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Addressing Function Approximation Error in Actor-Critic Methods

Scott Fujimoto 1 Herke van Hoof 2 David Meger 1

Abstract

In value-based reinforcement learning methods

such as deep Q-learning, function approximation

errors are known to lead to overestimated value

estimates and suboptimal policies. We show that

this problem persists in an actor-critic setting and

propose novel mechanisms to minimize its effects

on both the actor and the critic. Our algorithm

builds on Double Q-learning, by taking the mini-

mum value between a pair of critics to limit over-

estimation. We draw the connection between tar-

get networks and overestimation bias, and suggest

delaying policy updates to reduce per-update error

and further improve performance. We evaluate

our method on the suite of OpenAI gym tasks,

outperforming the state of the art in every envi-

ronment tested.

1. Introduction

In reinforcement learning problems with discrete action

spaces, the issue of value overestimation as a result of func-

tion approximation errors is well-studied. However, similar

issues with actor-critic methods in continuous control do-

mains have been largely left untouched. In this paper, we

show overestimation bias and the accumulation of error in

temporal difference methods are present in an actor-critic

setting. Our proposed method addresses these issues, and

greatly outperforms the current state of the art.

Overestimation bias is a property of Q-learning in which the

maximization of a noisy value estimate induces a consistent

overestimation (Thrun & Schwartz, 1993). In a function

approximation setting, this noise is unavoidable given the

imprecision of the estimator. This inaccuracy is further

exaggerated by the nature of temporal difference learning

(Sutton, 1988), in which an estimate of the value function

is updated using the estimate of a subsequent state. This
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means using an imprecise estimate within each update will

lead to an accumulation of error. Due to overestimation bias,

this accumulated error can cause arbitrarily bad states to

be estimated as high value, resulting in suboptimal policy

updates and divergent behavior.

This paper begins by establishing this overestimation prop-

erty is also present for deterministic policy gradients (Silver

et al., 2014), in the continuous control setting. Furthermore,

we find the ubiquitous solution in the discrete action setting,

Double DQN (Van Hasselt et al., 2016), to be ineffective

in an actor-critic setting. During training, Double DQN

estimates the value of the current policy with a separate tar-

get value function, allowing actions to be evaluated without

maximization bias. Unfortunately, due to the slow-changing

policy in an actor-critic setting, the current and target value

estimates remain too similar to avoid maximization bias.

This can be dealt with by adapting an older variant, Double

Q-learning (Van Hasselt, 2010), to an actor-critic format

by using a pair of independently trained critics. While this

allows for a less biased value estimation, even an unbiased

estimate with high variance can still lead to future overes-

timations in local regions of state space, which in turn can

negatively affect the global policy. To address this concern,

we propose a clipped Double Q-learning variant which lever-

ages the notion that a value estimate suffering from overes-

timation bias can be used as an approximate upper-bound to

the true value estimate. This favors underestimations, which

do not tend to be propagated during learning, as actions with

low value estimates are avoided by the policy.

Given the connection of noise to overestimation bias, this

paper contains a number of components that address vari-

ance reduction. First, we show that target networks, a com-

mon approach in deep Q-learning methods, are critical for

variance reduction by reducing the accumulation of errors.

Second, to address the coupling of value and policy, we

propose delaying policy updates until the value estimate

has converged. Finally, we introduce a novel regularization

strategy, where a SARSA-style update bootstraps similar

action estimates to further reduce variance.

Our modifications are applied to the state of the art actor-

critic method for continuous control, Deep Deterministic

Policy Gradient algorithm (DDPG) (Lillicrap et al., 2015), to

form the Twin Delayed Deep Deterministic policy gradient
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algorithm (TD3), an actor-critic algorithm which consid-

ers the interplay between function approximation error in

both policy and value updates. We evaluate our algorithm

on seven continuous control domains from OpenAI gym

(Brockman et al., 2016), where we outperform the state of

the art by a wide margin.

Given the recent concerns in reproducibility (Henderson

et al., 2017), we run our experiments across a large num-

ber of seeds with fair evaluation metrics, perform abla-

tion studies across each contribution, and open source both

our code and learning curves (https://github.com/

sfujim/TD3).

