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SUMMARY. We investigate the use of follow-up samples of individuals to estimate survival

curves from studies that are subject to right-censoring from two sources: (i) early termina-

tion of the study, namely, administrative censoring, or (ii) censoring due to lost data prior to

administrative censoring, so-called dropout. We assume that, for the full cohort of individ-

uals, administrative censoring times are independent of the subjects’ inherent characteristics,

including survival time. To address the loss to censoring due to dropout, which we allow to be

possibly selective, we consider an intensive second phase of the study where a representative

sample of the originally lost subjects is subsequently followed and their data recorded. As with

double-sampling designs in survey methodology, the objective is to provide data on a repre-

sentative subset of the dropouts. Despite assumed full response from the follow-up sample,

we show that, in general in our setting, administrative censoring times are not independent of

survival times within the two subgroups, nondropouts and sampled dropouts. As a result, the

stratified Kaplan-Meier estimator is not appropriate for the cohort survival curve. Moreover,

using the concept of potential outcomes, as opposed to observed outcomes, and thereby explic-

itly formulating the problem as a missing data one, reveals and addresses these complications.

We present an estimation method based on the likelihood of an easily observed subset of the

data, and study its properties analytically for large samples. We evaluate our method in a re-

alistic situation by simulating data that match published margins on survival and dropout from

an actual hip-replacement study. Limitations and extensions of our design and analytic method

are discussed.

KEY WORDS: Double-sampling; Dropouts; Loss to follow-up; Potential outcomes; Rubin

Causal Model.
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1. Introduction

1 � 1 Motivation.

When studies follow subjects over time and investigate a time-to-event outcome
�

, such as

survival, the outcome may not be available for all subjects at the end of the study. We focus on

the situation with the simultaneous occurrence of: (i) administrative censoring, that is, censor-

ing due to early termination of the study, and (ii) dropout, or loss to follow-up, which occurs

when the subject interrupts contact with the investigator before the end of the study and before

the survival time is observed. An important example is patients who have surgery in which a

human joint, e.g, the hip, is replaced with an artificial one, a prosthesis. Often, the prosthe-

sis wears out and needs replacement, and surgeons are interested in the time,
�

, between the

first surgery and the next replacement, that is, the survival time of the prosthesis. Our work is

motivated by the large number of dropout patients often occurring after surgery of joints (e.g.,

Gartland, 1988; Dorey and Amstutz, 1989; Murray, Carr, and Bulstrode, 1993). Our goal is to

estimate the survival function of the cohort of all subjects entering the study.

In order to estimate this survival function in the presence of censoring, it is common to

assume that entry times into the study do not relate to survival and thus, essentially, that admin-

istrative censoring is ignorable in the sense of Rubin (1976, 1978). Moreover, it is sometimes

assumed that dropout is also ignorable, possibly after conditioning on observed covariates (e.g.,

Dobbs, 1980). Ignorability of dropout then essentially requires that a subject whose survival is

censored by dropout after time � , say, from entry, has comparable survival to a subject whose

survival is censored after time � by administrative censoring. Although ignorability of admin-

istrative censoring can be plausible, ignorability of dropout is suspect (Sims, 1973; Austin et

al., 1979), and one plan to lessen the reliance on this assumption is to use a random (or repre-

sentative) sample of the original dropouts. Assume that, for this subset of subjects, the inves-

tigator successfully obtains the data intended to have been recorded in the absence of dropout,

2



namely either the actual failure time
�

or knowledge that it would have been administratively

censored. Similar two-phase designs are known in the survey literature as double-sampling

designs (Cochran, 1963; Glynn, Laird, and Rubin, 1993; Rotnitzky and Robins, 1995; Zanutto,

1998) and the analyses of their data are typically simple when the outcome is either fully ob-

served or fully missing. Problems involving double-sampling with competing risks have been

discussed by Hogan and Laird (1996), and Flehinger, Reiser and Yashchin (1998), although un-

der different frameworks, assumptions and goals from ours, whereas Baker, Wax, and Patterson

(1993) and Wax, Baker, and Patterson (1993) discussed double-sampling of dropouts assuming

discrete survival data and in the absence of competing varying administrative censoring.

1 � 2 Purpose and outline.

We have two aims. First, by formulating an appropriate framework for our problem that links

the concept of potential outcomes (Neyman, 1923; Rubin, 1974, 1978) to competing risks, we

show how to use the data from the double-sampled subjects to draw inference for the cohort

survival function. Obtaining valid inference using double-sampling with survival data is more

subtle than with survey data because of an idiosyncrasy that can render usual analyses incor-

rect when estimating the cohort survival function. Demonstrating this fact is our second aim,

because, to our knowledge, this has not been discussed in the literature.

The procedure we focus on needs only a stratification of the intended data, and, for example,

does not rely on the times of study entry and of study-dropout for each dropout subject (such

times might not be available to the analyst due to confidentiality constraints). When more than

the intended data are available for analysis, our procedure will not be fully efficient, and one

could construct locally semiparametric efficient estimators (e.g., Robins, Rotnitzky, and Zhao,

1994), or could use fully parametric methods, and it would be interesting in future work to

compare these procedures to the proposed method in realistic finite samples.
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In the next section, we develop our framework using potential outcomes that are charac-

teristics inherent to subjects. We posit an assumption that treats administrative censoring as a

randomization variable, and thus independent of the potential outcomes. This reveals a specific

structure on the two subgroups of subjects for whom the only reason for possibly missing data

is administrative censoring: the nondropout group, and the recovered subset of the dropouts. In

particular, for each of these two groups, it is tempting to apply standard survival methods that

assume independence between survival and administrative censoring times, and then combine

these two separate estimates as with two-phase designs in survey literature. Under our assump-

tions, however, we show that within each of the two subgroups, the administrative censoring

times generally correlate with survival times. Consequently, Kaplan-Meier estimators (Kaplan

and Meier, 1958) that stratify by these groups, or, alternatively, likelihood-based methods that

ignore this correlation, generally do not appropriately estimate the survival curves within either

of the subgroups, nor hence, the survival curve for the cohort. In Section 3, we discuss address-

ing the problem from the perspective of missing data and we derive an estimation procedure

that, under our assumptions, appropriately estimates the cohort survival curve. In Section 4,

we evaluate our procedure in situations that are realistic in practice. Although double-sampling

when faced with both dropout and administrative censoring is natural, we do not have a com-

pletely real data example available for demonstration. Consequently, we use published margins

for survival curve, dropout rate, sample size accrual rate, and available length of follow-up from

an actual hip-replacement study, to project simulated double-sampling data, which we use to

compare our procedure to the re-weighted stratified Kaplan-Meier estimators. The final sec-

tion gives some further remarks for the design and estimation methods. The appendix provides

technical details.
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2. The Problem

2 � 1 Potential outcomes and goal.

