
Addressing Data-Centric Security Requirements for

IoT-Based Systems

Juan D. Parra Rodriguez∗, Daniel Schreckling†, Joachim Posegga‡

Institute of IT-Security and Security Law

University of Passau, Innstraße 43, Passau, Germany

Email: ∗dp@sec.uni-passau.de, †ds@sec.uni-passau.de, ‡jp@sec.uni-passau.de

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/SIoT.2016.007

Abstract—Allowing users to control access to their data is
paramount for the success of the Internet of Things; therefore,
it is imperative to ensure it, even when data has left the users’
control, e.g. shared with cloud infrastructure. Consequently, we
propose several state of the art mechanisms from the security
and privacy research fields to cope with this requirement.

To illustrate how each mechanism can be applied, we derive
a data-centric architecture providing access control and privacy
guaranties for the users of IoT-based applications. Moreover, we
discuss the limitations and challenges related to applying the
selected mechanisms to ensure access control remotely. Also, we
validate our architecture by showing how it empowers users to
control access to their health data in a quantified self use case.

Index Terms—Internet of Things; Security Architecture; Data-
Centric Security; Differential Privacy; Secure Cloud Storage;
Encryption

I. INTRODUCTION

In response to the highly unbalanced resource distribution in

the Internet of Things (IoT), resource-constrained devices tend

to only collect data while cloud servers store and process high

amounts of information. Though practical for developers and

for data availability purposes, this raises security and privacy

issues. Particularly, because data is delivered to the cloud in

plain text, thus making it impossible for users to perform

access control on their data.

In spite of extensive research to address security challenges

for the IoT [1], [2], [3], a unified data-centric solution to

ensure that users can perform access control on their data, even

outside of their computers and devices is currently not avail-

able. Notwithstanding, there is extensive research on several

fields of security and privacy such as homomorphic encryption,

trusted computation, or differential privacy that could help IoT-

based application to provide some access control and privacy

guarantees for the user. As a result, we aim to start the journey

towards a security framework addressing data-centric security

requirements on access control and privacy by proposing an

architecture including such mechanisms.

Our contributions are summarized as follows:

• we present a data-centric security architecture, for sys-

tems using IoT gateways, that empowers users to control

access to their data. The security architecture has been

defined considering several attacker models. To synthe-

size the attacker models we based the architecture on

perimeters including components trusted by the user to

handle his data.

• our security architecture applies current state of the art

privacy and security mechanisms to its different compo-

nents. More to the point, these mechanisms are the result

of a survey to find techniques applicable for the IoT set-

ups covered by our architecture.

• we present a concrete validation scenario for our proposal

through a quantified self use case. The main goal is

to allow users to control who has access to their data

through technical means, yet permitting external systems

to perform aggregation operations from information pro-

vided by users opting in. More to the point, information

disclosed by users for aggregation purposes contemplates

the use of mechanisms to protect the user’s identity and

privacy.

The rest of this paper is organized as follows. We present

relevant security requirements and the architecture for IoT-

based applications used for our analysis in Sections II and III.

Afterwards in Section IV, we present the attacker models

based on different perimeters including trusted entities; more-

over, this section includes a discussion on perimeter enforce-

ment based on secure hardware and software combinations.

Then, Section V lists state of the art software-based mech-

anisms helping to tackle security requirements in particular

perimeters. Later on, we integrate every software-based mech-

anism into a unified security architecture and show how it can

be applied to a quantified self use case in Section VI. Last but

not least, we cover the limitations of our architecture and our

conclusions in Sections VII and VIII.

II. SECURITY REQUIREMENTS

Herein we describe the set of data-centric security require-

ments addressed by our security architecture:

R1 A user can grant access to data to other users while

keeping it confidential for unauthorized entities.

R2 The identity associated with the data being accessed can

only be determined by a set of authorized entities.

R3 A user can partially expose data to external entities in

order to protect his privacy.

Notably, the biggest challenge is to ensure these security

requirements in spite of data being stored and processed by

external systems, and in spite of the distributed nature of IoT-

based applications.



III. ARCHITECTURE

This section defines terminology for the architectural com-

ponents that will be used throughout the paper (See Figure 1).

IoT Device is considered to be an electronic platform, e.g.

Arduino or a sensor, with some wired or wireless connectivity

such as WiFi, IEEE 802.15.4, or an analogue or digital wired

connection.

Gateway is an electronic system, such as an ODROID or

a Raspberry Pi, running a full-fledged operating system and

communicating not only with IoT devices, but also with the

Internet. The purpose of the gateway is twofold: it enables

devices with different protocols to interact with each other,

and at the same time it can process data for aggregation,

analysis or security purposes and preform temporary data

storage. Since gateways need to keep physical proximity with

IoT devices and sensors, they are likely to be deployed inside

a NAT (Network Addressing Translation) network, e.g. at

home. As a result, they do not necessarily offer services to the

internet through inbound connections due to NAT and firewall

restrictions.

External System can be any application on the Inter-

net offering services to the gateway through an API using

protocols such as CoAP, HTTP, etc. We call such systems

external as they are not in direct control of the user but are

managed by a third-party. External systems include but are not

limited to email, social networks and weather forecast services.

Moreover, these systems can include some storage capabilities

to fulfill the application’s goal. However, even though some

storage-related calls could be invoked by the gateway, e.g.

create a post on a social network, the external system would

do some kind of processing on the data, therefore controlling

data in terms of format, size, etc. Please note that an external

system can also consist of another gateway and multiple IoT

devices behind it.

External Storage is a term we use to refer to systems

offering data storage functionality. Such systems can offer

enhanced CRUD (Create Read Update Delete) APIs, or any

kind of storage and querying interface, such as SQL. Examples

of such systems include Dropbox, Google Drive, or a MySQL

database, etc. In contrast to external systems which manipulate

input data following a specific business logic, external storage

system store and return data as provided by the user.

Visualization Device refers to any kind of platform allow-

ing users to visualize and process data coming from IoT De-

vices, Gateways, External Systems or Storage. These platforms

are commonly Web browsers, mobile phones, tablets, etc.

Although a direct connection between a visualization device

and a gateway is possible (assuming that network connectivity

from the visualization device to the gateway is available), we

have decided to leave it out of the architecture to consider a re-

alistic scenario coping with the network restrictions described

in the gateway’s definition. Further, it is assumed that the IoT

device, the gateway, the external system and the visualization

device can be programmed in a Turing complete language.