2. Related Work

Function approximation error and its effect on bias and

variance in reinforcement learning algorithms have been

studied in prior works (Pendrith et al., 1997; Mannor et al.,

2007). Our work focuses on two outcomes that occur as the

result of estimation error, namely overestimation bias and a

high variance build-up.

Several approaches exist to reduce the effects of overestima-

tion bias due to function approximation and policy optimiza-

tion in Q-learning. Double Q-learning uses two independent

estimators to make unbiased value estimates (Van Hasselt,

2010; Van Hasselt et al., 2016). Other approaches have

focused directly on reducing the variance (Anschel et al.,

2017), minimizing over-fitting to early high variance esti-

mates (Fox et al., 2016), or through corrective terms (Lee

et al., 2013). Further, the variance of the value estimate

has been considered directly for risk-aversion (Mannor &

Tsitsiklis, 2011) and exploration (O’Donoghue et al., 2017),

but without connection to overestimation bias.

The concern of variance due to the accumulation of error in

temporal difference learning has been largely dealt with by

either minimizing the size of errors at each time step or mix-

ing off-policy and Monte-Carlo returns. Our work shows

the importance of a standard technique, target networks, for

the reduction of per-update error, and develops a regulariza-

tion technique for the variance reduction by averaging over

value estimates. Concurrently, Nachum et al. (2018) showed

smoothed value functions could be used to train stochastic

policies with reduced variance and improved performance.

Methods with multi-step returns offer a trade-off between

accumulated estimation bias and variance induced by the

policy and the environment. These methods have been

shown to be an effective approach, through importance sam-

pling (Precup et al., 2001; Munos et al., 2016), distributed

methods (Mnih et al., 2016; Espeholt et al., 2018), and ap-

proximate bounds (He et al., 2016). However, rather than

provide a direct solution to the accumulation of error, these

methods circumvent the problem by considering a longer

horizon. Another approach is a reduction in the discount

factor (Petrik & Scherrer, 2009), reducing the contribution

of each error.

Our method builds on the Deterministic Policy Gradient

algorithm (DPG) (Silver et al., 2014), an actor-critic method

which uses a learned value estimate to train a deterministic

policy. An extension of DPG to deep reinforcement learn-

ing, DDPG (Lillicrap et al., 2015), has shown to produce

state of the art results with an efficient number of iterations.

Orthogonal to our approach, recent improvements to DDPG

include distributed methods (Popov et al., 2017), along with

multi-step returns and prioritized experience replay (Schaul

et al., 2016; Horgan et al., 2018), and distributional methods

(Bellemare et al., 2017; Barth-Maron et al., 2018).

3. Background

Reinforcement learning considers the paradigm of an agent

interacting with its environment with the aim of learning

reward-maximizing behavior. At each discrete time step

t, with a given state s ∈ S, the agent selects actions

a ∈ A with respect to its policy π : S → A, receiv-

ing a reward r and the new state of the environment s′.

The return is defined as the discounted sum of rewards

Rt =
∑T

i=t γ
i−tr(si, ai), where γ is a discount factor de-

termining the priority of short-term rewards.

In reinforcement learning, the objective is to find the op-

timal policy πφ, with parameters φ, which maximizes the

expected return J(φ) = Esi∼pπ,ai∼π [R0]. For continuous

control, parametrized policies πφ can be updated by taking

the gradient of the expected return ∇φJ(φ). In actor-critic

methods, the policy, known as the actor, can be updated

through the deterministic policy gradient algorithm (Silver

et al., 2014):

∇φJ(φ) = Es∼pπ

[

∇aQ
π(s, a)|a=π(s)∇φπφ(s)

]

. (1)

Qπ(s, a) = Esi∼pπ,ai∼π [Rt|s, a], the expected return

when performing action a in state s and following π af-

ter, is known as the critic or the value function.

In Q-learning, the value function can be learned using tem-

poral difference learning (Sutton, 1988; Watkins, 1989), an

update rule based on the Bellman equation (Bellman, 1957).

