Alerts
between mid-2005 and 2004 shows that at least 56% of the
attacks have a memory corruption component [24].

Memory corruption vulnerabilities are typically caused
by the lack of input validation in the C programming lan-
guage, with which the programmers are offered the free-
dom to decide when and how to handle inputs. This flex-
ibility often results in improved application performance.
However, the number of vulnerabilities caused by failures
of input validation indicates that programming errors of this
type are easy to make and difficult to fix. Ad Hoc methods
such as StackGuard [8] only target at specific types of at-
tacks. Static code analyzers can be used to find such bugs at
compile time. Due to the inherent difficulties in deeply an-
alyzing C code, these analyzers often make strong assump-
tions or simplification that lead to a significant number of
false positives and false negatives. Methods such as CCured
[18] offer a way to guarantee that a program is free from
memory corruption vulnerabilities. However, such meth-
ods incur significant runtime overhead that hinders produc-
tion deployment. In addition, most of the aforementioned
approaches require access to the source code. This is par-
ticularly a problem for commodity software, for which the
source code is typically unavailable.

While bug detection and prevention techniques are pre-
ferred, continued discoveries of memory corruption vulner-
abilities indicate alternatives must be sought. We believe
that mitigating this kind of attacks would give attackers sig-
nificantly fewer ways to exploit their targets, thereby re-
ducing the threat they pose. One promising method is ad-
dress space randomization [26]. It has been observed that
most attacks use absolute memory addresses during mem-
ory corruption attacks. Address space randomization ran-

1



domizes the layout of process memory, thereby making the
critical memory addresses unpredictable and breaking the
hard-coded address assumption. As a result, a memory cor-
ruption attack will most likely cause a vulnerable program
to crash, rather than allow the attacker to take control of the
program.

Several address space randomization techniques have
been proposed [2, 3, 22, 23, 26]. Among the existing
approaches, PaX Address Space Layout Randomization
(ASLR) [23] and address obfuscation [3] are most visible.
PaX ASLR randomly relocates the stack, heap, and shared
library regions with kernel support, but does not efficiently
randomize locations of code and static data segments. Ad-
dress obfuscation expands the randomization to the static
code and data regions by modifying compiler but requires
source code access and incurs 11% performance overhead
on average. Position-independent executables (PIE) [9] al-
lows a program to run as shared object so the base ad-
dress of the code and data segment can be relocatable,
but it also incurs 14% performance degradation on aver-
age (shown in our performance evaluation presented later
in the paper). While insufficient randomness allows suc-
cessful brute-force attacks, as shown in recent studies, the
required source code modification and performance degra-
dation prevent these effective methods from being used for
commodity software, which is the major source of exploited
vulnerabilities on the Internet.

In this paper, we propose address space layout permu-
tation (ASLP) to increase the programs’ randomness with
minimal performance overhead. ASLP permutes all sec-
tions (including code and static data) in the program ad-
dress space. This is done in two ways. First, we cre-
ate a novel binary rewriting tool that randomly relocates
static code and data segments, randomly re-orders functions
within code segment, and data objects within data segment.
Our rewriting tool operates directly on compiled program
executable, and does not require source code modification.
We only need the relocation information from the compile-
time linker to perform the randomization rewriting. Such
information is produced by all existing C compilers. Sec-
ond, to randomly permute stack, heap, and memory mapped
regions, we modify the Linux kernel. Our kernel changes
conserve as much virtual address space as possible to in-
crease randomness. Our binary rewriting tool can be au-
tomatically and transparently invoked before a program is
launched, while our kernel level support runs without any
additional change to the runtime system. To validate the
practicality and effectiveness of ASLP, we have evaluated
ASLP using security and performance benchmarks. Our se-
curity benchmark result shows that ASLP can provide up
to 29 bits of randomness on a 32-bit architecture, while the
performance benchmark result indicates that ASLP incurs
less than 1% overhead. In summary, the major contribu-

tions of this paper are as follows:

• ASLP provides probabilistic protection an order of
magnitude stronger than previous techniques.

• ASLP randomizes regions throughout the entire user
memory space, including static code and data seg-
ments. Program transformation is automatically done
by our binary rewriting tool without the requirement of
source code modification.

• The performance overhead is generally very low (less
than 1%). In comparison, existing techniques that are
capable of randomly relocating static code and data
segments, in particular PIE and Address obfuscation,
incur more than 10% overhead on average.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the design and
implementation of ASLP. Section 4 presents the evaluation
of ASLP. Section 5 describes the limitations of current im-
plementation, and Section 6 concludes the paper.

2 Related Work
The seminal work on program randomization by Forrest

et al. illustrated the value of diversity in ecosystems and
similar benefits for diverse computing environments [10].
In short, their case for diversity is that if a vulnerability
is found in one computer system, the same vulnerability is
likely to be effective in all identical systems. By introduc-
ing diversity into a population, resistance to vulnerabilities
is increased. Address randomization achieves diversity by
making the virtual memory layout of every process unique
and unpredictable. Existing address space randomization
approaches can be divided into two categories: user level
and kernel level. User level and kernel level approaches
achieve randomization with modification to the user space
applications and the kernel, respectively. Both approaches
have their advantages and disadvantages, which should be
carefully reviewed by the user before the application of the
techniques.

