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Manycore Socket Roadmap Fuels 

Bandwidth 

64-tile system (64-256 cores) 
- 4-way SIMD FMACs @ 2.5 – 5 GHz 

- 5-10 TFlops on one chip  

- Need 5-10 TB/s of off-chip I/O 

- Even higher on-chip bandwidth 

2 cm 

Intel 48 core -Xeon 
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Wire and I/O Scaling 
On-chip wires 
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• Increased wire resistivity makes wire caps scale very slowly 

• Can’t get both energy-efficiency and high-data rate in I/O 
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Bandwidth, Pin-count and Power Scaling 

1 Byte/Flop 

256 cores 

2,4 cores 
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Activity in Photonic Integration 

[Luxtera/Oracle/Kotura] 

130nm  

thick BOX SOI 

[IBM] 

[HP] 

[Watts/Sandia/MIT] 

130nm 

thick BOX SOI 

[Lipson/Cornell] 

[Kimerling/MIT] 

[Many schools] 
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[Intel] 

Bulk CMOS 

Backend 

monolithic 
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Bandwidth Density and Packaging 

Electrical Photonic 

Die 

Level 

• 100μm C4 bump pitch  

(20μm for microbump) 

• 100 bumps/mm2  50 I/O 

• 25 differential links @ 20Gb/s 

500Gb/s/mm2 

? 
Package 

Level 

• 8000 pins  4000 I/O 

• 2000 differential links @ 20Gb/s  

• 40mm x 40mm socket 

25 Gb/s/mm2 

• 100μm optical fiber pitch 

• 100 fibers @ 1Tb/s/fiber 

 

100Tb/s/mm2 
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Optical Integration Trends 

Discrete Components Hybrid Integration Monolithic Integration 

Decreasing CPD and Cwire 

CPD=25-fF 

9 μA sensitivity at 5 Gb/s. 

Energy-cost is 690 fJ/bit.  

[Li et al. SPIE 2010] 

Cw + CPD=90-fF  

[Young et al. ISSCC 2009] 

Cin,total =320-fF  

80-uA sensitivity at 20-GHz BW. 

[Kromer et al. JSSC 2004] 

CPD≈10-fF, Cwire ≈ 4-fF 

μA-sensitivity at 3.5 Gb/s 

~50fJ/bit energy-cost 

[Georgas et al. ESSCIRC 2011] 

Cw= 20-fF 
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Integrated Photonic Interconnects 
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Integrated Photonic Interconnects 
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Integrated Photonic Interconnects 
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Integrated Photonic Interconnects 

• Each λ carries one channel of 

data. 

Bandwidth Density 
achieved through DWDM 

Energy-efficiency achieved 
through low-loss optical 
components and tight 
integration 
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Photonic System Design 

• link components tightly integrated  

 care about system energy-efficiency and performance 

• Need component models to understand system tradeoffs 
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Outline 

• Motivation 

• Photonic Link Components 
– Modulator and driver 

– Receiver 

– Single Link Analysis 

• Towards a WDM Photonic Link 
– Clock distribution 

– Ring Tuning 

– WDM Link Analysis 

• Conclusion 
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Optical Modulation 

Optical Frequency [Ghz] 
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Optical Modulation 

• OOK modulation by shifting ring resonance in and out of 
wavelength channel 
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• leverage free-carrier-dispersion effect to modulate P-N 
junction’s depletion region 

IN THROUGH 

P N P N 
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Optical Modulation 

Optical Frequency [Ghz] 
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Wavelength Channel 

Extinction Ratio 

Insertion Loss 

Frequency Detuning ~ 20 Ghz 

IN THROUGH 

P N P N 

• OOK modulation by shifting ring resonance in and out of 
wavelength channel 
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Optical Modulation 

Key Tradeoffs: 

• Insertion loss vs. extinction ratio 

• Extinction ratio vs. energy-efficiency of driver 
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Frequency Detuning ~ 20 Ghz 

IN THROUGH 

P N P N 
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Modulator Driver Model 

• Electrically, modulator is a varactor 

• Increased data-rate requires increased shift (charge)  

• Final stage topology tailored based on Va 

Required Reverse-Bias Voltage Va 

Va > 1.0: Boost circuit 
Necessary 

Va < 1.0: Level Shifter 

IL Target 

P N P N 
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Modulator Energy Cost Breakdown 

Circuit Energy Cost Device Energy Cost 

• Circuit and device costs are roughly balanced 

• Cost increases at high rates due to super-linear relationship with Va 

• Insertion loss, extinction ratio, and energy-efficiency trade-offs to be made 

at the system-level. 