IoT Device
Gateway

External 

System

Visualization Device
External 

Storage 

P0

P1

P2

P3

Fig. 1. IoT System Architecture and Security Perimeters (P0,P1,P2,P3)

IV. PERIMETERS AND ATTACKER MODELS

Given that users may desire more or fewer security guar-

antees, depending on what they consider an acceptable trade-

off between functionality and security, we use the concept

of a Perimeter as the set of components in the architecture

trusted by the user. First, this section will define the perimeters

considered in this paper based on a general system architecture

we consider for IoT systems. Second, we will justify the

choice of our perimeters by outlining the numerous options on

how such perimeters can be supported by soft- and hardware

technologies which already exist or are under development.

A. Perimeters and Attackers

As described above, Figure 1 outlines the general IoT

system architecture we consider. It also depicts the four

perimeters we consider in this contribution. They reflect

components trusted by the user. In our paper, this implies

that a user relies on the fact that an attacker is unable to

perform sophisticated physical hardware attacks on a device

and that the execution of any code on the device does not break

data secrecy. Trusted components inside a perimeter are also

assumed to securely transmit data to properly authenticated

entities inside the perimeter. This renders the consideration

of active or passive insider attackers trying to manipulate or

eavesdrop communication unnecessary.

Hence, our perimeter model proves useful to clearly define

where the attacker can be: Outside of the perimeter. Further,

we can indicate the power of an attacker by indexing perime-

ters. Perimeters with a given index i are always a proper subset

of perimeters with j when i < j. For instance, in P0 it is

assumed that an attacker cannot interfere with the IoT device;

conversely, in P0 an attacker could tamper with the gateway,

the external system, external storage and the visualization

device.

Additionally, our perimeter model also indicates the trust

level a user is prepared to assign to specific components.

A user which only accepts a perimeter of level 0 is more

paranoid than a laid-back user who trusts every possible

component participating in the processing of his data and who

is comfortable with a maximum perimeter of level 3.

Below, we sketch various technologies which show that such

perimeters can actually be implemented and indicate in which

perimeter they can be used to secure it.



B. Perimeter Enforcement

Processing of accumulated data is fundamental for IoT-

based systems. As the applications in the IoT domain are ma-

nifold and so are the program logics behind it. All components

in our high-level architecture, apart from the external storage

component, can execute some use case specific and possibly

untrusted, third-party code. Further, if authorized, data may

be transmitted to systems running malware or to systems

whose operating system has been compromised. Hence, apart

from a mere trust in specific manufacturers or software,

the decision whether a component can be considered trusted

is hard and would require considerable effort. We consider

trusted execution environments (TEE) as a feasible solution

for this purpose.

In the best case a TEE should ensure the following prop-

erties [4]. The integrity and secrecy of software modules

executed by a TEE and the data it processes should be pro-

tected. TEEs should also provide storage in which confidential

data of a module can be stored securely while the module

is not executed. Through remote attestation, clients which

are required to exchange messages with specific software

modules should be able to verify that they are in fact talking

to this particular module. To be able to actually talk to

such modules, a TEE should ensure secure provisioning of

software modules, i.e. entities are able to send data to specific

modules on specific devices while maintaining their secrecy

and integrity. Finally, a TEE should enable the authentic and

confidential communication between software modules and

device peripherals.

The size and complexity of the trusted computing base

(TCB) required for each architectural component will depend

on the number and type of properties implemented in it. We

will list some of the most prevalent technologies we consider

feasible to be deployed in IoT environments and indicate in

which perimeter they could be used for enforcement.

1) TEE with Micro-Controller Support: A TEE can be

implemented by means of complex hardware and software

support. However, constraints on resources and price often

render such solutions infeasible. Thus, approaches such as

SMART [5], TrustLite [6] or TyTan [7] exploit properties of

low-end micro controller units or of recent CPU technologies

feasible for IoT devices to build simplified TEEs. SMART

introduces a new primitive based on low-end micro controller

hardware and software TCB which protects tasks through

read-only memory and provides attestation mechanisms. To

achieve this, it uses ROM as a secure storage with minor

hardware modifications and some adjustments to the memory

management in the controller itself. Of course, this renders

the secure storage to be vulnerable against physical attacks.

Further, the approach does not allow changes to tasks and

relies on the micro controller to sanitize memory when access

violations occur. TrustLite also aims for embedded devices

but gives greater flexibility. It extends SMART by supporting

task interruption and dynamic changes on the attested code.

However, TrustLite dynamics is also limited as it requires the

configuration, loading, and isolation of all software compo-

nents at boot time. TyTan [7] removes the later restriction of

TrustLite, allows for the dynamic loading of modules and is

able to give real-time guarantees.

Trusted execution environments specifically designed for

embedded devices are particularly feasible for IoT devices

in perimeter P0. While a user may simply trust such simple

devices a TEE can ensure the correctness of firmware updates,

protect data against possibly malicious software accidentally

installed by the user or by the exploitation of a vulnerability

in the gateway.

2) TEE with Trusted Hardware Support: McCune et al.

introduce Flicker [8] which exploits the dynamic root of trust

measurement (DRTM) enabled by trusted platform modules

(TPM) [9] or mobile trusted modules (MTM) [10], TPMs for

mobile devices. A static root of trust measurement (SRTM)

ensures system integrity beginning with the boot process, i.e.

it measures all software loaded since the loading of the BIOS.

The idea is to subsequently rely on the OS to perform process

isolation. This implies, that the whole OS becomes the TCB

which appeared to be infeasible. DRTM was designed to solve

this problem by being able to dynamically reset the CPU into a

fixed state and start measuring from the reset on. This concept

was intended to also support a hypervisor based system where

the hypervisor would be measured and attested by the TPM.

Unfortunately, hypervisors are still complex and the TCB has

considerable size.

Thus, Flicker tries to further reduce the TCB by introducing

pieces of application logic (PAL) which must be defined and

implemented by the developer of an application. Whenever

these PALs must be executed, Flicker suspends the OS,

executes the PAL, allows the manipulation of secure storage,

increments the instruction pointer stored in the TPM, seals

all security critical storage again and then restores the OS.

As Flicker runs with highest privileges it can protect the PAL

from the OS, even if the latter was compromised.