User Level Randomization Address obfuscation [2,
3] introduced a mechanism to not only randomly shift the
placement of the three critical regions, but also randomly
re-order objects in static code and data segments. This ap-
proach relies on a source code transformation tool [29] to
perform the randomization. It introduced special pointer
variables to store actual locations of objects for static code
and data randomization. In addition, they add randomly
sized pads to stack, heap, and shared library using the ini-
tialization code, the wrapper function, and the junk code
respectively.

Kernel Level Randomization Kernel level random-
ization has become a more attractive option since modifi-
cation of one component provides system wide protection.



Recently, kernel level address randomization techniques are
being actively used in major Linux distributions: Red Hat
Exec-Shield [16] can be found in Fedora Core [6]; PaX
Address Space Layout Randomization(ASLR)[23] can be
found in Hardened Gentoo [4]. Both PaX ASLR and Exec-
Shield use the same approach by padding random size to the
critical memory regions. These techniques, unfortunately,
have a number of limitations. First, the pads unnecessarily
waste memory space. Note that the only way to increase
the program randomness is to increase the size of the pads,
thereby wasting more space. Second, they keep the relative
order of sections. For instance, code segment always comes
first, and data segment follows the code segment. There-
fore, once an attacker detects the size of the pad, he/she
can easily craft attacks to compromise the system. A recent
work [21] has shown that the de-randomization attack can
defeat PaX ASLR in an average of 216 seconds. This is a
clear indication that we need to improve the randomness in
the critical memory regions.

3 Address Space Layout Permutation
ASLP provides both user and kernel level randomiza-

tions. For user level randomization, we create a binary
rewriting tool that randomly relocates the static data and
code segments of an executable before it is loaded into
memory for execution. Our tool not only alters the locations
of static code and data segments but also changes the orders
of functions and data objects within the code and data seg-
ments. For kernel level randomization, we modified Linux
kernel that permutes three critical memory regions. This
section explains the design and implementation of ASLP in
detail.

3.1 User Level Address Permutation
In a typical program development scenario, a pro-

gram’s source code is written in a high-level language
(e.g., helloworld.c) and compiled into object files (e.g., hel-
loworld.o) that can be linked with other objects to produce
the final executable (e.g., helloworld). An object file con-
tains not only code (functions) and data (variables), but also
additional bookkeeping information that can be used by the
compile-time linker to assemble multiple objects into an ex-
ecutable file. Such information includes relocation records,
the type of the object file, and debugging related infor-
mation. In an object file, an element (function, variable,
or bookkeeping information) has its own symbolic name.
Symbolic names for static code/data elements in object files
are resolved to virtual addresses when the executable is as-
sembled by the compile-time linker. Symbolic names for
dynamic elements such as C library functions are usually
resolved by the runtime system loader.

The goal of our binary rewriting tool is to randomly
relocate the static code and data segments and their ele-
ments so that the program will have a different memory

layout each time it is loaded for execution. This permu-
tation makes it difficult for various types of attacks: partial
overwrite attacks [2], dtors attacks [30], and data forgery
attacks. These attacks are based on the assumption that the
code and data segments of the target application reside at
the same locations on different machines. Partial overwrite
attacks change only the least significant part of the return
address in the stack, so the attacker can transfer the pro-
gram control to the existing vulnerable function with ma-
licious arguments. Dtors attacks overflow a buffer (global
variable) in the data segment to overwrite function pointers
in the dtors section. Dtors section includes function point-
ers that are used after the main() function exits. When a
corrupted function pointer is used, the program control is
transferred to the attacker’s code. Dtors attacks are possi-
ble since the dtors section is a part of the data segment and
the attacker knows relative distance between the buffer in
the data segment and the function pointer in the dtors sec-
tion. Recent security report [31] shows that data forgery
attacks can overwrite existing global variables in the data
segment so the attacker can change the value of security
critical data. Note that even if kernel level randomization
changes the base addresses of stack, heap, and mmap re-
gions, these kinds of attacks can still be successful, since
the locations of the code and data segments are fixed.

User level permutation makes these types of attacks sig-
nificantly difficult. In user level address permutation, we
change the base addresses of the static code and data seg-
ments. We also randomly reorder procedure bodies within
the code segment and data objects within the data segment.
As a result, the virtual addresses of static code elements
(e.g., functions) or data elements (static or global data vari-
ables) are not fixed anymore. To make these changes, we
have to modify all cross references between the objects in
the program. Otherwise, the randomized program will have
many dangling references that will certainly lead to a pro-
gram crash.

We have developed the binary rewriting tool that trans-
forms an Executable and Linking Format (ELF) [27] exe-
cutable file into a new one that has a different layout. Our
tool allows users to choose any values between 1 and 700K
for different offsets for static code and data randomization.
The given values are then multiplied by virtual memory
page size (usually 4096). Consequently, users can freely de-
cide the starting addresses of the code and data segments in
the entire user memory space. (Currently on a default Linux
system, user space has 3GB of virtual address space.) Our
tool also allows users to change the order of the code and
data segments. The default linker always places the data
segment after the code segment. Therefore, an attacker can
guess the target program layout once he has found certain
offset values and the starting address of the code segment.
By changing the order of code and data segments, it is more



difficult to guess correct program layout.
Rewriting ELF executable files and making it run exactly

as before is non-trivial. There are several challenges during
the binary rewriting process, which result in the following
questions:

• What parts of an ELF executable file need rewriting?