IL 
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Optical Data Receiver 
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Optical Data Receiver 
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Optical Data Receiver 

SA 

- 

 

+ 

+ 
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VREF 
IPD CPD 

RPD 

PD 

Cw 
Rw 

Channel 

RX Frontend 

Sense-Amplifier 

Input voltage swing requirement: 

),,,,(min noiseBWBERvVfd senseOS

Φ 
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Optical Data Receiver: Resistor 

R 

For each data-rate, compute I 
that satisfies SA requirements. 

kRR  

),,,,( pCnoiseERBWBERfI 

SA 

- 

 

+ 

+ 

- 

VREF 

Linear: gain~1/BW 

Φ 
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Optical Data Receiver: TIA 

Compute ION as before 

Rf 

SA 

- 

 

+ 

+ 

- 

VREF 

Trade gain for power by 

decreasing ZIN while keeping 

ZTIA high. 

Φ 
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Optical Data Receiver: Integrator 

reset 

INT

bitINT

inSAwPDINT

C

Tk
R

CCCC



 ,

Integrate over a fraction of a 
bit time, and reset 

SA 

- 

 

+ 

+ 

- 

VREF 

kINT models integration time 

Φ 
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Single Channel Link Tradeoffs 

• Our examination looks across:  

• different loss options: 10-dB and 15-dB cases 

• different technologies: CP of 5-fF and 25-fF 

Modulator Receiver SERDES Laser 

Power Area 

DR #channels IL ER 

Power Area Power Area Sens. 

Sens. 

Power 

DR ER DR Loss 

For each data-rate (DR), iterate over IL, ER 

CP 
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Single Channel Link Tradeoffs 

10-dB 

Loss 

5-fF 
• SERDES cost increasing with rate 

• Decreased RX sensitivity maps to 

increased laser cost 

• TX tries to compensate 
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Single Channel Link Tradeoffs 

10-dB 

Loss 

5-fF 
• SERDES cost increasing with rate 

• Decreased RX sensitivity maps to 

increased laser cost 

• TX tries to compensate 

25-fF 
• SERDES cost the same 

• Decreased sensitivity maps 

to laser power 

• TX again tries to compensate 
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Single Channel Link Tradeoffs 

10-dB 

15-dB 

Loss 

5-fF 25-fF 
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Outline 

• Motivation 

• Photonic Link Components 
– Modulator and driver 

– Receiver 

– Single Link Analysis 

• Towards a WDM Photonic Link 
– Clock distribution 

– Ring Tuning 

– WDM Link Analysis 

• Conclusion 
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Optical Clock Distribution 

• Clock for receivers can be 

forwarded on with the data in 

DWDM 
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Optical Clock Distribution 

• Clock for receivers can be 

forwarded on with the data in 

DWDM 

• does not suffer from rail-

injected noise or crosstalk  

no jitter added in channel 

no PLL/DLL needed 
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Optical Clock Distribution 

• Assume an RX timing 
requirement of better 
than 3% UI  

• Compute capacitive 

clock load based on 

number of channels 

Higher clock frequency  

 Fewer data channels, less endpoint capacitance 

 Tighter timing requirements though, requiring more power 

64Gbps Fixed Throughput 
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DWDM Ring Resonance 

Resonances Repeat Every FSR 

• Resonances of rings 0-3 

are perfectly aligned with 

channel wavelengths (0-3) 

• FSR: Free Spectral Range 

4- Filter Bank 

Ideal Filter Bank Drop-Port Response 

• DWDM requires ring resonances matching 
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4- Filter Bank Tuning 
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Filter Bank Drop-Port Response 

• Thermally tune rings with heaters 

• Expensive with large variations 
• 600 GHz of variation requires 60K heating1,2 

• Heating power linear with number rings/channels 

• Cannot actively cool ring. 

 

 
[1] Orcutt et al. Optics Express 2011  

[2] Nawrocka et al. APL 2006] 
 

Ideal 

Actual 

Tune 

Ring 

Waveguide 
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Nearest-Channel Tuning 
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Filter Bank Drop-Port Response 

• Allow rings to just tune to the nearest channel 
– Reduces tuning range, saves heating power 

– Electrically reshuffle bit positions as opposed to assigning a 
permanent fixed wavelength per ring 

• Build an n-to-n electrical crossbar (grows with n2)  
– can we do better? 