Flicker introduces large overhead due to its intense use of

the TPM. Thus, McCuner further refines his DRTM based

model by introducing a hypervisor called TrustVisor [11]

which uses software-based µTPMs which are associated with

PALs. In contrast to a hardware TPM which runs in an

often slower and completely isolated piece of hardware, the

µTPM runs on the main CPU. As the TrustVisor is managing

PAL and µTPM execution it is measured by the physical

TPM which builds a new root of trust, the TrustVisor root

of trust measurement (TRTM). While Flicker only protects

the PAL from the OS also enables the protection of the OS

from the PAL. However, the non-security sensitive part of

the application, i.e. code not inside a PAL, may still contain

malware that can compromise OS.

We believe that the approaches introduced above can ben-

efit from newer CPU based technologies, such as the ARM

TrustZone[12], Trustsonic1 or Samsung KNOX2, and the Intel

1https://www.trustonic.com/
2https://www.samsungknox.com/



Software Guard Extensions (SGX) [13]. The functionality and

computing power of a TPM is restricted and the physical

binding with the devices is rather weak. Therefore, Flicker and

TrustVisor could further benefit from the power and security

features of these platforms. With SEDA [14], Asokan et al.

already show how the Intel research architecture Siskiyou

Peak for embedded devices can support powerful and efficient

security mechanisms such as swarm attestation for low-level

devices by enhancing SMART and TrustLite.

In this way, trusted execution environments supported by

trusted hardware become a valuable enforcement mechanism

for P0-P3.

3) TEE with Trusted Hardware and Virtualization Support:

Of course, various virtualization techniques can be deployed

in powerful devices [15]. Thus, perimeter P2 and P3 can easily

deploy virtualization mechanisms which enable the isolation

of possibly malicious code and control the access to security

critical data and credentials.

However, virtualization is also a valid option for mobile

and embedded devices our architecture puts in P1 and P2.

This has been shown by numerous implementations such as

TrustDroid [16] and Boxify [17]. Also the solution by Wessel

et al. [18] which improves mobile device security by deploying

operating system-level virtualization becomes an attractive

option for these perimeters as it provides storage encryption,

integrity protection and remote management.

Combined with a TPM or more advanced processor tech-

nologies the measurement of appropriate hypervisors or snad-

boxes mentioned above could form a dynamic root of trust

which can be asserted by a connecting client.

In fact, the more recent solution Sprobes by Ge et al. [19]

exploits the ARM TrustZone and introduces introspection

without a separate hypervisor. While this approach only shows

how to limit kernel execution to approved code pages in order

to prevent rootkit exploits, this work introduces a lightweight

solution by exploiting modern processor architectures. Al-

though this approach requires dynamic code rewriting, we

assume that this work can be further exploited and applied to

approaches implementing TEEs by controlling memory access

with program counter.

Another recent approach combines TrustVisor (see above)

with the Google Native Client (NaCl) [20]. NaCl uses a

combination of a secure runtime and software-based fault

isolation (SFI) [21] to sandbox native application code. The

combination with TrustVisor and thus the use of a TPM

generates a two-way sandbox called MiniBox [22]. It allows

the attacker to control applications as well as the operating

system. Thus, MiniBox can provide sufficient trust to be placed

in P1-P3. Through its TPM and µTPM usage it can also

provide attestation to a client within the same perimeter.

Finally, we want to highlight an approach which uses fully

abstract compilation. Fully abstract compilers translate fully

indistinguishable source level programs into indistinguishable

target level programs. This property is also called contex-

tual equivalence and assumes programs at source level to

be correct, i.e. if they do not allow data leaks, the target

level program will possess the same property. While this

assumption requires additional implementation effort from the

developer fully abstract compilation provides fine granular

access control on data and ensures data secrecy and integrity.

Implementations for the fully abstract compilation of object-

oriented programming languages into untyped assembly target

languages exist [23], [24].

Particularly intersting is the work by Strackx et al. Similar to

TrustVisor, they define self-protecting modules (SPMs) [25].

They can be executed using shared resources such as memory

or CPUs, can authenticate towards other modules, can securely

communicate with other modules and ensure that the sensitive

information they store can only be modified by code from the

module itself. While their first contribution requires special

hardware support their second approach, Fidel [26], targets

commodity systems. To achieve this, they complement their

work with an additional hypervisor, a small kernel which

enforces fine-grained data access and a fully abstract compiler

able to generate secure SPMs. Similar to TrustVisor a TPM

can provide the required DTRM during the launch of the

hypervisor. Both models allow powerful attackers which can

control the operating system and can inject malicious software

or other potentially hostile SPMs. However, as for almost all

approaches, attackers which can run physical hardware attacks

are excluded in their attacker model.

Of course, both approaches are feasible for perimeters P1

through P3. On top, depending on the device configuration

these approaches could also be deployed in P0. In particular,

Fidel requires only limited hardware support and provides

tremendous security guarantees for data secrecy at the same

time.

V. EXISTING SOFTWARE-BASED MECHANISMS

This section will describe state of the art mechanisms

addressing security requirements described in Section II. After

describing each mechanism, we state in which components

of the architecture it can be applied, the perimeter according

to the IoT System Architecture in Figure 1, and the security

requirements addressed by it. Further, when a mechanism can

be applied in several perimeters, we describe the mechanism

assuming the strongest attacker model. i.e. the smallest perime-

ter possible, in which the mechanism could be used.

A. Cryptographic Mechanisms

1) Homomorphic Encryption: The basic principle behind

homomorphic encryption is to use a transformation, i.e. en-

cryption function, that preserves structure, i.e. an homomor-

phism. That is to say, given an encryption function f , such

that f(x+y) = f(x)⊕f(y), an external party which does not

know x and y can perform the addition of two encrypted values

f(x) and f(y), by using the operator ⊕. Since f(x) ⊕ f(y)
produces f(x + y), the actual value for the sum (x + y) can

only be decrypted by users with the proper key to reverse f .

One of the biggest challenges of homomorphic encryption

is to support polynomials of arbitrary degree efficiently. As a

result, it is common to see homomorphic encryption tailored



to particular applications in which feasible performance is

achieved [27], [28], [29].