• How to find the correct locations of those parts and
rewrite them?

• How those parts are connected or affect each other at
run time? (How functions and variables are referred at
run time?)

The first challenge requires that we understand the ELF
executable file format and how the linker and the loader
create the program memory layout. Currently, an ELF ex-
ecutable file can have totally 45 sections according to the
specification. Each section has its own identifier called sec-
tion header which specifies the content of the section and
how to access the elements in the section. We found that
a total of 13 sections are related to program memory lay-
out. These sections include information about the symbols,
dynamic linking, relocation of code and data objects, and
other data that are critical to program execution. Table 1
presents the detailed information about the 13 sections1. We
also found that both the ELF header and the program header
need to be modified since they contain an entry point to start
the program, the name of the dynamic loader, instructions
on what portions of the file are to be loaded, and the permis-
sions of the sections of memory (for example, code segment
is read-only). Such information has to be changed once our
tool permutes the static code and data segments. (A detailed
explanation of rewriting the headers will be discussed later
in this section.)

Section Name Semantics Section Type
.got global offset table SHT PROGBITS
.plt procedure linkage table SHT PROGBITS
.got.plt read-only portion of the global offset table SHT PROGBITS
.rodata read-only data SHT PROGBITS
.symtab symbol table SHT SYMTAB
.dynsym dynamic linking symbol table SHT DYNSYM
.dynamic dynamic linking information SHT DYNAMIC
.rel.dyn relocation information for dynamic linking SHT REL
.rel.plt relocation information for .plt segment SHT REL
.rel.init relocation information for .init segment SHT REL
.rel.text relocation information for .text segment SHT REL
.rel.data relocation information for .data segment SHT REL
.rel.fini relocation information for .fini segment SHT REL

Table 1. ELF sections to change

The next challenge lies in the method to find out cor-
rect locations of the elements in an ELF executable file. We

1Further information about the sections and the ELF specifications can
be obtained from a number of sources including [27, 28]

acquire this information by looking up the symbol table sec-
tion. The symbol table holds the information that the linker
needs to bind multiple object files into a final executable
file. An entry of the symbol table holds the following in-
formation: symbol name, binding (linkage scope: local or
global), visibility (scope to other files: hidden, protected, or
internal), and the virtual address of the symbol. Since every
element has its own symbol name, we can get the virtual
address of the symbol by looking up its name in the symbol
table.

The last challenge is to find out how elements in an
ELF file refer to each other at run time and how to find out
such references. Searching all such references (where it is
defined and where it is used) in a binary file is a daunting
task without additional information. We found that we
can obtain such references by using a linker option (-q,
or -emit-relocs). This option produces relocation sections
that include information about where the functions and
variables are used in the program. Now we can gather all
cross-reference information from the following sections:
global offset table (.got), procedure linkage table (.plt),
relocation data (.rel.data), and relocation text (.rel.text).
The global offset table includes pointers to all of the static
data in the program and the procedure linkage table stores
pointers to all of the static code objects (functions) in
the program. Therefore, these two sections provide the
information about where the functions and variables are
located in the program. Relocation sections such as .rel.text
and .rel.data provide information about where the functions
and variables are used in the program.

The rewriting process (user level permutation) comprises
two major phases: 1) Coarse-grained permutation, and 2)
Fine-grained permutation.

Coarse-grained Permutation The goal of the coarse-
grained permutation is to shift code and data segments ac-
cording to the given offset values from the user. Chang-
ing the order of code and data segments is also executed in
this phase. To achieve the goal, the rewriting process goes
through three stages: 1) ELF header rewriting, 2) Program
header rewriting, and 3) Section rewriting.

Our tool first reads the ELF header to check if the target
file is an ELF file. This can be done by reading the first four
bytes of the file. If the file is an ELF object file, it should in-
clude the magic number in the e ident member identifying
itself as an ELF object format file. The tool then checks the
sizes of the code and data segments to validate the given off-
set sizes from the user can fit into the user memory address
space that are allowed in the Linux memory management
scheme. Retrieving the location of the string table is then
done. The string table holds information that represents all
symbols, including section names referred in the program.
Since each section header’s sh name member only holds an



index to the string table, we need the string table during the
entire rewriting process to look up the symbol name accord-
ing to its index. The tool then rewrites the program entry
point (e entry), which is the virtual address where the sys-
tem first transfers control to start the program, according to
the offset value of the code segment.

Once we modified the ELF header, we need to change
two entries in the program header: p vaddr and p paddr.
They hold the virtual/physical addresses of the code and
data segments that the loader needs to know for creating the
program memory layout. Our tool modifies the p vaddr and
p paddr values of the code and data segments according to
the given offset values for the code and data segments.