Consider a population � of subjects, for example, having surgery to have the human hip joint

replaced by a prosthesis. A common complication is that subjects drop out, that is, are lost

to follow-up, in the sense that they interrupt contact with the investigator before their survival

times becomes known. For clarity, we define potential outcomes (Neyman, 1923; Rubin, 1974,

1978) for subjects of the population � before making probability statements, as in the Rubin

Causal Model (Holland, 1986). Suppose that subjects �����
	 ����� 	
� from the population partic-

ipate in a hypothetical study depicted in Fig. 1. Let ��� be the calendar time of entry into the

study, e.g., the time of surgery, and
� � be the survival time of the prosthesis, counting from

surgery for each subject (Fig. 1(a)). Also in part (a) of the figure, let ��� be the length of time,

counting from entry, for which subject � would remain in the study, i.e., without dropping out,

if the study remained open indefinitely, where ����� � � . The potential outcome ��� is treated as

a characteristic inherent to subject � at this time in this study, like birth-date and gender. For

subjects � who would drop out in that hypothetical scenario, ����� � � , whereas ����� � � for

subjects who would not drop out before failure of their prosthesis no matter when the study

would end, so we say that the indicator ������� �!���"� � �$# is the true dropout status, where � �&%'#
is the indicator function. [Figure 1 about here.]

Now that the potential outcomes have been defined, we consider the actual study. Let�)(+*&, be the calendar time when the study actually ends, e.g., June 1 1999, as in Fig. 1(b).

Using standard notation, we let -.�/�0�)(+*1,�23�.� be the administrative censoring time, and4 ��� min � � �5	6-��7# and 8����9�:� � ���;-��$# , be, respectively, the length of survival time that lies

within the administrative censoring time, and the indicator for whether that length is the full

survival time. The data � 4 �<	
8=�># are the intended data, that is, the information the investigator

would record in the absence of any dropout. But when ����� 4 � , neither
4 � nor 8�� is observed,
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but rather �?���<	6��@<A$B� # where ��@<A$B� C �D� �!����E 4 �># ; ��@<A$B� �F� for subjects � who are not dropouts

in the study, whereas � @<A$B� �HG for the dropouts in the study (Fig. 1(c)).

Note that the observed, study-dropout status, � @<A$B� , is not always equal to the true dropout

status ��� . For example, by comparing Fig. 1 (a) to (c), subjects 4 and 5 who are administratively

censored in the study (and thus have � @<A$B� �D� ) are a mixture of true nondropouts �?���I�J�K# and

true dropouts �?���I�HGL# .
We let M)�>�N# be the fraction of all subjects in � whose survival time

�
exceeds � , for �)OPG .

Our goal is to learn about the survival function M)�>�N# . Our methods can be extended to allow

for observed covariates. However, to communicate our main arguments without complicating

notation, we assume that no covariates are recorded or, alternatively, that we are already within

cells of observed covariates.

2 � 2 Initial aspects of study design.

Assume that subjects �Q� �R	 �S��� 	
� are a simple random sample from the population � , and

that � is large enough so that observations on different sampled subjects can be treated as

independent. We focus discussion on cohorts � of subjects that are homogeneous (e.g., in

terms of a common surgical method over time) in the sense that entry times ��� are not related

with either survival times,
� � , or true dropout times ��� . We can express this in the following

assumption, which we will make throughout the rest of the paper.

ASSUMPTION 1. Randomness of entry times:

T�U � � �<	
���V	6�.�$#�� T�U � � �V	6���$# T�U �!�)�>#W	
where, here and in the sequel, the measure Pr �?# is the one induced by the random sampling

from the population � .
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One implication of Assumption 1 is that, in the full cohort of subjects, survival and ad-

ministrative censoring times are independent: Pr � � �<	6-��>#.� Pr � � �># Pr �?-��># , which is a common

assumption (Fleming and Harrington, 1991, and references therein; Hougaard, 1999). An-

other immediate implication is that true dropout status and administrative censoring times are

independent: Pr �?���<	6-��>#�� Pr �?�X�$# Pr �!-��$# .
2 � 3 Double-sampling and observed data.

In joint-replacement studies, dropout occurs for a variety of reasons (e.g., the subject moves,

has pain and visits a different physician, feels very well and interrupts the hospital visits).

Because dropout is possibly related to survival (as in similar settings, Sims, 1973; Austin et al.,

1979), we consider a second phase of data collection, where the investigator selects a subset of

the study-dropouts, (i.e., with � @<A$B� �YG ), and pursues them intensively enough to record their

intended data � 4 �<	68��># , which would have been observed at calendar time �Z(+*&, . We let MI�I�;�
if subject � has �/@VA$B� ��G and is pursued in this second phase, such as subject 2 in Fig. 1(d),

and we let MI�[�;G otherwise. Pursuing dropouts is costly (e.g., Dorey and Amstutz, 1989), so

the size of the sample would depend on available resources and rarely include all those with� @<A$B� �3G . For situations where � 4 �<	68��$# is still not recorded among some subjects with M\�I�;� ,
see Section 5. Also relevant to the design of the second phase of data collection is the following

issue.

The data � 4 �V	68��$# for dropouts with early entry times generally carry more information than

those with later entry times in the sense that the former subjects have been in the study longer.