The Bellman equation is a fundamental relationship between

the value of a state-action pair (s, a) and the value of the

subsequent state-action pair (s′, a′):

Qπ(s, a) = r + γEs′,a′ [Qπ(s′, a′)] , a′ ∼ π(s′). (2)

For a large state space, the value can be estimated with a

differentiable function approximator Qθ(s, a), with param-

eters θ. In deep Q-learning (Mnih et al., 2015), the network

is updated by using temporal difference learning with a sec-

ondary frozen target network Qθ′(s, a) to maintain a fixed

https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
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objective y over multiple updates:

y = r + γQθ′(s′, a′), a′ ∼ πφ′(s′), (3)

where the actions are selected from a target actor network

πφ′ . The weights of a target network are either updated

periodically to exactly match the weights of the current

network, or by some proportion τ at each time step θ′ ←
τθ + (1− τ)θ′. This update can be applied in an off-policy

fashion, sampling random mini-batches of transitions from

an experience replay buffer (Lin, 1992).

4. Overestimation Bias

In Q-learning with discrete actions, the value estimate is

updated with a greedy target y = r + γmaxa′ Q(s′, a′),
however, if the target is susceptible to error ǫ, then the max-

imum over the value along with its error will generally be

greater than the true maximum, Eǫ[maxa′(Q(s′, a′)+ǫ)] ≥
maxa′ Q(s′, a′) (Thrun & Schwartz, 1993). As a result,

even initially zero-mean error can cause value updates to

result in a consistent overestimation bias, which is then prop-

agated through the Bellman equation. This is problematic as

errors induced by function approximation are unavoidable.

While in the discrete action setting overestimation bias is

an obvious artifact from the analytical maximization, the

presence and effects of overestimation bias is less clear in an

actor-critic setting where the policy is updated via gradient

descent. We begin by proving that the value estimate in de-

terministic policy gradients will be an overestimation under

some basic assumptions in Section 4.1 and then propose

a clipped variant of Double Q-learning in an actor-critic

setting to reduce overestimation bias in Section 4.2.

4.1. Overestimation Bias in Actor-Critic

In actor-critic methods the policy is updated with respect

to the value estimates of an approximate critic. In this

section we assume the policy is updated using the deter-

ministic policy gradient, and show that the update induces

overestimation in the value estimate. Given current policy

parameters φ, let φapprox define the parameters from the ac-

tor update induced by the maximization of the approximate

critic Qθ(s, a) and φtrue the parameters from the hypothet-

ical actor update with respect to the true underlying value

function Qπ(s, a) (which is not known during learning):

φapprox = φ+
α

Z1
Es∼pπ

[

∇φπφ(s)∇aQθ(s, a)|a=πφ(s)

]

φtrue = φ+
α

Z2
Es∼pπ

[

∇φπφ(s)∇aQ
π(s, a)|a=πφ(s)

]

,

(4)

where we assume Z1 and Z2 are chosen to normalize the

gradient, i.e., such that Z−1||E[·]|| = 1. Without normal-

ized gradients, overestimation bias is still guaranteed to
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Figure 1. Measuring overestimation bias in the value estimates

of DDPG and our proposed method, Clipped Double Q-learning

(CDQ), on MuJoCo environments over 1 million time steps.

occur with slightly stricter conditions. We examine this case

further in the supplementary material. We denote πapprox

and πtrue as the policy with parameters φapprox and φtrue re-

spectively.

As the gradient direction is a local maximizer, there exists ǫ1
sufficiently small such that if α ≤ ǫ1 then the approximate

value of πapprox will be bounded below by the approximate

value of πtrue:

E [Qθ(s, πapprox(s))] ≥ E [Qθ(s, πtrue(s))] . (5)

Conversely, there exists ǫ2 sufficiently small such that if

α ≤ ǫ2 then the true value of πapprox will be bounded above

by the true value of πtrue:

E [Qπ(s, πtrue(s))] ≥ E [Qπ(s, πapprox(s))] . (6)

If in expectation the value estimate is at least as large as

the true value with respect to φtrue, E [Qθ (s, πtrue(s))] ≥
E [Qπ (s, πtrue(s))], then Equations (5) and (6) imply that if

α < min(ǫ1, ǫ2), then the value estimate will be overesti-

mated:

E [Qθ(s, πapprox(s))] ≥ E [Qπ(s, πapprox(s))] . (7)

Although this overestimation may be minimal with each

update, the presence of error raises two concerns. Firstly, the

overestimation may develop into a more significant bias over

many updates if left unchecked. Secondly, an inaccurate

value estimate may lead to poor policy updates. This is

particularly problematic because a feedback loop is created,

in which suboptimal actions might be highly rated by the

suboptimal critic, reinforcing the suboptimal action in the

next policy update.