Section rewriting is the most important stage in the
coarse-grained permutation process to ensure a newly gen-
erated ELF file runs without any side effects (i.e., broken
references). Since each section has different semantics and
holds specific information, we need to know how to han-
dle different sections and their entries. To take the case of
symbol table section (.symtab), it holds all symbols used in
both code and data segments. Therefore, if a symbol table
entry refers a function in the code segment, we need to add
the code segment offset value to the symbol’s address value.
Similarly, if an entry refers to a global variable in the data
segment, we need to add the data segment’s offset value.

Some sections require further understanding of how an
ELF executable works during the run time to rewrite the
program correctly. According to the ELF specification,
some sections implicitly refer to other sections during the
run time to resolve the symbol’s actual address. For exam-
ple, procedure linkage table (PLT) section contains a jump
table used when the program calls functions during the run
time. Since procedure linkage table entries store addresses
pointing to the entries in the global offset table (GOT) to
resolve actual addresses of the functions, we need to mod-
ify both PLT and GOT section entries together. Figure 1
shows the randomization example of the PLT and the GOT
sections. A PLT entry at 0x804829c in figure 1(a) points
the GOT entry that holds the jump address (0x80482a2). In
figure 1(b), the procedure linkage table entry, related global
offset table entry, and actual content of the GOT entry are
modified after the randomization.

We also need to modify relocation sections since they
hold information about where the functions and variables
are referred to in the program. Rewriting entries in the relo-
cation sections is done in a similar way figure 1.

Fine-grained Permutation The goal of fine-grained per-
mutation is to randomly change the order of functions and
variables within the code and data segments. By doing so,
it brings additional protection against de-randomization at-
tacks.

Fine-grained permutation comprises three stages: 1) In-
formation Gathering, 2) Random Sequence Generation, and

(a) Before permutation

(b) After permutation

Figure 1. PLT and GOT sections permutation

3) Entry Rewriting. The following information is gath-
ered for the fine-grained permutation: section size, section’s
starting address, section’s offset, total number of entries,
the original order of entries, each entry’s size, and each en-
try’s starting address. The program header provides most
of the information except for each entry’s size and the en-
try’s starting address. We can get each entry’s starting ad-
dress from the symbol table and calculate the entry’s size
by subtracting the address value of the current entry from
the address of the next entry according to the original order
of the entries. We store the gathered information in the data
structure for later use.

We need to generate a randomized integer sequence to
shuffle the functions and variables. To increase the ran-
domness, we generate two separate randomized integer se-
quences for each code and data segment. We exploit the ran-
dom() function and related functions provided by Linux op-
erating system to generate the random sequences. The max-
imum number in the randomized sequence for code(data)
segment is the same as the total number of entries of code
(data) segment.

Entry rewriting is the last stage of fine-grained permuta-
tion. First, we rewrite the functions and variables accord-
ing to the randomized sequences in a separate memory re-
gion. We then take out the original portions of the code and
data segments from the ELF file and replace them with re-



Figure 2. Normal process memory layout

arranged ones. Finally, we modify all the cross-references
among functions and data objects. We change the relocation
sections as shown in the coarse-grained permutation. We
also modify offset values of all local function calls in the
code segment. Local functions can only be called within
the local scope (within the same file) and they are called
by relative-offset from the current program counter (PC).
For example, if the current PC is 0x8048000 and the local
function is located at 0x8049000, then the offset used in the
calling instruction is 0x1000. We also change .rodata sec-
tion that stores read-only (static) data objects, since control
flow instructions (e.g., jmp or call) may refer to the values
of the objects in the .rodata section to transfer the current
control of the program.

Note that the protection scheme of fine-grained permu-
tation is mainly dependent on the number of variables or
functions in the program. If a program has few functions
or global variables, the fine-grained permutation does not
add strong protection on the code and data segments. How-
ever, if a program has a large number of functions and/or
variables (e.g., Apache has over 900 variables), fine-grained
permutation makes it difficult to guess correct locations of
functions and variables.

3.2 Kernel Level Address Permutation

We build the ASLP kernel [32] for the popular 32-bit
x86 CPU with Linux 2.4.31 kernel. Each process has its
own virtual 32-bit address space ranging sequentially from
0 byte to 4 GB as shown in Figure 2. A program code
segment starts from 0x8048000, which is approximately
128MB from the beginning of the address space. All data
variables initialized by the user are placed in the data seg-
ment, and uninitialized data is stored in the bss segment.
Shared libraries are placed in the dynamically shared ob-
jects (DSO) segments. The heap and the stack segments
grow according to the user’s request.

ASLP does not permute the top 1 GB of virtual address
space (kernel space) since moving this region would re-
quire complex access control check on each memory access
which introduces additional performance overhead. As a re-
sult, there are three regions for permutation: the user-mode
stack, brk()-managed heap, and mmap allocations.

The User Stack The location of the user stack is deter-
mined and randomized during process creation. In the early
stage of process creation, the kernel builds a data structure
to hold process arguments and environment variables. This
data structure is not yet allocated in the process memory,
but rather it is prepared for the process in the kernel space
memory. In this structure, the stack pointer is defined. This
pointer is merely an offset into the first page of the soon-to-
be stack region. We subtract a random amount between 0
and 4 KB from the stack pointer, thereby introducing ran-
domization in low-order bits.