Moreover, early entry subjects are more likely to be study-dropouts because they have been

followed for a longer period. Therefore, a simple random sample from ]^� C � @<A$B� �_G:` will

automatically oversample study-dropouts with earlier entry times. For this reason, and because

we generally will not know exactly the optimal design without prior knowledge of the survival
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times of the dropouts, we assume for simplicity that, from those with �a@<A$B� �3G , the investigator

chooses the set ]^� C MI�/�b�R` by simple random sampling that, for convenience, we treat as

independent Bernoulli trials with common and known selection probability Pr �VM"���c� de� @VA$B� �GL#��gfIhjilk . We comment on extensions in Section 5.

2 � 4 Idiosyncrasy.

After the double-sampling, we have two groups of subjects with � 4 �V	68��$# : the nondropouts

in phase 1, ]^� C �/@<A$B� �b�R` , and the sampled subset ]^� C Mm���b�R` of the dropouts; for both

groups, the only reason for missing survival time is administrative censoring. The two groups

can have different survival curves, and, because only some subjects of those with � @VA$B� �HG are

recovered, an analysis that ignores the group classification, ]l� @<A$B� �Y�R` versus ]nMo�"�Y�R` , after

double-sampling (e.g., as in Dorey and Amstutz, 1989), is not appropriate generally.

Therefore, in this section we consider the consequence of using the following procedure:

(i) constructing Kaplan-Meier estimators within these two observed subgroups, and then (ii)

combining the two estimators, weighted by the appropriate proportions of ]^� C � @<A$B� �F�R` and]^� C � @<A$B� �pGq` , to estimate the cohort survival function MX�>�N# . This stratified Kaplan-Meier

(SKM) statistic is the standard estimator when censoring is solely administrative. The statistic

SKM would be consistent for M)�$�N# if the administrative censoring times -)� were independent

of the survival times
� � for study-nondropouts, i.e., with � @<A$B� �J� , and for study-dropouts, i.e.,

with ��@<A$B� �rG . However, this independence does not generally hold under Assumption 1 in

either group; the following result is derived as an application of Bayes’ theorem and after some

algebra (proof omitted).
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RESULT 1. Under Assumption 1, and with positive s and � ,
T�U � � Ot�Kd � @<A$B �J�
	
-��3su#�� T�U � � Ot�Kde�3�J�^#vxw T�U �!�y�J�K#mzg{+�?s^	|�N# T�U �?�xO}sl	6�3�HGL#T�U �?�3�J�^#\z T�U �?�tO}s^	6�y�~GL# � 	

where {+�?s^	|�N# C � T�U � � Ot�Kd �xO�s^	6�H�3GL#T�U � � Og�Kde�H�;�^# 	 andT�U � � Ox�Kde� @<A$B �~G 	6-��3s�#�� T�U � � Ox�Kde�3�HG 	
�t��su# �
In Result 1, Pr � � O��Kd � @<A$B 	6-0�rs�# is generally a function of s and, therefore, survival and

administrative censoring times are correlated within both strata defined by observed dropout

status ��@<A$B . This complication is not due to the simple random sampling design from the

study-dropouts in the second phase because the correlation between survival and censoring

times is also present in the study-nondropouts. Focusing on the latter group, Result 1 shows

that -�� and
� � would be independent if {+�?s^	|�N#���� for all s^	|� . A necessary and sufficient set

of conditions for this is that: (i) survival times
� � be independent of true dropout statuses ��� ,

and (ii) among true dropouts, ]^� C �Z�+��G:` , survival times
� � be independent of dropout times��� . However, by definition for true dropout, ����� � � for all � . If, in addition, there is a survival

time in the cohort that is smaller than the largest observed dropout time, which is expected to

be true in most realistic cases, then it can be easily shown that conditions (i) and (ii) above

cannot both hold. It follows that the straightforward within-stratum Kaplan-Meier estimators

are generally inconsistent and, hence, that generally the combined statistic SKM is not an

appropriate estimator for the cohort survival curve M)�>�N# . Result 1 also implies that standard

“ignorable” (Rubin, 1978) likelihood or Bayesian survival methods that stratify on � @<A$B and

ignore the correlation between survival and administrative censoring times would also suffer

from bias, even in large samples with the correct model for M)�$�N# .
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The spurious correlation within observed groups in Result 1 occurs because the observed

data are non-trivial functions of the potential outcomes that reflect scientifically relevant char-

acteristics of subjects. The distinction between potential outcomes and observed data oc-

curs, more generally, in studies that suffer from deviations from protocol, including treatment-

noncompliance and incomplete outcomes, and can be critical in defining and estimating quan-

tities of interest (e.g., Rubin, 1978; Robins and Greenland, 1994; Angrist, Imbens and Rubin,

1996; Frangakis and Rubin, 1999; Robins, Greenland and Hu, 1999; Rubin and Frangakis,

1999).

3. Addressing the Problem: Missing Data Perspective

3 � 1 General.

Because the selection mechanism of study-dropouts at the second phase is known conditionally

on the first phase, any data � 4 �<	
8=�># missing in stratum �?� @VA$B� �9GL# after double-sampling are

missing at random (Rubin, 1976), a fact that we can use for robust estimation using likelihood

principles. Under Assumption 1, the likelihood function of data

� �;]l� @<A$B� 	6-��<	�Mo�!`n��] 4 �5	68�� C � @<A$B� �J�R`n��]l��� C � @<A$B� �HG:	�Mo�o�HG:`n��] 4 �<	68��V	6��� C � @<A$B� �HG 	�Mo�o�;�R`
is proportional to

�X�?�Qd � #��H� � Pr � 4 �V	68��<	6-��V	6� @<A$B� �J�R�6�
#1�q�!�S��v Pr �?-��<	
���V	6� @<A$B� �3G �6�
# hS�5� � �!�S�� k7h��5�:i � k Pr � 4 �V	68��<	6-��V	6���<	6� @VA$B� �3G �6�R# i �
where � represents parameters governing the distribution of all observables. Consider also the

likelihood function of the reduced data
��� ��]l� @<A$B� 	�Mo�?`���]:� 4 �?	68��!# C � @VA$B� �r� or Mo�����n` ,

10



proportional to

���!�Qd � � #��H� �~� Pr � 4 �V	68��|de� @VA$B� �;�
�6�R#K� � �!�S�� � Pr � 4 �<	
8=�Nde� @<A$B� �HG �6�R#K� i �v Pr �?� @<A$B� �D�
�6�
# � �!���� ] Pr �?� @VA$B� �3G �6�R#�` �5� � �?���� �
Making inference on MX�>�N# by maximizing �X�?�Hd � # when � is unrestricted is generally not

possible. Alternative ways to address the problem, under Assumption 1, include

(i) maximizing the reduced data likelihood �X�?�Qd � � # with unrestricted � ;
(ii) positing semiparametric submodels, � B , for � ;

(iii) positing fully parametric submodels for � .