Given that the gateway and the visualization device are

likely to have less computational resources than external

systems, we focused our survey on server-side processing on

encrypted data. The key contribution of such approaches is

that gateways and visualization devices can offload storage

and processing of data to external systems, yet maintaining

their data encrypted at all times. The most relevant approaches

for server-side aided homomorphic encryption are HElib [30]

and CryptoNets [31]. The former is a library supporting

SIMD (Simple Instructions Multiple Data) operations homo-

morphically and specifying their cost. This library has been

produced in C and C++ and it has been open sourced under

GPL Licence. CryptoNets allows to apply neural networks to

encrypted data using homomorphic encryption, though it is

not available as open source.

Encrypting and decrypting data on the gateway and the

visualization device while performing homomorphic opera-

tions on the external system could be applied to perimeter

P2. Moreover, homomorphic encryption tackles R1 while

letting the gateway and the visualization device to offload

computation and storage of data to an external system.

2) Searchable Encryption: Song et. al proposed a set of

cryptographic schemes for searching on encrypted data [32].

Moreover, they demonstrate that an attacker who reads the

cipher text cannot learn anything about the plain text. Further

they provide controlled searching, i.e. the server cannot per-

form a query without the user’s authorization, and also the

user can ask the server to search for a secret keyword without

revealing it to the server. Also, algorithms presented by Song

et. al are practically applicable, given that they have O(n)
number of stream cipher and block cipher operations for a

message of length n.

The theoretical foundations presented by Song et. al [32]

were leveraged by CryptDB [33], along with additional

schemes such as order-preserving and homomorphic encryp-

tion, to implement SQL-aware cryptographic schemes. This

allows CryptDB to support SQL queries on encrypted data;

however, developers must specify beforehand the primitives

used by the application’s queries, e.g. join, and the particular

fields they are used in. Unfortunately, this is required to

guarantee effective query resolution; for instance, if one re-

quires a SORT BY aggregation for a particular column, order-

preserving encryption on the column is naturally required

to resolve the query. According to the authors’ evaluation,

CryptDB supports 99.5% of the queries observed in a 126

million SQL trace extracted from production systems. Also,

CryptDB reduces the throughput by 14.5%, thus making

it an acceptable solution for server-side encrypted storage.

CryptDB also supports multiple principals by chaining keys,

e.g. encrypted the group key with each user’s key, so they can

decrypt the group’s key while keeping it confidential to third

parties.

CryptDB’s architecture relies on two components: a server

side database which performs queries on encrypted data, and a

proxy used by the application to generate and send encrypted

queries, generated from standard SQL statements, to the server.

Therefore, data confidentiality is protected when the database

server is compromised, since the server can neither decrypt

the query, nor the result. On the other hand, when the proxy

is compromised, the confidentiality of data belonging to users

who are currently logged cannot be ensured; notwithstanding,

data readable by users who are not currently logged in, through

the compromised proxy, is kept confidential.

Another approach to encrypt data on the user’s side while

allowing the server to perform searches on the encrypted data

is Mylar [34]. Mylar is implemented as a plug-in for the

Meteor JavaScript framework, which uses elliptic curves to

encrypt data on the user’s browser while allowing users to

send encrypted keyword searches to the server. Moreover, in

the process of resolving the keyword search, the server neither

learns the query, nor the plain text of the result. Like CryptDB,

Mylar also supports data sharing through chaining if keys, as

CryptDB does. On top of this, this framework also considers

integrity protection for parts of the code hosted by untrusted

servers; to this end, a browser plug-in verifies signatures of

the sources loaded from the application while ensuring proper

isolation of the cryptographic keys from untrusted servers

through the Same Origin Policy.

The applicability of all concepts described in this subsection

lies in perimeter P2 and they would address requirement R1.

However, there are subtle differences depending on which

method is applied. If CryptDB is applied, the database would

comprise an external storage component, and the proxy used

for the SQL translation would be executed on the gateway and

the visualization device. On the other hand, if Mylar is applied,

the developer needs to be able to modify the behaviour of

the gateway, the visualization device and the external system.

The later is required because Meteor not only generates the

browser-side code, i.e. visualization device, but also generates

the code for the external system to host the application and

the data, along with specific business logic required the search

on the encrypted data set.

B. Partial Data Exposure

1) Differential Privacy: According to the literature [35],

[36], differential privacy operates on databases containing rows

where the data of an individual is held in a single row. Further,

differential privacy ensures that the ability of an adversary

to inflict harm on any set of people is essentially the same,

independent of whether any individual opts in or out of the

dataset. This is done by focusing on the probability of any

given output of a privacy mechanism and how this probability

can change with the addition or deletion of any row.

Differential privacy mechanisms rely on adding some kind

of noise to the data, in order to prevent the disclosure of the

exact value provided by a participant on the dataset, while

producing acceptable results when data is aggregated. This is

possible because noise is canceled out during the aggregation

process for particular probability distributions. However, most

of the work on differential privacy assumes a database in



which a participant answers a particular question only once

(provides only one value). Intuitively, this is a prerequisite

to ensure that data cannot be “averaged” to find the actual

value for a participant over time, i.e. longitudinal attacks.

This poses a critical pitfall for the IoT domain because IoT

devices will generate data periodically, and it is not feasible

to assume that each device provides a single measurement in

its lifetime. Therefore, only very particular mechanisms such

RAPPOR [37] and the work on differential privacy under con-

tinual observation by Dwork et. al [36] can provide guaranties

against untrusted aggregations attempting a longitudinal attack

on measurements received over time. These two approaches

can be tuned by modifying parameters on the client-side to

find the proper trade-off between usability and privacy.

On the one hand, RAPPOR provides support for collecting

one or more categorical responses, i.e. whether a particular

entity belongs to a category or not. RAPPOR could also

be used to collect population statics on numeric and ordinal

values, i.e. use predicates associated with particular range of

values. Further, RAPPOR can be used to calculate statistics

on non-categorical domains or when the categories are not

known in advance through Bloom filters. On the other hand,

differential privacy under continual observation [35] allows to

count how many times a certain event has occurred in the past.

Both of the aforementioned differential privacy techniques

could be applied to perimeter P0 by including them in the IoT

device itself to support R3. Hence, it must be noted that for

both schemas the systems doing the aggregation do not need

to be in the perimeter because even if the decoding of the data

is not implemented properly, e.g. Bloom filter for RAPPOR,

there are no threats against confidentiality.