In the later stages of process creation, the same data
structure is copied into the process address space. In this
phase we introduce the large scale randomization. A ran-
dom amount is subtracted from the standard 3 GB stack
base location so that the region starts anywhere between ap-
proximately 128 MB and 3 GB.

To ensure the stack has room to grow, ASLP prevents
subsequent allocations immediately below the stack. This
feature prevents the stack from being allocated so close to
another region that it cannot expand. The exact amount of
reserved area is configurable, but our experiments show that
8 MB is sufficient for most applications.

The brk()-managed Heap Similar to the stack, the
heap location is set during process creation. In an unmodi-
fied Linux kernel, the heap is allocated along with the BSS
region, which is conceptually a part of the data segment.
We modify the allocation code for the BSS and heap so they
occur in two independent steps. Separation allows the heap
location to be defined independently of the data segment.
The amount of space to be allocated for the heap is then
augmented by 4 KB (1 page). Then a random, page-aligned
virtual address between 0 and 3 GB is generated for the start
of the heap. Finally, a random value between 0 and 4 KB
is added to this address to achieve sub-page randomization.
Since the initial heap allocation was given an extra page,
the sub-page shift will not push it beyond the original allo-
cation. The heap also can grow to fulfill dynamic memory
requirements as the corresponding process runs. As with the
stack, a comparable solution is used for the heap in which
an unused region of configurable size is maintained follow-
ing the heap. This prevents the heap from being placed too
close to other regions so that it has enough room to grow.

mmap() Allocations The mmap system call is used to
map objects into memory. Such objects include shared li-
braries as well as any other files the application may wish to
bring into memory. Allocations made by mmap are random-
ized using a one-phase, major randomization that is nearly
identical to the primary phase used for the stack and heap. A
secondary, sub-page shift is not used for mmap allocations,
because doing so would violate the POSIX mmap specifi-
cation [13]. Since there can be multiple independent mmap



allocations per process (such as for two different shared li-
braries), each allocation is made randomly throughout the
entire available user level address space. This means that
allocations for multiple shared libraries do not necessarily
occupy a contiguous, sequential set of virtual memory ad-
dresses as they do in all related techniques and unrandom-
ized kernels. This is beneficial because the location of one
library will be of no use to determine the location of another
library.

Although the mmap system call allows a user process
to request a specific virtual address to store the mapping,
there is no guarantee the request will be honored even in the
vanilla kernel. In the ASLP kernel, if a specific address is
requested it is simply disregarded and replaced by a random
address. The random, page-aligned addresses are issued be-
tween 0 and 3GB. Therefore, mmap allocations use a one-
phase major randomization rather than the two-phase ap-
proach used for the stack and heap. An exception to overrid-
ing supplied addresses exists for fixed regions, such as the
code and data segments. These regions are also brought into
memory via mmap, but because they are flagged as fixed the
supplied address is honored without modification.

3.3 Demonstration of Permutation

After both user level and kernel level permutations, all
critical memory regions including static code and data seg-
ments can be placed in different locations throughout the
user memory space. Figure 3 shows a possible permutation
of the normal process memory layout as shown in figure 2.
The heap is allocated independently of the data segment,
and the stack is not the highest allocation in the user space.
The data segment comes first instead of the code segment.
In short, the static code, data, stack, heap, and mmap allo-
cations occur randomly throughout the 3 GB user address
space. Figure 4 shows an example of fine-grained permuta-
tion. Global variables (from num1 to num6) are randomly
re-ordered after the permutation.

Figure 3. Coarse-grained permutation

4 Evaluation
4.1 Security Evaluation

As discussed previously, although every address in the
x86 memory architecture is represented by 32-bits, not all
of those bits can be randomized. To assess the bits of ran-

Figure 4. Fine-grained permutation

Region Vanilla Exec-Shield PaX ASLR ASLP
User Stack 0 bits 17 24 28
Heap 0 bits 13 13 29
Mmap 0 bits 12 16 20
Code 0 bits 0 0 20
Data 0 bits 0 0 20

Table 2. PaXtest results

domness in each region and for each technique, we use a
third-party application called PaXtest [5]. PaXtest includes
two types of tests. First, there are tests that try overwrit-
ing tiny executable code (e.g., just ret) in different memory
regions (stack, heap, bss, data, anonymous) and check if
the executable code can be run on the region. If the code
works, it reports that the system is vulnerable on such re-
gion. The second type of tests measures the randomness of
each region. By running locally, PaXtest is able to spawn
simple helper programs that merely output the virtual ad-
dresses of their variables in a randomized region. In doing
so, it can determine the number of randomized bits for such
variables based on where they would normally reside in an
unrandomized system. Table 2 provides a summary of the
PaXtest results.

The vanilla kernel has no randomization. So each region
has zero bit of randomness. Exec-Shield is the most sus-
ceptible to de-randomization attacks, providing the lowest
amount of randomization in all five regions. PaX ASLR
comes in the middle, with significantly better stack and
mmap randomization. ASLP comes out ahead by at least 4
bits in all regions and provides randomization on the static
code and data segments with 20 bit randomness.