Does this theoretical overestimation occur in practice

for state-of-the-art methods? We answer this question by

plotting the value estimate of DDPG (Lillicrap et al., 2015)

over time while it learns on the OpenAI gym environments

Hopper-v1 and Walker2d-v1 (Brockman et al., 2016). In

Figure 1, we graph the average value estimate over 10000

states and compare it to an estimate of the true value. The
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Figure 2. Measuring overestimation bias in the value estimates of

actor critic variants of Double DQN (DDQN-AC) and Double Q-

learning (DQ-AC) on MuJoCo environments over 1 million time

steps.

true value is estimated using the average discounted return

over 1000 episodes following the current policy, starting

from states sampled from the replay buffer. A very clear

overestimation bias occurs from the learning procedure,

which contrasts with the novel method that we describe in

the following section, Clipped Double Q-learning, which

greatly reduces overestimation by the critic.

4.2. Clipped Double Q-Learning for Actor-Critic

While several approaches to reducing overestimation bias

have been proposed, we find them ineffective in an actor-

critic setting. This section introduces a novel clipped variant

of Double Q-learning (Van Hasselt, 2010), which can re-

place the critic in any actor-critic method.

In Double Q-learning, the greedy update is disentangled

from the value function by maintaining two separate value

estimates, each of which is used to update the other. If the

value estimates are independent, they can be used to make

unbiased estimates of the actions selected using the opposite

value estimate. In Double DQN (Van Hasselt et al., 2016),

the authors propose using the target network as one of the

value estimates, and obtain a policy by greedy maximization

of the current value network rather than the target network.

In an actor-critic setting, an analogous update uses the cur-

rent policy rather than the target policy in the learning target:

y = r + γQθ′(s′, πφ(s
′)). (8)

In practice however, we found that with the slow-changing

policy in actor-critic, the current and target networks were

too similar to make an independent estimation, and offered

little improvement. Instead, the original Double Q-learning

formulation can be used, with a pair of actors (πφ1
, πφ2

)

and critics (Qθ1 , Qθ2 ), where πφ1
is optimized with respect

to Qθ1 and πφ2
with respect to Qθ2 :

y1 = r + γQθ′

2
(s′, πφ1

(s′))

y2 = r + γQθ′

1
(s′, πφ2

(s′)).
(9)

We measure the overestimation bias in Figure 2, which

demonstrates that the actor-critic Double DQN suffers from

a similar overestimation as DDPG (as shown in Figure 1).

While Double Q-learning is more effective, it does not en-

tirely eliminate the overestimation. We further show this

reduction is not sufficient experimentally in Section 6.1.

As πφ1
optimizes with respect to Qθ1 , using an indepen-

dent estimate in the target update of Qθ1 would avoid the

bias introduced by the policy update. However the critics

are not entirely independent, due to the use of the oppo-

site critic in the learning targets, as well as the same re-

play buffer. As a result, for some states s we will have

Qθ2(s, πφ1
(s)) > Qθ1(s, πφ1

(s)). This is problematic be-

cause Qθ1(s, πφ1
(s)) will generally overestimate the true

value, and in certain areas of the state space the overestima-

tion will be further exaggerated. To address this problem,

we propose to simply upper-bound the less biased value

estimate Qθ2 by the biased estimate Qθ1 . This results in

taking the minimum between the two estimates, to give the

target update of our Clipped Double Q-learning algorithm:

y1 = r + γ min
i=1,2

Qθ′

i
(s′, πφ1

(s′)). (10)

With Clipped Double Q-learning, the value target cannot

introduce any additional overestimation over using the stan-

dard Q-learning target. While this update rule may induce

an underestimation bias, this is far preferable to overesti-

mation bias, as unlike overestimated actions, the value of

underestimated actions will not be explicitly propagated

through the policy update.