For approach (i), the components of � that are identifiable from �X�?�Qd ��� # identify M)�$�N# , so

this method will produce a consistent estimator of the survival curve for general distributions� . This method provides the basic intuition for how the problem can be addressed. Because

this method uses only the �/@<A$B –stratification of the intended data � 4 �V	68��$# of nondropouts and

of dropouts that have been double-sampled, it can be applied even in constrained situations,

for example, when the entry times ���&�V�3�.(+*1,.2�-��$# and dropout times ��� are hidden from the

analyst because of confidentiality concerns.

For approach (ii), work of Robins, Rotnitzky, and Zhao (1994) can be used to construct

estimators for M)�$�N# that take the form of inverse probability of censoring weighted (IPCW)

statistics and include estimator (i) as a member. The � B –optimal estimators within that class

asymptotically: are efficient when the working model � B is correct; remain consistent when� B is incorrect; and are more efficient than that of (i) when the additional data
� 2 � �

are

available. In approach (iii) maximum likelihood or Bayesian inference can be used.

We focus on approach (i), thereby providing insight into the situation in the simple case with
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minimal data available. Nevertheless, it would be interesting to compare the three methods to

see how much efficiency is lost using (i) relative to (ii) and (iii) in realistic settings where the

extra information is available.

3 � 2 Maximum likelihood from �X�?�Qd ��� # .
Assuming that the random variables

�
and - are absolutely continuous, first we re-parameterize

the problem in terms of hazard functions. Define the net hazard function of interest for the full

cohort of subjects, � net �$�N# C � lim �1�.��] Pr �>��� � �0��z;�md � E��N#| R�¡` . By Assumption 1,

survival and administrative censoring times are independent in the full cohort. Therefore, the

net hazard function in the full cohort is equal to the crude hazard function in the full cohort,

defined as � crd �>�N# C � lim �1�.��] Pr �>�¢� � ����z3�md 4 E��N#| R�¡` (e.g., Fleming and Harrington,

1991). Furthermore, we can generally decompose the crude hazard function of the full cohort

to the crude hazard functions for the two subgroups defined by the observed dropout status��@<A$B , � crd£ �>�N# C � lim �1�.��] Pr �$��� � �x�mzt�md 4 E}��	
��@<A$B��P¤ #| n�¥` , using

� crd �$�N#��c¦£N§ �|¨ �R© £ �$�N#N� crd£ �>�N#W	 where

(3 � 2)

© £ �$�N# C � Pr �?� @VA$B �~¤"d 4 E}�N#�� ª £ �$�N#$f £« £&¬j§ �|¨ � ª £&¬ �$�N#$f £1¬ 	
and where ª £ �$�N#�� Pr � 4 E}�Kde��@VA$B��P¤ # are the probabilities of being in the “risk set” at time � ,f £ � Pr �?� @VA$B �P¤ # , for ¤­�~G 	®� , and the expressions in (3 � 2) follow from Bayes’ theorem. The

time dependent weights © £ �>�N# reflect that (3 � 2) is a stratification at every time point. At this

stage, the crude hazard functions � crd£ �$�N# , and the probabilities ª £ �$�N# and f £ can be estimated by

maximizing the likelihood function �X�!��d ��� # with no further modeling assumptions.

For convenience in presentation, abbreviate the two groups ]^� C � @<A$B� �;�n` and ]^� C Mo�I�;�n`
by ¯ � and ¯=� , respectively. Using standard notation, define the “risk set” and failure processes:
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for each individual, by ° �� �$�N# C �±�:� 4 �ZEF�N# and ² �� �$�N# C �³�:� 4 �Z�c�N#N8�� ; and for the groups¯ £ 	|¤J� G 	®� , by ° £ �>�N# C � « �S´Kµ·¶ ° �� �$�N# and ² £ �$�N# C � « �¸´®µ¹¶ ² �� �>�N# . Using the notation�»º¢�>�N# for the differential of right-continuous processes º¢�>�N# , we define the processes ¼½ crd£ �$�N# C �¾ h �|¨ ¿ k �»² £ �${o#|  ° £ �!{o# , and

¼½ �>�N# C � ¦£|§ �|¨ �
À
¿� ¼© £ �!{o#1��¼½ crd£ �${I#�	 where

(3 � 3)¼© £ �>�N# C � ¼ª £ �>�N# ¼f £« £&¬'§ �|¨ � ¼ª £&¬ �$�N# ¼f £1¬ 	 ¼ª £ �>�N# C �~° £ �>�N#| n� £ 	
and where � £ is the number of people in group ¯ £ , and ¼f £ � « � �:�?� @VA$B� �H¤ #| n� , for ¤¢��G 	®� .
The processes ¼½ crd£ �$�N# maximize the likelihood �X�?�yd ��� # with respect to, and are centered

approximately at, the cumulative crude hazard functions
½ crd£ �>�N# C � ¾ h �|¨ ¿ k � crd£ �!{o#1�»{ , regardless

of dependence between survival and administrative censoring times. Similarly, the empirical

distributions ¼ª £ �>�N# and the ratios ¼f £ maximize �X�?�;d �Q� # with respect to, and are centered

approximately at, ª £ �>�N# and f £ respectively. Then, by (3 � 2) and (3 � 3), the process ¼½ �>�N# will be

centered approximately at
¾ h �|¨ ¿ k � crd �!{o#N�L{ , and thus, by Assumption 1, at the net cumulative

hazard function
½ net �$�N# C � ¾ h �|¨ ¿ k � net �!{o#N�L{ .