2) Sanitization: Sanitization is a term commonly used

when sensitive data is removed (or redacted) from a document

to reduce privacy risks. Recently, the National Institute of

Standards and Technology (NIST) released a technical re-

port on de-identification techniques [38]. In our architecture,

sensitive data could be removed at any point. The smallest

perimeter that could be used is P0. Applying de-identification

or sanitization solves requirement R3 and requirement R2.

Further, under the right conditions, de-identification and san-

itization could provide a stronger property than R2 because

the identity associated with the data cannot be determined

by anyone; however, whether this possible in practice is still

an ongoing debate due to the difficulty to ensure that data

remains unlinked to other datasets that could ultimately reveal

the identity of the data owner.

C. Hidden Channels

Lulia et. al propose a Web-based protocol for users who

want to communicate with each other through existing external

systems, e.g. Facebook, while keeping information confidential

and hiding from a casual observer that such confidential

exchange of data takes place [39]. In a nutshell, in the scheme

proposed by Lulia et. al a user can publish a “regular”

message, and encode information in the message in such a

way that the recipient can fetch an encrypted file. This file

can be hosted in a publicly available Dropbox or Google Drive

folder and it is referenced by a URL shortener service such

as tinyurl. Once the user, with whom data should be shared

with, has downloaded the encrypted file, it is subsequently de-

crypted with the user’s key. The whole process of publishing,

retrieving, and replacing the original message in the graphical

interface (HTML) is transparently performed by a browser

plug-in. An interesting fact of this approach is that other users

who are not aware of how data from the “regular” message

should be decoded will not suspect that an encrypted message

is being shared between the creator of the message and another

user. Furthermore, even if a user who is not intended to read

the data manages to find the location of the encrypted file, he

still will not be able to read the clear text from it.

For clarity, let us assume a scenario in which Alice manages

the gateway and she wants to send an encrypted message to

Bob holding a visualization device. In this scenario, the gate-

way would perform the encryption. Afterwards, the gateway

would encode the location of the encrypted file in a “regular”

message and post it to the external system, e.g. Facebook.

Subsequently, the gateway would use an external storage

system, e.g. Dropbox, to make the file available to Bob. Once

Bob reads the “regular” messages from the external system,

his visualization device should then decode location from the

public external storage, fetch the file and decrypt it with

Bob’s key. The last step could be performed through browser

plug-ins or applications running on the visualization device.

Moreover, communication in the other direction would work

symmetrically. Lulia et. al have shown how this mechanism

can be implemented sharing messages through Facebook and

other online services.

The method described previously can be applied to perime-

ter P2; however, the functionality available as a browser

plug-in needs to be implemented in the gateway and the

visualization device. Furthermore, this approach addresses

requirement R1, and the key differentiator of this technique

is that R1 is achieved without modifying the external system.

D. Anonymity

1) Onion Routing: Tor (The Onion Router) is an open-

source, circuit-based and low-latency service for anonymous

communication [40]. Roughly speaking, Tor allows a sender

to choose a multi-hop circuit comprised of Onion Routers to

send his message. Messages are encrypted using several layers

to ensure that Onion Routers participating in the circuit can

forward the message, yet without having access to the data

being exchanged. Furthermore, since the sender of the message

chooses the path it is very hard for nodes to collude and brake

the anonymity of the sender. In Tor’s architecture there is a key

component taking care of circuit establishment and message

exchange installed on the sender’s machine called the Onion

Proxy.

Onion Routing could be applied to perimeter P2. On the

one hand, the visualization device could keep its anonymity,

thanks to the plethora of possibilities to install Tor clients for

Visualization devices [41], [42], [43]. On the other hand, a



gateway could also be configured to send network requests

through Tor anonymously. This is possible by configuring the

gateway to send every network request through the SOCKS5 3

interface of the Onion Proxy; alternatively, specific libraries

can be used to overwrite network-related system calls, so they

can be redirected through Tor, for any application [44]. Onion

Routing addresses requirement R2 in a stronger sense because

no one is be able to find the sender’s identity. However, care

must be taken to avoid sending information that may uniquely

identify the sender of the data, and also a proper number of

nodes in the network should be ensured.

2) Garlic Routing: The Invisible Internet Project (I2P) is an

open-source anonymous network allowing applications to send

messages to each other [45]. Unlike Tor where Onion Routers

are not necessarily run by regular users, I2P requires that every

user accessing the I2P network runs his own “router” to join

the network. Also, applications accessed through this network

need to use the proper I2P interfaces to communicate with

the outside world. Another key difference between Tor and

I2P, is that I2P uses Garlic Routing which uses a Distributed

Hash Table (DHT) instead of centralized directory servers. As

a result, when a router joins the network, it establishes a set

of inbound and outbound tunnels used to relay messages, and

each user can decide how many hops are required to find an

acceptable trade-off between anonymity and usability.

Similarly to Onion Routing, Garlic Routing could be applied

to perimeter P2 since I2P offers libraries for mobile devices.

Furthermore, I2P can be executed in the gateway since it is

implemented in Java.

3) Pseudonyms: There is a recent IETF draft for privacy-

enhanced tokens proposing a schema for “Pseudonym-based

Authorization Tokens” [46] based on one-way functions, e.g.

cryptographic hash. In this protocol, tokens do not reveal

any information about the client. Furthermore, by observing

messages exchanged, including the tokens, an observer cannot

know whether two messages were generated by the same

sender. Most importantly, with the pseudonym-based autho-

rization tokens, only an entity with the proper key material

can find out the real identity of the sender, and an attacker

who obtains a token cannot derive valid tokens from it.

This approach could be applied to perimeter P0, since in

some IoT devices it is currently possible to evaluate crypto-

graphic hash functions, and this would improve the privacy

of an IoT device towards the gateway. Alternatively, the

same argument applies between the gateway and an external

system, or even between any pair of devices communicating

in the architecture, e.g. visualization device communicating

with external system. Moreover, in cases when this technique

is applied but IP networks are used, anonymity of the client

could only be preserved by applying also the Onion or Garlic

Routing approach described in V-D1. Pseudonyms address

requirement R2 since only a selected set of users can derive

the identity of the token bearer, i.e. entities who posses the

proper key material.