In implementation, computational costs can be reduced by

using a single actor optimized with respect to Qθ1 . We then

use the same target y2 = y1 for Qθ2 . If Qθ2 > Qθ1 then

the update is identical to the standard update and induces no

additional bias. If Qθ2 < Qθ1 , this suggests overestimation

has occurred and the value is reduced similar to Double Q-

learning. A proof of convergence in the finite MDP setting

follows from this intuition. We provide formal details and

justification in the supplementary material.

A secondary benefit is that by treating the function approxi-

mation error as a random variable we can see that the min-

imum operator should provide higher value to states with

lower variance estimation error, as the expected minimum

of a set of random variables decreases as the variance of

the random variables increases. This effect means that the

minimization in Equation (10) will lead to a preference for

states with low-variance value estimates, leading to safer

policy updates with stable learning targets.

5. Addressing Variance

While Section 4 deals with the contribution of variance to

overestimation bias, we also argue that variance itself should

be directly addressed. Besides the impact on overestimation
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bias, high variance estimates provide a noisy gradient for the

policy update. This is known to reduce learning speed (Sut-

ton & Barto, 1998) as well as hurt performance in practice.

In this section we emphasize the importance of minimizing

error at each update, build the connection between target

networks and estimation error and propose modifications to

the learning procedure of actor-critic for variance reduction.

5.1. Accumulating Error

Due to the temporal difference update, where an estimate of

the value function is built from an estimate of a subsequent

state, there is a build up of error. While it is reasonable to

expect small error for an individual update, these estimation

errors can accumulate, resulting in the potential for large

overestimation bias and suboptimal policy updates. This is

exacerbated in a function approximation setting where the

Bellman equation is never exactly satisfied, and each update

leaves some amount of residual TD-error δ(s, a):

Qθ(s, a) = r + γE[Qθ(s
′, a′)]− δ(s, a). (11)

It can then be shown that rather than learning an estimate

of the expected return, the value estimate approximates the

expected return minus the expected discounted sum of future

TD-errors:

Qθ(st, at) = rt + γE[Qθ(st+1, at+1)]− δt

= rt + γE [rt+1 + γE [Qθ(st+2, at+2)− δt+1]]− δt

= Esi∼pπ,ai∼π

[

T
∑

i=t

γi−t(ri − δi)

]

. (12)

If the value estimate is a function of future reward and es-

timation error, it follows that the variance of the estimate

will be proportional to the variance of future reward and es-

timation error. Given a large discount factor γ, the variance

can grow rapidly with each update if the error from each

update is not tamed. Furthermore each gradient update only

reduces error with respect to a small mini-batch which gives

no guarantees about the size of errors in value estimates

outside the mini-batch.

5.2. Target Networks and Delayed Policy Updates

In this section we examine the relationship between target

networks and function approximation error, and show the

use of a stable target reduces the growth of error. This

insight allows us to consider the interplay between high

variance estimates and policy performance, when designing

reinforcement learning algorithms.

Target networks are a well-known tool to achieve stabil-

ity in deep reinforcement learning. As deep function ap-

proximators require multiple gradient updates to converge,

target networks provide a stable objective in the learning
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Figure 3. Average estimated value of a randomly selected state

on Hopper-v1 without target networks, (τ = 1), and with slow-

updating target networks, (τ = 0.1, 0.01), with a fixed and a

learned policy.

procedure, and allow a greater coverage of the training data.

Without a fixed target, each update may leave residual error

which will begin to accumulate. While the accumulation of

error can be detrimental in itself, when paired with a policy

maximizing over the value estimate, it can result in wildly

divergent values.

To provide some intuition, we examine the learning behavior

with and without target networks on both the critic and actor

in Figure 3, where we graph the value, in a similar manner to

Figure 1, in the Hopper-v1 environment. In (a) we compare

the behavior with a fixed policy and in (b) we examine the

value estimates with a policy that continues to learn, trained

with the current value estimate. The target networks use a

slow-moving update rate, parametrized by τ .

While updating the value estimate without target networks

(τ = 1) increases the volatility, all update rates result in sim-

ilar convergent behaviors when considering a fixed policy.

However, when the policy is trained with the current value

estimate, the use of fast-updating target networks results in

highly divergent behavior.