The estimator ¼½ �$�N# in (3 � 3) can also be viewed as having a generalized form of a “weighted

logrank” statistic (Fleming and Harrington, 1991), where, here, the weights vary both across

time and between the two estimated crude hazard functions. However, the approximate vari-

ability of ¼½ �>�N# around the estimand,
« £N§ �|¨ � ¾ ¿� © £ �${I#N� crd£ �!{o#N�L{�� ½ net �$�N# , (given in (A.2)), has

a different form from that of usual weighted logrank statistics. For a time �|(P�x�)(+*&, such that

Pr � � OP�5(Ád � @<A$B �3¤ # and Pr �!-9O}�&(Âde� @<A$B �H¤ # are positive for ¤Ã�yG 	®� , the following result,

whose proof is outlined in the appendix, summarizes the large-sample distribution of ¼½ �$�N# .
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RESULT 2. Under Assumption � , and for G­�t���x�1( ,

�)ÄÅ�Æ ¼½ �$�N#[2 ½�Ç
È>É �>�N#^Ê�Ë Ìc�$�N#W	
weakly in distribution, as �HË Í , where Ìc�$�N# is a Gaussian process with �­]nÌF�>�N#�`Î�ÏG .

Also, for Ð with GÑ�JÐ
	|�Á���&( , the covariance ÒuÓKÔm]nÌc�VÐ^#W	�Ìc�>�N#�` has the form (A.2) given in

the appendix.

The expression for Ò�ÓKÔI]nÌc�?Ðl#�	�Ìc�$�N#6` in (A.2) involves quantities, defined in the appendix,

that are functions of the unknowns
½ crd£ �$�N# , ª £ �>�N# , and f £ , ¤­�HG:	®� . By replacing the latter with

their sample analogues ¼½ crd£ �>�N# , ¼ª £ �>�N# , and ¼f £ in all the defining expressions in the appendix,

we let the statistic ¼Õ �VÐ
	|�N# be the resulting sample analogue of expression (A.2). Then, using

Result 2 and Slutsky’s theorem, it can be easily shown that, for times � with G=�x���g�|( ,

� ÄÅ Æ ¼½ �$�N#�2 ½ net �$�N#^Ê Æ ¼Õ �$��	|�N#KÊ � ÄÅ Ë ²Ö�?G:	®�^#W	 (3 � 5)

in distribution, as �ÏË Í . We can then use (3 � 5) to obtain confidence intervals (point-

wise) for
½ net �$�N# . Using the identity MX�>�N#Á��×WØ:Ùm]»2 ½ net �$�N#6` , we obtain an estimator, ¼M)�$�N# C �×WØ:Ùm]»2Ú¼½ �$�N#6` , that is consistent for the survival curve. We can use the same relation to obtain

confidence intervals for MX�>�N# as the reciprocals of the exponentiated confidence intervals for½ net �>�N# .
Note that, because this estimation method is based on likelihood �X�?�Ûd �Ü� # instead of�X�?�Úd � # , it requires only the implication of Assumption 1 that survival

� � and administrative

censoring times -�� are independent in the cohort, and partially unobserved, group of subjects.

The full structure of Assumption 1 was important in Result 1 to demonstrate that stratified

Kaplan-Meier estimators are generally not appropriate in this setting.
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4. Projected Simulations from Actual Study

4 � 1 Setting.

Results for the “Tharies” type of hip-replacement prostheses were reported by Dorey and Am-

stutz (1989), who discussed 1985 data for the first 100 such prostheses implanted in their

hospital starting in 1975. These prostheses were implanted in the first 2-year window (1975-

1977) and, although they all had a potential follow-up time -)� of at least 8 years, 45 (45%)

of the patients were lost to follow-up within 8 years following their surgery and before pros-

thesis failure (i.e., ���Ý�rÞ , although the dropout times are not known to us). Among those

original dropouts, the intended data � 4 �5	68��$# were recovered for 35 patients (78%=35/45) af-

ter an intensive search reported by the investigators. Subsequently, the survival curve for the

cohort was computed using a single Kaplan-Meier estimator, where the non-sampled dropouts

were treated as administratively censored. Because the general inconsistency of this unstrati-

fied Kaplan-Meier estimator in our framework follows from techniques used in Sec. 2.4, we do

not simulate detailed results for it, but we use their reported curve as a reference “true curve”

below. In addition, the study had, essentially, no administrative censoring because patients who

got Tharies in the 8-year window 1977-1985 were ignored. In this Section, by projecting infor-

mation from the Tharies study to allow potential inclusion of patients from the whole 10-year

window available in 1985, we will compare our method with the stratified Kaplan-Meier when

both dropout and administrative censoring are present, in conditions summarized in Table 1.

To reflect looking at accrual within the 10-year window, in all 12 conditions of Table 1,

we set �)(+*1,3� �KG years and we simulated entry times ��� uniformly in (0,10) [so, -.�ß��1�KGa2x�.�!#Zà�á��?G 	��KGL# ]. We matched points on the Tharies empirical survival curve of Dorey

and Amstutz (1989; Fig. 1, “complete analysis”) to a model for
� � where

�Z�� C �ÏâSÓ
ã·� � �!# is

normally distributed, giving mean ämå¡æ/�Yâ¸ÓRã·�?ç �éè years # and standard deviation ê¡å¥æÁ�9G �ìë
í Þ .

The resulting survival probabilities M)�$�N# at times ����î 	 ë 	 and 8 years are 72.65%, 65.19%,
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and 58.20%, and, in the following, will be treated as true and will be our estimation goal. The

simulations follow Assumption 1.

The Tharies’ study-dropout rate of 45% in the first 8 years of follow-up means that the

fraction of true dropouts �?�Z�I�HGL# would be larger than 45%. To reflect this, we fixed Pr �!�/�I�GL#­�ÏïRG
ð , and used the models described in the next paragraphs to get study-dropout ratesf (�� Bñoòqó C � Pr �?� @<A$B� �~Gode-��"O}ÞL# in the range 40% to 46% when, as with the Tharies’ 45% study-

dropout, we condition on -���OyÞ . We also report our rates f (+� B C � Pr �?� @VA$B� �JGL# over the full

10-year window. To investigate plausible conditions for the remaining associations between

true dropout status, survival, and dropout time among true dropouts, for which we do not have

further information from the Tharies study, we posit the following models.