We used the PaXtest results to estimate the probabilistic
protection provided by ASLP. For example, ASLP random-
ize 20 bits in the address of the shared libraries. This means
that there are 220 possible locations for placement for the



shared libraries. Assuming a random distribution, the ad-
dress can be guessed in a number of guesses equal to half
of the possible locations. Knowing both the reported attack
duration of 216 seconds to brute-force guess the address of
the shared library region [21] and the number of possible lo-
cations in this region from Table 2, we can estimate the av-
erage guess rate. Equation 1 shows the calculation of guess
rate.

220
possible locations

2
→ 524288 average guesses

216 seconds
= 2427.2 seconds to guess on average

(1)
Using the rate of 2427.2 guesses per second derived from

equation 1 and the bits of randomness returned from PaX-
test in Table 2, we can calculate the amount of time required
to brute force the randomization in each memory region for
ASLP. It takes about 3 weeks to guess correct location of
heap by brute force searching. The stack takes 10 days to
de-randomize. Mmap, code, and data regions cause lowest
amount of time–about an hour. However, code and data re-
gions would take additional time to brute force due to the
fine-grained randomization of functions and variables.

Against ASLP, a de-randomizing attack would take a
considerable amount of time for constant guessing. How-
ever, we do not claim that ASLP is an effective deterrent
to prevent a determined attacker from penetrating a single
randomized target. In such micro-security level perspec-
tive, the de-randomizing attack by Shacham et al [21] can
still succeed in about an hour to guess the mmap region.
Instead, we argue from a macro-security perspective that
ASLP provides a mechanism by which the memory corrup-
tion attack on large machines can be slowed to a rate that
allows intrusion detection systems and system administra-
tors to respond.

Consider the effect of address randomization at the
macro-security level: a large scale Internet worm propaga-
tion. With ASLP, the speed at which worms can spread us-
ing memory corruption attacks is bounded not by how fast
they can reach vulnerable hosts, but by how fast they can
de-randomize the randomized address space of each target.

Ideally, the current fastest known spreading worm, The
Sapphire/Slammer[17], is able to infect 100% of vulner-
able hosts in less than a minute by doubling in size ev-
ery one second with no randomization address space. We
calculate the worm propagation rate of each randomization
technique based on the infection rate of Sapphire/Slammer
worm and the probabilistic protection of each technique dis-
cussed above. For Exec-Shield, 100% infection occurs in
just over four minutes (4.275 minutes); for PaX ASLR the
time is just over one hour (68.4 minutes). Our ASLP ap-
proach is able to delay 100% infection for over eighteen
hours (1,083 minutes). This extension of infection time il-
lustrates the benefit of having effective address space layout

protection because fast worms that exploit memory corrup-
tion vulnerabilities must first get through address random-
ization before they can compromise their targets. Further,
the barrage of attempts to guess the correct address should
be visible by intrusion detection and prevention systems.
Increasing probabilistic protection means forcing attackers
to make more guesses, effectively giving intrusion detection
systems a bigger target.

4.2 Performance Evaluation

Our goal is to incur comparable or less performance
overhead to related techniques. We compare our approach
with two other popular ones: PaX ASLR and Exec-Shield.
It should be noted that both PaX ASLR and Exec-Shield
can be configured to do more than address randomization.
Where possible, we disable their extra features to make
them as similar to ASLP as possible.

The various kernels are tested by installing each of them
on a single test computer and selecting the desired kernel at
boot time. The test computer runs Red Hat Linux 9.0 with
a 2.66 GHz Intel Pentium 4 CPU, 512 MB of RAM, and a
7200 RPM ATA IDE hard disk drive. All benchmark suites
were compiled using GCC version 3.4.4.

The vanilla kernel establishes the baseline by which the
absolute performance impact of other configurations can be
measured. Since PaX ASLR and Exec-Shield are closely
related works that provide kernel-based address layout ran-
domization, their performance provides a metric to deter-
mine if ASLP does or does not have comparable perfor-
mance with kernel level randomization. For user level ran-
domization, we compare ASLP with Position Independent
Executable(PIE). PIE is used in PaX ASLR to move the
static code and data regions from their traditionally fixed
positions. Since PIE is a compilation option and not a kernel
modification, we test it using a vanilla kernel and compile
the benchmark suite with the PIE option.

We employ three popular benchmarks to mea-
sure the performance of each configuration: SPEC
CPU2000[7], LMBench micro-benchmark[15], and
Apache Benchmark[11].

SPEC CPU2000 Benchmark The SPEC CPU2000
Integer benchmark suite is a set of computationally inten-
sive integer applications that simulate the workload of sci-
entific computation. Each benchmark in the CPU2000 suite
measures the time required to complete a different integer
computation. For this reason, we use the CPU2000 bench-
mark to measure the impact of address permutation on com-
putational efficiency. Table 3 gives the result of CPU2000
Integer benchmark2.