When do actor-critic methods fail to learn? These results

suggest that the divergence that occurs without target net-

works is the result of policy updates with a high variance

value estimate. Figure 3, as well as Section 4, suggest failure

can occur due to the interplay between the actor and critic

updates. Value estimates diverge through overestimation

when the policy is poor, and the policy will become poor if

the value estimate itself is inaccurate.

If target networks can be used to reduce the error over mul-

tiple updates, and policy updates on high-error states cause

divergent behavior, then the policy network should be up-

dated at a lower frequency than the value network, to first

minimize error before introducing a policy update. We pro-

pose delaying policy updates until the value error is as small

as possible. The modification is to only update the policy

and target networks after a fixed number of updates d to the

critic. To ensure the TD-error remains small, we update the
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target networks slowly θ′ ← τθ + (1− τ)θ′.

By sufficiently delaying the policy updates we limit the like-

lihood of repeating updates with respect to an unchanged

critic. The less frequent policy updates that do occur will

use a value estimate with lower variance, and in principle,

should result in higher quality policy updates. This creates a

two-timescale algorithm, as often required for convergence

in the linear setting (Konda & Tsitsiklis, 2003). The effec-

tiveness of this strategy is captured by our empirical results

presented in Section 6.1, which show an improvement in

performance while using fewer policy updates.

5.3. Target Policy Smoothing Regularization

A concern with deterministic policies is they can overfit

to narrow peaks in the value estimate. When updating the

critic, a learning target using a deterministic policy is highly

susceptible to inaccuracies induced by function approxima-

tion error, increasing the variance of the target. This induced

variance can be reduced through regularization. We intro-

duce a regularization strategy for deep value learning, target

policy smoothing, which mimics the learning update from

SARSA (Sutton & Barto, 1998). Our approach enforces

the notion that similar actions should have similar value.

While the function approximation does this implicitly, the

relationship between similar actions can be forced explicitly

by modifying the training procedure. We propose that fitting

the value of a small area around the target action

y = r + Eǫ [Qθ′(s′, πφ′(s′) + ǫ)] , (13)

would have the benefit of smoothing the value estimate by

bootstrapping off of similar state-action value estimates. In

practice, we can approximate this expectation over actions

by adding a small amount of random noise to the target

policy and averaging over mini-batches. This makes our

modified target update:

y = r + γQθ′(s′, πφ′(s′) + ǫ),

ǫ ∼ clip(N (0, σ),−c, c),
(14)

where the added noise is clipped to keep the target in a

small range. The outcome is an algorithm reminiscent of

Expected SARSA (Van Seijen et al., 2009), where the value

estimate is instead learned off-policy and the noise added to

the target policy is chosen independently of the exploration

policy. The value estimate learned is with respect to a noisy

policy defined by the parameter σ.

Intuitively, it is known that policies derived from SARSA

value estimates tend to be safer, as they provide higher value

to actions resistant to perturbations. Thus, this style of

update can additionally lead to improvement in stochastic

domains with failure cases. A similar idea was introduced

concurrently by Nachum et al. (2018), smoothing over Qθ,

rather than Qθ′ .

Algorithm 1 TD3

Initialize critic networks Qθ1 , Qθ2 , and actor network πφ

with random parameters θ1, θ2, φ

Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ

Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ π(s) + ǫ,

ǫ ∼ N (0, σ) and observe reward r and new state s′

Store transition tuple (s, a, r, s′) in B

Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πφ′(s) + ǫ, ǫ ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2 Qθ′

i
(s′, ã)

Update critics θi ← minθi N
−1

∑

(y −Qθi(s, a))
2

if t mod d then

Update φ by the deterministic policy gradient:

∇φJ(φ) = N−1
∑

∇aQθ1(s, a)|a=πφ(s)∇φπφ(s)
Update target networks:

θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end if

end for

(a) (b) (c) (d)

Figure 4. Example MuJoCo environments (a) HalfCheetah-v1, (b)

Hopper-v1, (c) Walker2d-v1, (d) Ant-v1.