We draw ��� conditionally on the survival times following the probit model Pr �!�Á�I�J�:d&â¸Ó
ã¡� � �$#���N#��Hô�]lõ � za� � �6` , where ô/�1%j# is the standard normal cumulative distribution function. Because

we have fixed the marginal probability of being a true dropout to 50%, we vary � � �Û2a�R	6G 	®� ,
which determines õ � �V� íq�jíRè 	6G 	®2 í:�ìíRè # . Under this setting, â¸ÓRã·� � # has the same standard de-

viation within both sets ]^� C �Z����G:` and ]^� C �����c�n` , and de� � dq�Y� generates a difference of

1.05 standard deviations between the means of â¸Ó
ã·� � # in the two groups defined by � . So, the

meaning of � � is how long the true nondropout patients’ Tharies would last compared to true

dropouts.

Among true dropouts, ]^� C �Z�\�yG:` , we allow the dropout time ���+� � � to be related to the

survival time
� � . To do this, we simulate ��� from a log-normal regression on

��� �?��â¸Ó
ã·� � �>#|#
and right-truncated at

�Z�� . That is,

âSÓ
ã·�?��#Kdö� � � �P��	6�H�HGL#�à Pr ]l� � d � � ����	6�y�HG:	6� � � � � `»	 where

Pr �?� � d � � �P��	6�H�3GL#��3² w äI÷Læ�zgø � ê¥÷
æê å¡æ �>�[2ùä¹å¥æ|#W	
êmú÷
æ �1�)2ùø � ú6# � 	
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where we fix the mean and standard deviation of � � , äm÷
æ¢��â¸Ó
ã·�!�)(+*&,n# and ê¥÷LæÃ�_ê å¡æ , re-

spectively, for simplicity. By varying the parameter ø � we induced different values of ø C �
corr �?���5	 � �|d ����� GL# , the correlation between patient dropout times and prosthesis survival

among the true dropouts.

To match the observed sample size accrual rate of 100 patients in the actual Tharies 2-

year window, for each individual study and in each of the 12 conditions defined by the above

settings we simulated �}�³ïnG
G patients in the 10-year window. In each individual study, we

subsequently double-sampled study-dropouts with a 50% probability each.

We set our goal to compare performance, in terms of coverage rates of nominal 95% confi-

dence intervals and mean squared errors for the survival probability M)�>�N# of Tharies at ���Hî:	 ë
and 8 years, and evaluated over 2500 replicated studies for each condition in Table 1, using

(i) the procedure described in Section 3, labeled IML because it is the maximum likelihood of

the � @<A$B –stratification of the intended data; and (ii) the procedure labeled SKM, based on the

stratified Kaplan-Meier estimator described in Section 2.4 and a normal approximation to its

distribution. The standard error for SKM is obtained by the delta method; these standard errors

were very close to the sampling standard deviations of SKM as computed over the simulation

replications for each condition (not shown). An S-plus5 program with FORTRAN subrou-

tines for general implementation of procedure IML, and an S-plus5 program for generating the

simulations described here are available from the authors.

4 � 2 Results.

Based on the conditions in Table 1, when the true dropout patients’ Tharies have longer survival

times than those of the true nondropouts (conditions with � � �³2a� ), SKM and IML perform

comparably except for the cases where the correlation ø between patients’ dropout time and

Tharies survival is 0.34 or 0.16, where IML is superior to SKM. These cases, among all those
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with � � �û2a� , have the highest fraction of study-dropouts f (+� Bñoòqó and closest to the observed

45% based on the 100 patients reported by Dorey and Amstutz (1989). This indicates that, even

with relatively small association between survival time and dropout time among true dropouts,

the fraction of study-dropouts influences the performance of the SKM procedure. [ Table

1 here ]

This influence can also be seen in the conditions where true dropouts would have the same

Tharies survival distribution as the true nondropouts (conditions with � � �_G ). Because the

survival distribution for the whole cohort is the same across all sensitivity conditions, the pros-

theses for true dropout patients must have shorter survival times under conditions � � ��G than

under conditions � � �ü2Â� . Consequently, by comparing the results assuming � � � 2Â� to

those assuming � � �9G with comparable values of the correlation ø , we observe that (i) there

are larger study-dropout rates, f (+� Bñoòqó and f (�� B , and (ii) in these cases, SKM notably undercov-

ers the true probability values. Nevertheless, IML has sufficient coverage, and is also more

accurate than SKM as indicated by the mean squared errors.

Finally, the conditions of Table 1 in which the prostheses for true dropout patients have

smaller survival times than the prostheses for true nondropouts (conditions with � � �r� ) are

associated with high correlation, ø , between patients’ dropout time and Tharies survival. Also,

these conditions, among all conditions in the Table, give the highest study-dropout rates f (�� Bñoòqó ,
and the closest to the observed 45% from the actual study. In these conditions, SKM performs

very poorly, whereas IML performs quite well.

5. Further Remarks and Extensions

Among the dropouts pursued in the second phase, there can be a small number of cases for

which the data � 4 �V	68��$# still do not get recorded, perhaps if a person has died before �Z(+*1, . If,

in these cases, one still wished to project a hypothetical status of the prosthesis at ��(+*1, , which
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would have to be assessed based on other observed information, we assume these special cases

would be treated as administratively censored, and, therefore, practically we can still assume

that if Mo�I�;� , then the data � 4 �<	68��$# are recovered.

As noted in Section 2.3, the data � 4 �<	
8=�># for dropouts with early entry times generally

carry more information than those with later times. However, a nonprobability sampling in the

second phase that would include only study-dropouts with early entry times cannot generally

give appropriate inference for the cohort without using parametric model extrapolation because,

by Result 1, the study-dropouts with early entry times have different survival distributions from

the study-dropouts with later entry times.