3SOCKS5 is a protocol to exchange network packets through a proxy server

VI. SECURITY ARCHITECTURE

We extend the initial architecture shown in Figure 1 to tackle

the access control and privacy requirements from Section II.

Subsequently, we apply our security architecture concepts to

a quantified self use case and show its advantages.

A. Big Picture

In the security-enhanced architecture shown in Figure 2, the

mechanisms introduced in Section V are placed in compo-

nents where they are applicable. Besides, to illustrate against

which attacker model they are effective, each mechanism is

coloured following the same color coding used for the security

perimeters. For instance, the partial exposure mechanism in

the IoT device is coloured with the weakest gray, i.e. the

same as perimeter P0, to show that applying it to the IoT

device protects the user’s data against attackers outside of

the gateway. Furthermore, we use the color for the strongest

attacker model, i.e. smallest perimeter, against which the

mechanism is effective: in the example, we chose P0 even

though partial data is also effective for to P1, P2, and P3.

In cases when different characteristics are required for client

and server side, e.g. homomorphic encryption, we indicate

which side is applied to each component. Also, in the case of

hidden channels only clients are visible because this technique

neither modifies the external system, nor the external storage.

In our architecture, both the external storage and exter-

nal system include searchable encryption capabilities. This

is required because the same goal can be achieved by an

application hosting the code and the encrypted data, i.e. Mylar,

or encrypted data could stored by an external storage and avail-

able through an SQL interface, i.e. CryptDB. Furthermore,

since most of the mechanisms applied to the gateway are also

required for the visualization device, in order to achieve secure

communication, they are also drawn in each component.

B. Illustrating Use Case

The proposed data centric security architecture is applicable

in the quantified self use case, where the main concept is

tracking aspects of a users daily life (i.e food calories, health

status, heart rates, oxygen levels etc) and his performance

(i.e. physical activities, calories burnt, motion data etc). Such

data may be collected by IoT devices, e.g. step tracking

bracelets and smart watches, and sent to the IoT gateway

(Raspberry Pi) using Bluetooth Low energy (BLE) or other

wireless protocols. In the specific use case scenario, a company

proposing a holistic approach to the quantified self concept

provides an external system with an integrated Personal Health

Record (PHR), which is accessible through a Web browser,

and a native smart-phone application to interact with the user.

Users of this system can instruct their gateways to upload

data from their IoT devices in encrypted form to the external

system. Furthermore, as specified in requirement R1, they

can selectively share parts of their data with their caring

circle including their physicians, relatives and friends, etc.

Also, whenever the user wants to visualize his quantified self

data (which is stored encrypted by server), he can use his



IoT Device Gateway External System

Visualization Device
External Storage 

Partial Data Exposure

Partial Data Exposure Homomorphic Encryption (client)

Hidden Channels (client)

Anonymity Searchable Encryption (server)

Homomorphic Encryption (server)

Searchable Encryption (client)

Searchable Encryption (client)

Hidden Channels (client) Homomorphic Encryption (client)

Anonymity Searchable Encryption (server)

Fig. 2. Security Enhanced Architecture

visualization device (Web browser or smart-phone). This can

be achieved exploiting searchable encryption on the external

storage (or external system depending on whether Mylar or

CryptDB is used) , and placing the proper functionality on the

gateway and the visualization device as well, so as to decrypt

the information and send encrypted queries to the server. In

this particular use case, we are assuming that the user of the

quantified self system feels comfortable with perimeter P2.

It is likely that the company developing the holistic quan-

tified self application (external system + smart-phone appli-

cation) would be motivated to provide additional services,

e.g. at additional cost, based on aggregated values resulting

from analysing the data from several devices and users. This

is not possible once our proposal for searchable encryption

has been implemented. Nonetheless, a middle ground can

be implemented to allow the quantified self application to

calculate aggregated values with acceptable accuracy while

protecting the users’ privacy, even against a subpoena from the

government, i.e. requirement R3. Users could have incentives,

e.g. lower monthly costs, to share their data de-identified and

using differential privacy, which could be easily applied by the

gateway under the user’s control. In turn, this would allow the

external system to earn revenue based on aggregated values

using data only from users who have opted in to share their

data while protecting the users privacy. An interesting aspect of

our proposal is that hinders an external system from harvesting

the users data without their knowledge through technical

means. However, this also has a silver-lining for companies

supporting such mechanisms: users will feel safer knowing

that their data can only be used when they opt in, instead of

by default therefore improving the application’s popularity. At

the same time, the company implementing the quantified self

use case cannot be forced to deliver confidential data from its

customers by any government because it is encrypted in the

first place.

VII. LIMITATIONS AND CHALLENGES

Although mechanisms listed in this paper help to improve

privacy and security guaranties for users, there are important

considerations to keep in mind and tackle when possible.

These considerations include ensuring proper system boot-

strapping, password recovery among others.

Bootstrapping of a secure IoT-Based system remains an

important challenge. Key agreement and out-of-band delivery

of Trusted Execution Environments such that they can be

remotely attested later on should be carefully implemented.

Furthermore, mechanisms for replacing Trusted Execution En-

vironments due to failures, among other reasons, and ensuring

that this does not become the weakest link in the security chain

needs to be assessed for each particular implementation.

Another critical point calling for a practical solution is that

most of the mechanisms described in Section V rely on chain-

ing keys to store group and users’ keys. For instance, when

the server stores a key encrypted with the user’s password,

the user’s life is simplified because he can log in from any

Web browser, while keeping the user’s key confidential from

the server. However, if the user forgets his password there are

no means to recover this key. In the end, this problem boils

down to an ancient problem balancing safety versus security.

On the one hand, if one stores the key in plain text, the user

can always log in (safety), but someone may have access to

this key and then harm the user (security). So, in summary

users of such secure systems should be well educated and keep

secure backups from their passwords and keys, since strong

guarantees for secrecy come with a price, i.e. there is no “I

forgot my private key” mechanism. Further, additional issues

such as interoperability, software stability and performance are

key aspects for the integration.

Regarding software maturity, it is clear that Tor has been

extensively used by real users showing its stability. At the

same time, there are many systems currently using building

blocks from CryptDB [47]. On the other hand, there are other

components in the architecture which are either not open

source, e.g. CryptoNets, or have not been yet thoroughly tested

in real-life use cases yet, e.g. HELib.