6. Experiments

We present the Twin Delayed Deep Deterministic policy

gradient algorithm (TD3), which builds on the Deep Deter-

ministic Policy Gradient algorithm (DDPG) (Lillicrap et al.,

2015) by applying the modifications described in Sections

4.2, 5.2 and 5.3 to increase the stability and performance

with consideration of function approximation error. TD3

maintains a pair of critics along with a single actor. For each

time step, we update the pair of critics towards the minimum

target value of actions selected by the target policy:

y = r + γ min
i=1,2

Qθ′

i
(s′, πφ′(s′) + ǫ),

ǫ ∼ clip(N (0, σ),−c, c).
(15)

Every d iterations, the policy is updated with respect to Qθ1

following the deterministic policy gradient algorithm (Silver

et al., 2014). TD3 is summarized in Algorithm 1.
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Figure 5. Learning curves for the OpenAI gym continuous control tasks. The shaded region represents half a standard deviation of the

average evaluation over 10 trials. Some graphs are cropped to display the interesting regions.

Table 1. Max Average Return over 10 trials of 1 million time steps. Maximum value for each task is bolded. ± corresponds to a single

standard deviation over trials.

Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC

HalfCheetah 9636.95 ± 859.065 3305.60 8577.29 1795.43 -15.57 1450.46 2347.19
Hopper 3564.07 ± 114.74 2020.46 1860.02 2164.70 2471.30 2428.39 2996.66
Walker2d 4682.82 ± 539.64 1843.85 3098.11 3317.69 2321.47 1216.70 1283.67
Ant 4372.44 ± 1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 ± 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 ± 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDoublePendulum 9337.47 ± 14.96 9355.52 8369.95 8977.94 205.85 9081.92 8487.15

6.1. Evaluation

To evaluate our algorithm, we measure its performance on

the suite of MuJoCo continuous control tasks (Todorov et al.,

2012), interfaced through OpenAI Gym (Brockman et al.,

2016) (Figure 4). To allow for reproducible comparison, we

use the original set of tasks from Brockman et al. (2016)

with no modifications to the environment or reward.

For our implementation of DDPG (Lillicrap et al., 2015), we

use a two layer feedforward neural network of 400 and 300

hidden nodes respectively, with rectified linear units (ReLU)

between each layer for both the actor and critic, and a final

tanh unit following the output of the actor. Unlike the orig-

inal DDPG, the critic receives both the state and action as

input to the first layer. Both network parameters are updated

using Adam (Kingma & Ba, 2014) with a learning rate of

10−3. After each time step, the networks are trained with a

mini-batch of a 100 transitions, sampled uniformly from a

replay buffer containing the entire history of the agent.

The target policy smoothing is implemented by adding ǫ ∼

N (0, 0.2) to the actions chosen by the target actor network,

clipped to (−0.5, 0.5), delayed policy updates consists of

only updating the actor and target critic network every d

iterations, with d = 2. While a larger d would result in a

larger benefit with respect to accumulating errors, for fair

comparison, the critics are only trained once per time step,

and training the actor for too few iterations would cripple

learning. Both target networks are updated with τ = 0.005.

To remove the dependency on the initial parameters of the

policy we use a purely exploratory policy for the first 10000

time steps of stable length environments (HalfCheetah-v1

and Ant-v1) and the first 1000 time steps for the remaining

environments. Afterwards, we use an off-policy exploration

strategy, adding Gaussian noise N (0, 0.1) to each action.

Unlike the original implementation of DDPG, we used un-

correlated noise for exploration as we found noise drawn

from the Ornstein-Uhlenbeck (Uhlenbeck & Ornstein, 1930)

process offered no performance benefits.

Each task is run for 1 million time steps with evaluations

every 5000 time steps, where each evaluation reports the
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average reward over 10 episodes with no exploration noise.

Our results are reported over 10 random seeds of the Gym

simulator and the network initialization.

We compare our algorithm against DDPG (Lillicrap et al.,

2015) as well as the state of art policy gradient algorithms:

PPO (Schulman et al., 2017), ACKTR (Wu et al., 2017)

and TRPO (Schulman et al., 2015), as implemented by

OpenAI’s baselines repository (Dhariwal et al., 2017), and

SAC (Haarnoja et al., 2018), as implemented by the author’s

GitHub1. Additionally, we compare our method with our

re-tuned version of DDPG, which includes all architecture

and hyper-parameter modifications to DDPG without any

of our proposed adjustments. A full comparison between

our re-tuned version and the baselines DDPG is provided in

the supplementary material.