2The full CPU2000 Integer benchmark suite contains 12 benchmarks.
One of the 12, the ”eon” benchmark, did not compile on GCC version
3.4.4. Although this GCC version was newer than that recommended by
the benchmark documentation, a GCC compiler of at least version 3.4.4



Benchmark Vanilla Exec-Shield PaX ASLR PIE ASLP
gzip 177 178 176 207 177
vpr 284 284 284 298 284
gcc 132 134 131 148 133
mcf 408 413 409 427 410
crafty 116 116 117 142 116
parser 266 268 266 281 267
perlbmk 168 166 166 248 166
gap 126 128 125 144 128
vortex 185 185 185 218 187
bzip2 260 257 257 285 256
twolf 514 505 506 525 504
Total 2636 2634 2619 2923 2628
Avg. Overhead(%) 0 0.14 -0.55 14.38 -0.3

Table 3. SPEC CPU2000 benchmark run times
(seconds)

For the kernel level randomization comparison, Exec-
Shield has an average performance overhead of 0.14%, but
PaX ASLR does not incur additional overhead. For the user
level randomization comparison, PIE shows 14.38% aver-
age performance overhead. The overhead of PIE mainly
comes from additional instructions that need to resolve ac-
tual memory addresses of program objects during the run
time. Recent work by Bhatkar et al. in [3] also took a
similar indirection approach to randomize static code and
data segments. Such indirection causes an average run-
time overhead of about 11% in their experiments. ASLP
shows no performance overhead which supports our claim
that ASLP has computational performance overhead com-
parable to closely related works.

LMBench benchmark The LMBench benchmark
suite differs from CPU2000 because it strives to benchmark
general operating system performance rather than the com-
putational performance of a set of applications. The LM-
Bench operating system benchmark suite consists of five
sets of micro-benchmarks, each of which is designed to fo-
cus on a specific aspect of operating system performance.
We only consider kernel level permutation in this evaluation
since LMBench benchmark targets at an operating system’s
performance overhead rather than an application’s perfor-
mance overhead. The result shows that the process creation
overhead is the primary source of expected overhead from
address space randomization techniques like PaX ASLR,
Exec-Shield, and ASLP, because additional operations are
inserted into the process creation functions. ASLP slows
down fork() and exec() operations by 6.86% and 12.53% re-
spectively. Both PaX ASLR and Exec-Shield have consis-
tently higher overheads for the same tasks: 13.83-21.96%
and 12.63-32.18% respectively. The context switching
overhead results give a similar story to process operation

was needed to support PIE linking. We therefore elected to exclude the
eon benchmark from the final results.

results. ASLP caused 3.57% which is less than Exec-Shield
and PaX ASLR. Their results are 8.15% and 13.8% respec-
tively. In File and virtual memory (VM) system latency re-
sults, ASLP and PaX ASLR incur 12% overhead for mmap
latency due to the increasing number of instructions to com-
plete mmap allocations. However, average overheads of file
and VM operations are very low in all three techniques. We
do not consider local communication overhead from LM-
Bench benchmark result, since we made no changes to net-
working code. Instead, we have the Apache benchmark to
evaluate remote communication performance overhead.

Apache Benchmark The Apache Benchmark [11]
measures the performance of an Apache HTTP server [12]
in terms of how quickly it can serve a given number of
HTML pages via TCP/IP. Our Apache Benchmark config-
uration makes 1 million requests, in simultaneous batches
of 100, for a static HTML page of 1881 bytes, which in-
cludes 425 bytes of images. The result shows that only PIE
incurs major overhead, about 14%. The other techniques,
including ASLP, shows less than 1% overhead.

5 Limitations
Although ASLP can mitigate many types of attacks, cur-

rent implementation of ASLP does not support stack frame
randomization. Lack of randomization on the stack frame
allows attackers to exploit a return-to-libc attack as de-
scribed in [21]. We can mitigate such attack by adding
pads among elements in the stack [2], but the randomiza-
tion is limited and it wastes memory spaces. Further inves-
tigation is required to find a better solution. Another limi-
tation is that ASLP might require re-linking or recompila-
tion of source codes if a program (executable binary) does
not have relocation information. Although our goal is to
perform randomization without source code access, current
implementation requires the relocation data from the com-
piler. However, we believe that this is a one time effort for
life time benefit, since once the relocation data is included,
we can randomize the program repeatedly to thwart real-life
attacks.

6 Conclusions
This paper investigated methods for improving the ad-

dress space randomization techniques for the purpose of in-
creasing resistance to memory corruption attacks. ASLP
provides both user and kernel level randomizations. We
developed a novel binary rewriting tool that allows users
to permute static code and data regions with fine-grained
level. We also modified the Linux operating system ker-
nel to provide system wide randomization protection. Com-
bined together, ASLP permutes the program’s memory lay-
out completely within 3 GB user space memory. Using var-
ious benchmarks we found that it is possible to achieve bet-
ter randomization for process virtual memory layout with-



out incurring obtrusive performance overhead. The perfor-
mance overhead of ASLP is low as compared with other ad-
dress space randomization techniques that provide less ran-
domization. With ASLP, runtime overhead is less than 1%,
as indicated by both the SPEC CPU2000 Integer Bench-
mark as well as the Apache Benchmark.