We restricted attention to the simple random sampling at the second phase, for convenience

in demonstrating estimation and to clarify the complication of using the stratified Kaplan-

Meier estimator even in this simple design. Alternative designs in the second phase can be

implemented that use different probabilities of selection for different subjects. When these

probabilities depend on continuous, as opposed to discrete, covariates, such as the entry times,

the method proposed here based solely on stratification on � @<A$B status would need adjustment

to reflect the design probabilities of selection when estimating the cohort survival curve.

As mentioned in Section 3.1, when, in addition to the data
���

, the data
�

are available

for analysis, the proposed method can be further improved by semiparametric or parametric

methods. Moreover, the implementation of estimation can be simulation-based, as opposed to

analytic, and can be motivated even within our simple setting where closed-form approximate

inference exists. For example, one could use the permutation distribution of the data � 4 �<	
8=�># of

the subsample ]^� C Mo�m�;�R` of study-dropouts to “impute” the missing data � 4 �5	
8=�># for the non-

subsampled study-dropouts. For each such configuration, a Kaplan-Meier statistic could be

calculated for the “imputed” full cohort, where censoring and survival times are independent,

and these statistics could then be averaged to give an estimate for the cohort survival curve.
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Because the total number of such permutations can be very large, this approach practically

would rely on principled simulation methods coupled with principled methods of analysis of

multiply imputed datasets (Rubin, 1987; Glynn, Laird and Rubin, 1993; Tu, Meng, and Pagano,

1993; Efron, 1994; Lin, Fleming and Wei, 1994; Rubin, 1996; Wang and Robins, 1998).

Simulation-based implementation of estimation can be particularly relevant in extensions of

our setting when analytic derivation becomes less tractable, for example, in situations when

Assumption 1 is relaxed to allow for non-homogeneous cohorts with calendar time trends in

survival and true dropout behavior.

A final comment is that we expect many studies of survival employ at least some type of

informal double-sampling of dropouts, and we hope that the availability of our framework and

methods stimulate the study and use of double-sampling to address dropout with survival data.
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APPENDIX: OUTLINE OF PROOF OF RESULT 2

To state the approximate variability of ¼½ �>�N# , we will use some additional definitions. For ��OxG ,

let
� �>�N#���] « £&¬j§ �|¨ � ª £&¬ �$�N#>f £&¬ `
� ú , and, for ¤Ú�FG 	\� , let: © £ ¨ ý?þWÿ��®�>�N# C �r�12Â�^# £ f¥�<f � ª � �>�N# � �>�N# ;

© £ ¨ ý?þ Ä �®�$�N# C ���&2a�K# £�� �$f¥�Vf � ª �K�$�N# � �$�N# ; and © £ ¨ ý�� Ä �®�$�N# C �F�12Â�^# £�� � ª � �>�N# ª �l�$�N# � �$�N# . In the above,

© £ ¨ ý?þuÿ��®�$�N# is the quantity obtained when the the weight © £ �$�N# in (3 � 2) is regarded as a function

of ª �l�>�N#W	 ª � �$�N# , and f � , and is differentiated partially with respect to ª �l�>�N# . The quantities

© £ ¨ ý?þ Ä � �$�N# and © £ ¨ ý�� Ä � �$�N# have similar interpretation. In an analogous way, we define the func-

tions
½ crdý?þWÿ�� �>�N# C � « £N§ �|¨ � ¾ ¿� © £ ¨ ý?þWÿ�� �${I#1� ½ crd£ �${o# ,

½ crdý?þ Ä � �>�N# C � « £N§ �|¨ � ¾ ¿� © £ ¨ ý?þ Ä � �${I#1� ½ crd£ �!{o# ,

and
½ crdý�� Ä � �>�N# C � « £N§ �|¨ � ¾ ¿� © £ ¨ ý�� Ä �K�${o#N� ½ crd£ �!{o# . Using these definitions, we express Ì9h��Kk1�$�N# C �� ÄÅ Æ ¼½ �>�N#�2 ½ net �$�N#KÊ in a linearized form, in Lemma A.
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LEMMA A. Under Assumption � , and for G �g���x�1( ,

Ì h��Kk �$�N#��ÁÌ h	�®ký�� Ä � �$�N#\z�¦£N§ �|¨ � Ì h	�®ký?þ ¶ � �>�N#\zxÌ h	�®ký�
 ¶ � �$�N#\z
���q�$� � ÄÅ #�	 where

Ì h��Kký�� Ä � �$�N#��~� ÄÅ � ¼f � 2Úf � # À
¿� � ½������ý�� Ä � �!{o#�	Ì h	�®ký?þ ¶ � �$�N#��~� � ÄÅ£ ¦�¸´®µ ¶ � £ ¨ �5�$�N#�	 � £ ¨ �&�>�N#���� ÄÅ£ À

¿� ]l° �� �!{o#[2 ª £ �!{o#�`l� ½������ý?þW¶�� �!{o#W	
Ì h��Kký�

¶�� �$�N#��~� � ÄÅ£ ¦�¸´®µ¹¶ � £ ¨ �&�$�N#�	 � £ ¨ �5�$�N#���� ÄÅ£ À

¿� © £ �${I#ª £ �!{o# ��� £ ¨ �5�${I#�	
and � £ ¨ �1�$�N#��3² �� �$�N#[2 À

¿� ° �� �!{o#N� ½������£ �${o# �
Proof. We have the identity

Ì h	�®k �>�N#�� ¦£N§ �|¨ � �)ÄÅ
�� � À

¿� ¼© £ 2 © £° £ �»² £ z À
¿� © £° £ ¦�¸´®µ ¶ ��� £ ¨ �"! #$ 	 (A.1)

where we have suppressed the variable of integration. The first summands in the right hand

side of (A.1) are asymptotically equivalent to � ÄÅ ¾ ¿� � ¼© £ 2 © £ #N� ½ crd£ . Moreover, by a Taylor

expansion we have

� ÄÅ � ¼© £ 2 © £ #��~� ÄÅ � ¼f � 2Úf � # © £ ¨ ý�� Ä � z�� ÄÅ ¦£ æ § �|¨ � � ¼ª £ æ�2 ª £ æ�# © £ ¨ ý?þ ¶ æ � z%���q�!� � ÄÅ # �
Substituting this expansion in (A.1), and noting that ° £  n� £ converges uniformly in probability

to ª £ in & G 	|�5((' as � £ Ë Í , by the Glivenko-Cantelli Theorem (Billingsley, 1979, Theorem

20.6), Lemma A follows after some algebra.