Our results are presented in Table 1 and learning curves in

Figure 5. TD3 matches or outperforms all other algorithms

in both final performance and learning speed across all tasks.

6.2. Ablation Studies

We perform ablation studies to understand the contribution

of each individual component: Clipped Double Q-learning

(Section 4.2), delayed policy updates (Section 5.2) and target

policy smoothing (Section 5.3). We present our results in

Table 2 in which we compare the performance of removing

each component from TD3 along with our modifications to

the architecture and hyper-parameters. Additional learning

curves can be found in the supplementary material.

The significance of each component varies task to task.

While the addition of only a single component causes in-

significant improvement in most cases, the addition of com-

binations performs at a much higher level. The full algo-

rithm outperforms every other combination in most tasks.

Although the actor is trained for only half the number of

iterations, the inclusion of delayed policy update generally

improves performance, while reducing training time.

We additionally compare the effectiveness of the actor-critic

variants of Double Q-learning (Van Hasselt, 2010) and Dou-

ble DQN (Van Hasselt et al., 2016), denoted DQ-AC and

DDQN-AC respectively, in Table 2. For fairness in com-

parison, these methods also benefited from delayed policy

updates, target policy smoothing and use our architecture

and hyper-parameters. Both methods were shown to reduce

overestimation bias less than Clipped Double Q-learning in

Section 4. This is reflected empirically, as both methods

result in insignificant improvements over TD3 - CDQ, with

an exception in the Ant-v1 environment, which appears to

benefit greatly from any overestimation reduction. As the

inclusion of Clipped Double Q-learning into our full method

1See the supplementary material for hyper-parameters and a
discussion on the discrepancy in the reported results of SAC.

Table 2. Average return over the last 10 evaluations over 10 trials

of 1 million time steps, comparing ablation over delayed policy

updates (DP), target policy smoothing (TPS), Clipped Double

Q-learning (CDQ) and our architecture, hyper-parameters and

exploration (AHE). Maximum value for each task is bolded.

Method HCheetah Hopper Walker2d Ant

TD3 9532.99 3304.75 4565.24 4185.06
DDPG 3162.50 1731.94 1520.90 816.35
AHE 8401.02 1061.77 2362.13 564.07

AHE + DP 7588.64 1465.11 2459.53 896.13
AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14 3979.21 3818.71

TD3 - DP 9590.65 2407.42 4695.50 3754.26
TD3 - TPS 8987.69 2392.59 4033.67 4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75

DQ-AC 9433.87 1773.71 3100.45 2445.97
DDQN-AC 10306.90 2155.75 3116.81 1092.18

outperforms both prior methods, this suggests that subdu-

ing the overestimations from the unbiased estimator is an

effective measure to improve performance.

7. Conclusion

Overestimation has been identified as a key problem in

value-based methods. In this paper, we establish overesti-

mation bias is also problematic in actor-critic methods. We

find the common solutions for reducing overestimation bias

in deep Q-learning with discrete actions are ineffective in an

actor-critic setting, and develop a novel variant of Double

Q-learning which limits possible overestimation. Our re-

sults demonstrate that mitigating overestimation can greatly

improve the performance of modern algorithms.

Due to the connection between noise and overestimation,

we examine the accumulation of errors from temporal dif-

ference learning. Our work investigates the importance of

a standard technique in deep reinforcement learning, target

networks, and examines their role in limiting errors from

imprecise function approximation and stochastic optimiza-

tion. Finally, we introduce a SARSA-style regularization

technique which modifies the temporal difference target to

bootstrap off similar state-action pairs.

Taken together, these improvements define our proposed

approach, the Twin Delayed Deep Deterministic policy gra-

dient algorithm (TD3), which greatly improves both the

learning speed and performance of DDPG in a number of

challenging tasks in the continuous control setting. Our

algorithm exceeds the performance of numerous state of

the art algorithms. As our modifications are simple to im-

plement, they can be easily added to any other actor-critic

algorithm.
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