From the performance point of view, some components

mentioned in the architecture have been already used from

hardware commonly used for IoT gateways; for example, Tor

or I2P can be installed on a Raspberry Pi [48], [49]. Nonethe-

less, in spite of coming a long way since its initial definition

on 1978 by Rivest [50], homomorphic encryption still faces

an important performance challenge. Recently, framework

for testing homomorphic encryption schemes named HETest

was introduced [51]. In this work, it is stated that although



encryption and decryption with HELib is fast, i.e. order of

tens of milliseconds, performing homomorphic evaluations can

take hours.

Applicability of homomorphic encryption is hindered by its

requirement to compute circuit-based operations, rarely seen

in real-life. Also, applying cryptographic schemes such as

CryptDB require care regarding the kind of data stored [52].

Last but not least, an unavoidable fact is the so called

analogue loophole mentioned in Digital Rights Management

(DRM). The analogue loophole is defined as the intrinsic pos-

sibility of copying and distributing content (or data) through

analogue means once it is represented in a human readable

format. For instance, regardless of the number of software and

hardware-based mechanisms employed to share confidential

information from an IoT device to a visualization device, the

user receiving the data can always take a picture and post it

online, therefore breaking the secrecy of the data completely.

Although this is impossible to solve, it is relevant to clarify

the limits of the technical mechanisms presented herein.

VIII. CONCLUSIONS

We have reached a point in which several security concepts

that were only theoretically possible are becoming feasible in

practice. A clear example is allowing users to query on their

encrypted data without revealing the clear text to the server

hosting it (See Section V).

A similar argument holds for the trusted execution environ-

ments feasible for the IoT domain. Expensive trusted platform

modules with restricted functionalities start to vanish. They

are replaced by cheaper and faster multi-purpose processing

units. As sketched above, their combination with recent re-

search results which introduce sophisticated compilation and

virtualization technologies, is able to further reduce the TCB

and increase the performance as well as security assurance

even in the absence of trusted elements of platform modules.

Although, many of these new devices still lack the ability

to counter strong physical hardware attacks and thus may

leak confidential data they become an attractive alternative to

expensive and slow tamper-resistant hardware. We assume that

this also holds for manufacturers of embedded devices. Instead

of integrating trust anchors offered by only a small number

of specialized suppliers, cheaper solutions with a reduced set

of fabrication requirements but with distinct security benefits

may be a clear advantage in the competition for a mass market.

In particular, this holds for solutions which offer a physical

integration such as the ARM TrustZone.

In general, compromises are required to reach applicability

of security and privacy systems. For example, the crypto-

graphic methods compiled in this paper can support confi-

dentiality, yet they cannot guarantee integrity or availability

of the encrypted data. This cannot be prevented because, in

spite of not being able to decrypt the information stored in the

external system, a malicious administrator could still modify

it or even delete it.

All in all, we have focused on a specific set of require-

ments on access control and privacy. It has been particularly

interesting to consider the IoT-based system as a whole, i.e.

including external systems. After exploring state of the art

mechanisms, we conclude that there are enough applicable

mechanisms to improve the security guarantees for the users’

data when external systems are willing to apply them.

ACKNOWLEDGEMENTS

This research has been supported by the EU under the

H2020 AGILE (Adaptive Gateways for dIverse muLtiple En-

vironments), grant agreement n. H2020-688088. Additionally

it was partially funded by the “Bavarian State Ministry of

Education, Science and the Arts” as part of the FORSEC

research association. Further, the authors would like to thank

Ilias Maglogiannis and Andreas Menychtas for providing

valuable input for the use case validation.

REFERENCES

[1] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,”
Computer, vol. 44, no. 9, pp. 51–58, Sept 2011.

[2] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer

Networks, vol. 76, pp. 146 – 164, 2015.

[3] E. Vasilomanolakis, J. Daubert, M. Luthra, V. Gazis, A. Wiesmaier,
and P. Kikiras, “On the Security and Privacy of Internet of Things
Architectures and Systems,” in 2015 International Workshop on Secure

Internet of Things (SIoT), sep 2015, pp. 49–57.

[4] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, Trustworthy Execution on Mobile Devices: What Security

Properties Can My Mobile Platform Give Me? Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 159–178. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2 10

[5] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
in NDSS 2012, 19th Annual Network and Distributed System Security

Symposium, February 5-8, San Diego, USA, San Diego, UNITED
STATES, 02 2012.

[6] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in Proceedings

of the Ninth European Conference on Computer Systems, ser. EuroSys
’14. New York, NY, USA: ACM, 2014, pp. 10:1–10:14.

[7] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny Trust Anchor for Tiny Devices,” in Proceedings of

the 52Nd Annual Design Automation Conference, ser. DAC ’15. New
York, NY, USA: ACM, 2015, pp. 34:1–34:6.

[8] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for Tcb Minimization,” in Pro-

ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2008, ser. Eurosys ’08. New York, NY, USA: ACM,
2008, pp. 315–328.

[9] Vincent J. Zimmer and Shiva R. Dasari and Sean P. Brogan, “Trusted
Platforms - UEFI, PI and TCG-based firmware,” White Paper by Intel
Corporation and IBM Corporation, September 2009.

[10] Trusted Computing Group, “TCG Mobile Trusted Module Specifica-
tion (Version 1.0, Revision 1),” https://www.trustedcomputinggroup.org/
specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf, June 2007.

[11] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB Reduction and Attestation,” in Proceedings

of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 143–158.

[12] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM Trustzone
to Build a Trusted Language Runtime for Mobile Applications,” in Pro-

ceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 67–80.

[13] Intel Corporation, “Intel R© Software Guard Extensions (INTEL SGX),”
https://software.intel.com/sites/default/files/332680-002.pdf, June 2015,
accessed: 2016-06-10.



[14] N. Asokan, F. F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: scalable embedded device
attestation,” in Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, Denver, CO, USA, October 12-

6, 2015, I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 964–975.

[15] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security
of os-level virtualization technologies: Technical report,” CoRR, vol.
abs/1407.4245, 2014. [Online]. Available: http://arxiv.org/abs/1407.4245

[16] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and Lightweight Domain Isolation on Android,”
in 1st ACM CCS Workshop on Security and Privacy in Mobile Devices

(SPSM’11). ACM, 2011.

[17] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged App Sandboxing for Stock Android,”
in 24th USENIX Security Symposium. USENIX, 2015.

