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Manycore Socket Roadmap Fuels
Bandwidth
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Wire and I/O Scaling
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» Increased wire resistivity makes wire caps scale very slowly

e Can’t get both energy-efficiency and high-data rate in I/O



Bandwidth, Pin-count and Power Scaling
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Activity in Photonic Integratlon
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Bandwidth Density and Packaging

Electrical Photonic
Die * 100um C4 bump pitch
(20pum for microbump)
Level ¢ 100 bumps/mm? =» 50 I/O ‘)
e 25 differential links @ 20Gb/s o
500Gb/s/mm?
Package « 8000 pins = 4000 I/O  100um optical fiber pitch
2000 differential links @ 20Gb/s | 100 fibers @ 1Tb/s/fiber
Level « 40mm x 40mm socket
25 Gb/s/mm? 100Tb/s/mm?
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Optical Integration Trends
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VCSEL/PD array
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I\ A-sensitivity at 3.5 Gb/s

pp=25-F LBRTTa Nt energy-cost
Cin tora =320-fF s itivi G 1. ESSCIRC 2011
: S | 9 HA sensitivity at 5 Gb/s. | [Georgas et al. |
80-uA sensitivity at 20-GHz BW. : :
| Energy-cost is 690 fJ/bit. I
[Kromer et al. JSSC 2004] [Li et al. SPIE 2010]
Discrete Components Hybrid Integration Monolithic Integration

Decreasing Cpp and G



Integrated Photonic Interconnects
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Integrated Photonic Interconnects
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Integrated Photonic Interconnects
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Integrated Photonic Interconnects
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* link components tightly integrated
=» care about system energy-efficiency and performance

* Need component models to understand system tradeogfs



Outline

 Motivation

* Photonic Link Components
— Modulator and driver
— Recelver
— Single Link Analysis

 Towards a WDM Photonic Link
— Clock distribution
— Ring Tuning
— WDM Link Analysis

* Conclusion
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Optical Modulation
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Optical Modulation

* leverage free-carrier-dispersion effect to modulate P-N
junction’s depletion region
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« OOK modulation by shifting ring resonance in and out of
wavelength channel 15



Optical Modulation

Wavelength Channel
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Optical Modulation

Wavelength Channel
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Key Tradeoffs:

* Insertion loss vs. extinction ratio

 Extinction ratio vs. energy-efficiency of driver :



Modulator Driver Model
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Increased data-rate requires increased shift (charge)

Final stage topology tailored based on Va

l VANODE
[

18



Modulator Energy Cost Breakdown
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Circuit and device costs are roughly balanced
Cost increases at high rates due to super-linear relationship with V,

Insertion loss, extinction ratio, and energy-efficiency trade-offs to be made
at the system-level. 19
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RX Frontend

Optical Data Receiver
Channel






Optical Data Receiver: Resistor

I = f(BER,BW ,ER,noise,C,)

10 15 20 25 30
Data Rate [Gb/s]

For each data-rate, compute |
that satisfies SA requirements. Linear: gain~1/B¥3V



Optical Data Receiver: TIA
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Compute |, as before 9



Optical Data Receiver: Integrator
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Single Channel Link Tradeoffs

For each data-rate (DR), iterate over IL, ER

#channels IL ER DR DR ER GC; Sens. Loss
# Modulator Recelver Laser
Power Area Power Area Power AreaSens. Power

- Our examination looks across:
- different loss options: 10-dB and 15-dB cases
- different technologies: C, of 5-fF and 25-fF
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Loss

10-dB

16 24 32

Data Rate [Gb/s]

o-fF

« SERDES cost increasing with rate

* Decreased RX sensitivity maps to
increased laser cost

» TX tries to compensate

27



Single Channel Link Tradeoffs
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* Decreased RX sensitivity maps to
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« SERDES cost the same

* Decreased sensitivity maps
to laser power

- TX again tries to compensate
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Single Channel Link Tradeoffs
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Outline

 Motivation

* Photonic Link Components
— Modulator and driver
— Receliver
— Single Link Analysis

 Towards a WDM Photonic Link
— Clock distribution
— Ring Tuning
— WDM Link Analysis

« Conclusion
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Optical Clock Distribution

= Vertca Coupler - Clock for receivers can be
Dro o -
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Optical Clock Distribution

= Vertca Couper - Clock for receivers can be
Drop

fings forwarded on with the data in
. DWDM

 does not suffer from rail-
injected noise or crosstalk

= no jitter added in channel
= no PLL/DLL needed

Clock Buffer Tree

[4))
[4))
—
}_
—
b
=
o
I
O
O
O

-

1
|A a) chip-to-chip A !
| S | /
10 Optical Fiber =] I

¥




Optical Clock Distribution

* Assume an RX timing
requirement of better
than 3% Ul

- Compute capacitive
clock load based on
number of channels

10 20
Clock Fregency [GHZz]

Higher clock frequency
= Fewer data channels, less endpoint capacitance

=> Tighter timing requirements though, requiring more power 3



DWDM Ring Resonance

 DWDM requires ring resonances matching

A+ +h,+7. A=A Filter Bank

* Resonances of rings 0-3
are perfectly aligned with
channel wavelengths (A_3)

* FSR: Free Spectral Range

Response

232
Frequency [THZ]




4-). Filter Bank Tuning

Filter Bank Drop-Port Response

— Actual
<=  Tune
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Frequency [THZ]
« Thermally tune rings with heaters _\
« Expensive with large variations
« 600 GHz of variation requires 60K heating'-2

» Heating power linear with number rings/channels
« Cannot actively cool ring.