This paper also validates the use of address space ran-
domization by demonstrating that the randomization pro-
vided by ASLP dramatically reduces the speed at which
worms can propagate throughout the Internet. The increase
in time needed to exploit targets introduced by randomiza-
tion means that the fastest infection time for worms relying
on the absolute location of either the user stack, heap, or an
mmap allocation is on the order of hours, not minutes.

References
[1] Anonymous. Once upon a free(). Phrack Magazine, 11(57), August 2001.

Available from URL http://www.phrack.org/phrack/57/p57-0x09.

[2] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: an
effcient approach to combat a broad range of memory error exploits. In V. Pax-
son, editor, Proceedings of the 12th USENIX Security Symposium, pages 1020,
August 2003.

[3] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of the
14th USENIX Security Symposium, Baltimore, MD, pages 271-286, July 2005.

[4] Joshua Brindle. Hardened gentoo. Available from URL
http://www.gentoo.org/proj/en/hardened/.

[5] Peter Busser. Paxtest. Available from URL http://www.adamantix.org/paxtest/.

[6] The Fedora Community. The fedora project. Available from URL
http://fedora.redhat.com/.

[7] Standard Performance Evaluation Corporation. Spec cpu2000 v1.2. Available
from URL http://www.spec.org/cpu2000/.

[8] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In 7th USENIX
Security Symposium, San Antonio, Texas, January 1998. Available from URL
http://wirex.com/ crispin/usenixsc98.pdf.

[9] Ulrich Drepper. Security enhancements in red hat enterprise linux (besides
selinux). Available from URL http://people.redhat.com/drepper/nonselsec.pdf,
June 2004.

[10] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In
6th Workshop on Hot Topics in Operating Systems, Los Alamitos, CA, pages
62-72. IEEE Computer Society Press, 1997.

[11] Apache Software Foundation. Apache benchmark. Available from URL
http://httpd.apache.org/docs/2.0/programs/ab.html.

[12] Apache Software Foundation. Apache http server project. Available from URL
http://httpd.apache.org.

[13] The IEEE and The Open Group. The Open Group Base
Specifications: mmap, 6 edition, 2004. Availale from URL
http://www.opengroup.org/onlinepubs/009695399/functions/mmap.html.

[14] The IEEE and The Open Group. The Open Group Base
Specifications: rand, 6 edition, 2004. Availale from URL
http://www.opengroup.org/onlinepubs/009695399/functions/rand.htm.

[15] Larry McVoy and Carl Staelin. Lmbench: Tools for performance analysis.
Available from URL http://www.bitmover.com/lmbench/.

[16] Ingo Molnar. Exec-shield. Available from URL
http://people.redhat.com/mingo/exec-shield/.

[17] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. The spread of the sapphire/slammer worm, 2003. Avail-
able from URL http://www.cs.berkeley.edu/ nweaver/sapphire/.

[18] George Necula, Scott McPeak, and Westley Weimer. Ccured: type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Portland, Ore-
gon, pages 128-139, January 2002.

[19] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14),
November 1996. Available from URL http://www.phrack.org/phrack/49/P49-
14.

[20] Scut. Exploiting format string vulnerabilities, March 2001. Available from URL
http://julianor.tripod.com/teso-fs1-1.pdf.

[21] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In V.
Atluri, B. Pfitzmann, and P. McDaniel, editors, Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, Washing-
tion, D.C. ACM, October 2004.

[22] The PaX Team. The pax project, 2001. Available from URL
http://pax.grsecurity.net/.

[23] The PaX Team. Address space layout randomization, March 2003. Available
from URL http://pax.grsecurity.net/docs/aslr.txt.

[24] United States Computer Emergency Readiness Team (US-CERT).
Technical cyber security alerts. Available from URL http://www.us-
cert.gov/cas/techalerts/.

[25] Tony Warnock. Random-number generators. Los Alamos Science, 1987. Avail-
able from URL http://www.fas.org/sgp/othergov/doe/lanl/pubs/00418729.pdf.

[26] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent runtime
randomization for security. In A. Fantechi, editor, Proceedings of the 22nd
Sympomsium on Reliable Distributed Systems, pages 260-269. IEEE Com-
puter Society, October 2003.

[27] Mary Lou Nohr. Understanding ELF Object Files and Debugging Tools. Num-
ber ISBN: 0-13-091109-7. Prentice Hall Computer Books, 1993.

[28] Tool Interface Standard (TIS) Committee. Executable and Linking Format
(ELF) Specification, 1995.

[29] S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. CIL: Intermediate lan-
guage and tools for C program analysis and transformation. In Conference on
Compiler Construction, 2002.

[30] SecuriTeam. Overwriting ELF .dtors section to modify program execution.
Available from http://www.securiteam.com/unixfocus/6H00I150LE.html.

[31] SecurityTracker. Advisory 16/2005: phpMyAdmin Local File Inclusion. Avail-
able from http://securitytracker.com/alerts/2005/Oct/1015091.html

[32] Christopher G. Bookholt. Address Space Layout Permutation:Increasing Resis-
tance to Memory Corruption Attacks. M.S. thesis, North Carolina State Univer-
sity, 2005.