[18] S. Wessel, F. Stumpf, I. Herdt, and C. Eckert, “Improving Mobile
Device Security with Operating System-level Virtualization,” in 28th

IFIP International Information Security and Privacy Conference (SEC

2013), 2013, accepted for publication.

[19] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture,” CoRR, vol. abs/1410.7747,
2014.

[20] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code,” in IEEE Symposium on Security and

Privacy, IEEE, 3 Park Avenue, 17th Floor, New York, NY 10016, 2009.

[21] U. Erlingsson and F. B. Schneider, “SASI Enforcement of Security
Policies: A Retrospective,” in Proceedings of the 1999 Workshop on

New Security Paradigms, ser. NSPW ’99. New York, NY, USA: ACM,
2000, pp. 87–95.

[22] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in 2014 USENIX

Annual Technical Conference (USENIX ATC 14). Philadelphia, PA:
USENIX Association, June 2014, pp. 409–420.

[23] P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation
to modern processors: extended version,” Department of Computer
Science, KU Leuven, CW Reports CW619, April 2012, partner: KUL;
project: NESSoS; tier: NoTier; citations: 1.

[24] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure Compilation to Protected Module Architectures,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 6:1–6:50, Apr.
2015.

[25] R. Strackx, F. Piessens, and B. Preneel, “Efficient Isolation of Trusted
Subsystems in Embedded Systems.” in SecureComm, ser. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, S. Jajodia and J. Zhou, Eds., vol. 50. Springer,
2010, pp. 344–361.

[26] R. Strackx and F. Piessens, “Fides: Selectively hardening software
application components against kernel-level or process-level malware,”
in Proceedings of the 19th ACM conference on Computer and

Communications Security (CCS 2012). ACM Press, October 2012, pp.
2–13. [Online]. Available: https://lirias.kuleuven.be/handle/123456789/
354603

[27] P. Hallgren, M. Ochoa, and A. Sabelfeld, “InnerCircle: A parallelizable
decentralized privacy-preserving location proximity protocol,” 2015 13th

Annual Conference on Privacy, Security and Trust, PST 2015, pp. 1–6,
2015.

[28] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra
computations,” in Proceedings of the 5th ACM Symposium on Informa-

tion, Computer and Communications Security, ser. ASIACCS ’10. New
York, NY, USA: ACM, 2010, pp. 48–59.

[29] C. Wang, K. Ren, J. Wang, and K. M. R. Urs, “Harnessing the
Cloud for Securely Solving Large-Scale Systems of Linear Equations,”
in Distributed Computing Systems (ICDCS), 2011 31st International

Conference on, June 2011, pp. 549–558.

[30] S. Halevi and V. Shoup, “Algorithms in HElib,” Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 8616 LNCS, no. PART 1, pp.
554–571, 2014.

[31] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy,” Microsoft
Research, Tech. Rep. MSR-TR-2016-3, feb 2016. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=260989

[32] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” in Proceedings of the 2000 IEEE

Symposium on Security and Privacy, ser. SP ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 44–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882494.884426

[33] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Process-
ing,” in Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011,
pp. 85–100.

[34] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and
H. Balakrishnan, “Building Web Applications on Top of Encrypted
Data Using Mylar,” in 11th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, 2014, pp. 157–172. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/popa

[35] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin, “Pan-
Private Streaming Algorithms,” Proceedings of The First Symposium on

Innovations in Computer Science (ICS 2010), pp. 1–32, 2010.
[36] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to

Sensitivity in Private Data Analysis,” in Proceedings of the Third Con-

ference on Theory of Cryptography, ser. TCC’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 265–284.

[37] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” in Proceedings of

the 21st ACM Conference on Computer and Communications Security,
Scottsdale, Arizona, 2014.

[38] S. L. Garfinkel, “De-Identification of Personal Information,” NIST,
Tech. Rep. NISTIR 8053, 2015. [Online]. Available: http://dx.doi.org/
10.6028/NIST.IR.8053

[39] F. Beato, I. Ion, S. Čapkun, B. Preneel, and M. Langheinrich, “For Some
Eyes Only: Protecting Online Information Sharing,” in Proceedings

of the Third ACM Conference on Data and Application Security and

Privacy, ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp.
1–12.

[40] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
generation Onion Router,” in Proceedings of the 13th Conference on

USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21.

[41] “Orbot Proxy with Tor,” https://play.google.com/store/apps/details?id=
org.torproject.android, accessed: 2016-06-10.

[42] “iTunes Onion Browser,” https://itunes.apple.com/en/app/
onion-browser/id519296448?mt=8, accessed: 2016-06-10.

[43] “Tor Browser,” https://www.torproject.org/projects/torbrowser.html.en,
accessed: 2016-06-10.

[44] “TorSocks,” https://github.com/dgoulet/torsocks/, accessed: 2016-06-10.
[45] “I2P: The Invisible Internet Project,” https://geti2p.net/en/, accessed:

2016-07-10.
[46] J. Cuellar, S. Suppan, and H. Poehls, “ietf-draft: Privacy-Enhanced

Tokens for Authorization in ACE,” https://www.ietf.org/id/draft-cuellar-
ace-pat-priv-enhanced-authz-tokens-00.txt, June 2015.

[47] “CryptDB,” https://css.csail.mit.edu/cryptdb/, accessed: 2016-06-10.
[48] “Onion Pi: Make a Raspberry Pi into a Anonymizing Tor Proxy,” https:

//learn.adafruit.com/onion-pi/install-tor, accessed: 2016-08-10.
[49] “I2PBerry allows Raspberry Pi users to surf the I2P anonymously,” https:

//www.element14.com/community/community/raspberry-pi/blog/2014/
07/22/i2pberry-allows-raspberry-pi-users-to-surf-the-i2p-anonymously,
accessed: 2016-08-10.

[50] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On Data Banks and
Privacy Homomorphisms,” Foundations of secure computation, pp. 169–
177, 1978.

[51] M. Varia, S. Yakoubov, and Y. Yang, HEtest: A Homomorphic

Encryption Testing Framework. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 213–230. [Online]. Available: http://dx.doi.org/
10.1007/978-3-662-48051-9 16

[52] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on
Property-Preserving Encrypted Databases,” in Proceedings of the 22Nd

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 644–655.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813651