Ring
[1] Orcutt et al. Optics Express 2011

[2] Nawrocka et al. APL 2006] Waveg u iﬂe



Nearest-Channel Tuning

Filter Bank Drop-Port Response

_ B R Actual
‘ <=  Tune
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232
Frequency [THZ]

 Allow rings to just tune to the nearest channel
— Reduces tuning range, saves heating power

— Electrically reshuffle bit positions as opposed to assigning a
permanent fixed wavelength per ring

 Build an n-to-n electrical crossbar (grows with n?)
— can we do better?
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Decoupling Local and Systematic
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Local Ring-to-Ring Mismatch

. From mostly process variations
(random, time-independent)

. c = 20-70 GHz (0.2 - 0.5nm) 12

[1] Orcutt et al. Optics Express 2011
[2] Selvaraja et al. ECIO 2008
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232
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Response
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Frequency [THz]

Systematic Mismatch

From process and temperature

Rings in same filter bank roughly share
systematic mismatch

Bigger in magnitude than local
mismatch

o = 100-300 GHz (0.6 - 2 nm)
Deterministic, time-dependent 37



Two-Stage Bit Reshuffler Backend
Barrel-shifter

compensates for
o systematic mismatch
affecting rings of the

~ filter bank

n-bit Barrel-Shifter

e Additional Multiplexers
“1TTr """ n compensates for

|
/N e | channel re-ordering
T-"1 " """ due to local ring-to-
ring mismatches3

bito bit1 oo o0 bitn_1 8

Vi 1




Two-Stage Bit Reshuffler Backend

Example:

—_
co System temperature

increase due to core
coe activity

e resonances in bank all
n-bit Barrel-Shifter shift the in the same
direction

o barrel-shift channels to

y A 4 A 4 A 4 . oo A 4 ‘VI re_align
|
_| o |""" B \- mux unchanged

bito bit1 oo o0 bitn_1 39
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Electrical Tuning Assistance

 Areverse-biased modulator can also tune

— no static power, fast tuning ©
— Limited tuning range (tens of GHz) ® P @ N
* If no reshuffling, heaters can bridge the extra distance

» Reshuffling backend makes tuning range:
— Invariant of local and systematic variations

— proportional to channel separation, decreases
with the number of channels

Electrically-assisted tuning with reshuffling
is a powerful tuning tool. 40



Thermal Tuning
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Power increases with
variation since we are
tuning each ring to a
specific resonance.

Tuning Efficiency

800
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Tuning Efficiency

Electrical Tune with Bit Reshuffle

-l

Lower, flatter
power with

increased local ”
0 200 400 600
Local Process Std. Dev. [GHZ]

Thermal Tuning

200 400 600 800
Local Process Std. Dev. [GHZz] variation

» More efficient tuning

« Power increases with

variation since we are mechanism
tuning each ring to a :
9 S * Only tuning to nearest
specific resonance.
channel
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Tuning Efficiency

Thermal Tuning Electrical Tune with Bit Reshuffle
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e Tie together all photonic components in order to gain
intuition on system budgeting.

 For different throughputs, look across data-rate per
wavelength-channel 44



Energy—Cost [fJ/bit]

WDM Photonic LLink Evaluation

I T une-Heating
I Tune-Backend
[ Clock

[ ISERDES * Trend is similar to a single link
L due to low number of rings and A

 But, tuning power kicking in
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Increasing Number of Rings and A



WDM Photonic [Link Evaluation
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WDM Photonic LLink Evaluation
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WDM Photonic LLink Evaluation

* Electrical backend ring tuning
cost very high at low rates due to
large number of rings

2 4 8 16 24 32
Data Rate per A [Gb/s]
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» With electronics, typically run at low rates for energy-efficiency

« WDM actually /ets us run at low rates while maintaining throughput

* BUT due to ring-tuning (unique to photonics), we now don’t want to

Increasing Number of Rings and A



WDM Photonic LLink Evaluation
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Data Rate per A [Gb/s]

« Optimal data-rate per channel is throughput-dependent

* In contrast to common view, optimal data-rates are all
relatively low at <10Gb/s

- Next, check bandwidth-density ”



WDM Photonic LLink Evaluation

——64 Gb/s
——256 Gb/s
——512 Gb/s
—— 1024 Gb/s

Electrical Photonic

Die | 500Gb/s/mm?
Package 100Th/s/mm?

—

%]

O

10 20 30
Data Rate per A [Gb/s]

- BW limited at die by component density at 10Th/s/mm?
* Photonics still 200-400X better than electrical
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Conclusion

e Photonic interconnects hold promise to meet future
compute system communication needs

e To understand photonic system design, we need
cross-layer system optimization:

— Balance component specifications at the system-level for
best bandwidth-density and energy-efficiency

— Use 1nsight to set the technology trends and device
specifications

* Monolithic integration and moderate-data-rate
DWDM is most energy-efficient while maintaining
significant bandwidth-density advantages.
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[ .ink Evaluation Parameters

TABLE 1
LINK EVALUATION PARAMETERS

Parameter Value
Process Node 32nm Bulk CMOS
Vbbp 1.0V
Device to Circuit Parasitic Cap C'p 5-251F
Wavelength Band Ag 1300 nm

Photodiode Responsivity 1.1 A/W
Wall-plug Laser Efficiency Plgser/ Pelec 0.3
Channel Loss 10-15 dB
Insertion Loss IL, ;5 (Optimized) 0.05-5.0dB
Extinction Ratio F Rgp (Optimized) 0.01-10dB
Bit Error Rate (BER) 10—15
Core Frequency 1 GHz
SERDES Topology Mux/Demux Tree