Ideal 

Actual 

Tune 
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Decoupling Local and Systematic 
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Local Ring-to-Ring Mismatch 

• From mostly process variations 
(random, time-independent) 

•  = 20-70 GHz (0.2 - 0.5nm) 1,2 

 

 

 

 

[1] Orcutt et al. Optics Express 2011 

[2] Selvaraja et al. ECIO 2008 
 

Systematic Mismatch 

• From process and temperature 

• Rings in same filter bank roughly share 
systematic mismatch 

• Bigger in magnitude than local 
mismatch 

•  = 100-300 GHz (0.6 - 2 nm) 

• Deterministic, time-dependent 
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Two-Stage Bit Reshuffler Backend 

Barrel-shifter 

compensates for 

systematic mismatch 

affecting rings of the 

filter bank 

Additional Multiplexers 

compensates for 

channel re-ordering 

due to local ring-to-

ring mismatches 

n-bit Barrel-Shifter

0 1 n-1...

bit0

...

...

...

...

bit1 bitn-1
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Two-Stage Bit Reshuffler Backend 
Example:                

System temperature 

increase due to core 

activity 

•  resonances in bank all 

shift the in the same 

direction 

•  barrel-shift channels to 

re-align 

•  mux unchanged  

n-bit Barrel-Shifter

0 1 n-1...

bit0

...

...

...

...

bit1 bitn-1



40 

Electrical Tuning Assistance  

• A reverse-biased modulator can also tune 
– no static power, fast tuning  

– Limited tuning range (tens of GHz)  
• If no reshuffling, heaters can bridge the extra distance 

 

• Reshuffling backend makes tuning range:  
– invariant of local and systematic variations 

– proportional to channel separation, decreases 
with the number of channels 

Electrically-assisted tuning with reshuffling 

is a powerful tuning tool. 

P N P N 
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Tuning Efficiency 
Thermal Tuning 

Power increases with 

variation since we are 

tuning each ring to a 

specific resonance. 
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Tuning Efficiency 

Lower, flatter 

power with 

increased local 
variation 

Thermal Tuning Electrical Tune with Bit Reshuffle 

• Power increases with 

variation since we are 

tuning each ring to a 

specific resonance. 

• More efficient tuning 

mechanism 

• Only tuning to nearest 

channel 
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Tuning Efficiency 
Thermal Tuning Electrical Tune with Bit Reshuffle 

Improvement 

more dramatic 

for systematic 
variation.  

Lower, flatter 

power with 

increased local 
variation. 
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Full WDM Photonic Link Analysis 

• Tie together all photonic components in order to gain 
intuition on system budgeting. 

• For different throughputs, look across data-rate per 
wavelength-channel 
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WDM Photonic Link Evaluation 

256Gbps 512Gbps 64Gbps 

Increasing Number of Rings and λ 

1024Gbps 

• Trend is similar to a single link 

due to low number of rings and λ 

• But, tuning power kicking in 
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WDM Photonic Link Evaluation 

256Gbps 512Gbps 64Gbps 

Increasing Number of Rings and λ 

1024Gbps 
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WDM Photonic Link Evaluation 

256Gbps 512Gbps 64Gbps 

Increasing Number of Rings and λ 

1024Gbps 
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WDM Photonic Link Evaluation 

256Gbps 512Gbps 64Gbps 

Increasing Number of Rings and λ 

1024Gbps 

• Electrical backend ring tuning 
cost very high at low rates due to 
large number of rings 
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WDM Photonic Link Evaluation 

64Gbps 

Increasing Number of Rings and λ 

1024Gbps 

• With electronics, typically run at low rates for energy-efficiency 

• WDM actually lets us run at low rates while maintaining throughput 

• BUT due to ring-tuning (unique to photonics), we now don’t want to 
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WDM Photonic Link Evaluation 

• Optimal data-rate per channel is throughput-dependent 

• In contrast to common view, optimal data-rates are all 
relatively low  at <10Gb/s 

• Next, check bandwidth-density 
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WDM Photonic Link Evaluation 

Electrical Photonic 

Die 500Gb/s/mm2 10Tb/s/mm2 

Package 25 Gb/s/mm2 100Tb/s/mm2 

• BW limited at die by component density at 10Tb/s/mm2 

• Photonics still 200-400X better than electrical 
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Conclusion 

• Photonic interconnects hold promise to meet future 
compute system communication needs 

 

• To understand photonic system design, we need 
cross-layer system optimization: 
– Balance component specifications at the system-level for 

best bandwidth-density and energy-efficiency 

– Use insight to set the technology trends and device 
specifications 

 

• Monolithic integration and moderate-data-rate 
DWDM is most energy-efficient while maintaining 
significant bandwidth-density advantages. 
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Link Evaluation Parameters 