Using Corollary B.1.1 of Fleming and Harrington (1991), in order to show Result 2 it suf-

fices to show two conditions: (i) for any finite set of times � � 	 �S��� 	N��) , the vector �?Ì h	�®k �$� � #W	 �S��� 	6Ì h��Kk �>��)K#|#
converges in distribution to �VÌc�$� � #W	 �S��� 	6ÌF�>��)®#N# , where Ì is a Gaussian process with moments
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as in Result 2, and (ii) the process Ì h	�®k is “tight” in the sense of Fleming and Harrington (1991,

p. 340).

The large-sample normality in condition (i) follows from applying the central limit theorem

and Theorem 2.4.4 of Fleming and Harrington (1991) on Lemma A. This application also

shows that, for fixed times G­��Ð
	|���}�X(+*1, , the covariance cov ]nÌc�?Ðl#�	�Ìc�$�N#6` is given by,

Õ ý�� Ä � �VÐ
	|�N#\z ¦£N§ �|¨ � Õ ý?þ ¶ � �?ÐL	N�N#\z Õ ý�
 ¶ � �$�N#\z Õ ý?þ ¶ ¨ 
 ¶ � �VÐ
	|�N#\z Õ ý?þ ¶ ¨ 
 ¶ � �$��	6Ðl#�	 (A.2)

whereÕ ý�� Ä �K�VÐ
	|�N# C �gf � f¥� À
¿� � ½ �����ý�� Ä � �${o# À B� � ½ �����ý�� Ä � �${ � #W	

and, for �
���D�^ q]6f¥�Vf h'ilk ` , � � �J�^ �f � , and ¤­�HG:	®�R	Õ ý?þ ¶ � �VÐ
	|�N# C ��� £ À
¿� À B� & ª £ ]+*-,lØm�!{"	
{ � #6`Z2 ª £ �${o# ª £ �!{ � #�'^� ½.�����ý?þ ¶ � �${ � #N� ½.�����ý?þ ¶ � �!{o#�	Õ ý�
 ¶ �K�VÐ
	|�N# C �/� £ À
021eÇ h B ¨ ¿ k� ] © £ �!{o#�` úª £ �${I# � ½������£ �${o#W	 andÕ ý?þ ¶ ¨ 
 ¶ �®�VÐ
	|�N# C �J23� £ À

021eÇ h B ¨ ¿ k� À B4 ª £ �${ � #ª £ �${I# © £ �!{o#1� ½ �����ý?þ ¶ � �!{ � #1� ½ �����£ �!{o# �
The proof of condition (ii) is not difficult but is more laborious and is omitted here. Further

details can be found in Frangakis (1999, appendix of Part 3).
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Figure 1. Potential outcomes and observed data with double-sampling. For each part, solid

lines represent observed information, dashed lines represent unobserved information: (a) sur-

vival times, (arrows), and true dropouts (circles); (b) administrative censoring with true dropout;

(c) study-dropouts; (d) subject 2 is double-sampled.
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Table 1

Projected Tharies prosthesis study of Sec. 4: sensitivity inference for the prostheses sur-

vival probabilities M)�>�N# at ���Hî 	 ë and 8 years from primary surgery; coverage of nominalçLïRð confidence intervals and mean squared error.576
-1 0 18:9 -0.4 -0.2 0.0 0.2 -0.4 -0.2 0.0 0.2 -0.4 -0.2 0.0 0.28 0.16 0.34 0.46 0.60 0.34 0.45 0.57 0.67 0.55 0.63 0.68 0.72;=<?>A@BDCFE (%) 40.3 38.8 36.7 34.6 43.0 42.2 41.4 40.5 45.8 44.9 44.2 44.0;=<?>A@ (%) 19.7 19.4 18.3 16.4 23.1 23.2 22.5 21.5 26.5 26.8 27.3 27.0G2HJI"K

Coverage (%)

SKM 93.1 94.4 93.9 95.4 86.4 85.7 84.3 82.8 36.2 36.8 40.5 38.0

IML 94.2 95.5 94.4 94.6 94.2 95.3 94.3 93.8 94.0 94.1 94.1 94.3

MSE
H�L2M�N:O7K

SKM 1.10 0.97 0.96 0.87 1.35 1.32 1.37 1.46 4.35 4.35 4.17 4.13

IML 0.91 0.84 0.92 0.88 1.06 0.99 1.03 1.03 1.10 1.05 1.11 1.05G2H�P:K
Coverage (%)

SKM 92.0 93.3 93.9 94.9 86.2 85.2 84.2 81.5 33.8 34.7 35.4 35.7

IML 94.5 95.6 93.5 95.0 95.3 94.8 95.6 94.1 94.4 94.0 93.9 94.5

MSE
H�L2M�N:O7K

SKM 1.65 1.43 1.33 1.25 1.84 1.91 1.98 2.13 6.34 6.20 6.20 6.07

IML 1.28 1.19 1.28 1.25 1.34 1.37 1.36 1.40 1.38 1.44 1.43 1.38G2HJQ"K
Coverage (%)

SKM 90.3 92.4 93.5 94.1 87.6 85.8 85.2 83.4 44.6 45.5 47.5 46.8

IML 94.1 94.9 94.2 94.8 94.8 94.6 94.4 94.5 94.2 94.2 94.2 94.7

MSE
H�L2M�N:O7K

SKM 2.78 2.36 2.08 1.94 2.43 2.48 2.58 2.73 7.46 7.35 7.17 7.07

IML 1.83 1.69 1.77 1.70 1.90 1.90 1.89 1.85 1.94 1.94 1.85 1.83

R (+� BñoòqóTS Pr UWV @<A$B� S X�Y[Z �]\ ^+_ ; R (�� B S Pr UWV @<A$B� S X _ ; only positive values of ` S
corr UWa �cbed � Y V � SfX _ are considered because a �?ghd � for true dropouts.

SKM, stratified Kaplan-Meier method; IML, method of Section 3.2.
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