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Abstract— New challenges in the cyber-threat domain are
driven by tactical and meticulously designed Multi-Stage
Attacks (MSAs). Current state-of-the-art (SOTA) Intrusion
Detection Systems (IDSs) are developed to detect individual
attacks through the use of signatures or identifying manifested
anomalies in the network environment. However, an MSA
differs from traditional one-off network attacks as it requires
a set of sequential stages, whereby each stage may not be
malicious when manifested individually, therefore, potentially
be underestimated by current IDSs. This work proposes a
new approach towards addressing this challenging type of
cyber-attacks by employing external sources of information,
beyond the conventional use of signatures and monitored
network data. In particular, both expert knowledge and
contextual information in the form of Pattern-of-Life (PoL)
of the network are shown to be influential in giving an
advantage against SOTA techniques. We compare our
proposed anomaly-based IDS, based on decision making
powered by the Dempster-Shafer (D-S) Theory and Fuzzy
Cognitive Maps (FCMs), against Snort, one of the most widely
deployed IDS in the world. Our results verify that the use
of contextual information improves the efficiency of our IDS
by enhancing the Detection Rate (DR) of MSAs by almost 50%.

Keywords−Contextual Information, Fuzzy Cognitive Maps,
Intrusion Detection System, Multi-Stage Attack, Network Se-
curity, Pattern-of-Life, Snort

I. INTRODUCTION

Cyber-security has increasing importance to Internet users. Pro-
viding strong and reliable security mechanisms has become vital in
all areas of society. Snort [1] is one of the most widely deployed
Intrusion Detection Systems (IDS) worldwide, which has become
the actual standard for the industry [2]. Since it is a publicly
available open-source IDS, Snort counts millions of downloads
to date. Many organisations base the security of their network
infrastructure on the efficiency of Snort. Nonetheless, Snort is a
signature-based IDS. Hence, the frequent update of the signatures
database, as well as the manual creation of new signatures, are
essential to maintain the efficiency of Snort against new cyber-
attacks. However, this is time-consuming and requires intensive
human involvement.

The appearance of new forms of cyber-threats, such as Multi-
Stage Attacks (MSAs), has created new challenges, which current
IDSs, such as Snort, may fail to address. An MSA differs from
traditional one-off network attack as it is launched in multiple stages
and steps [3], and aims to maintain long-term access to a target
machine. Each of the stages that composes an MSA comprises of
different steps, which may not be malicious when implemented

individually, but all are necessary for its successful completion.
Only when executed sequentially, can the attacker succeed in the
completion of the MSAs. Also, the time between separate attack
stages can span hours, days or months, making the detection of
MSAs extremely challenging for most current IDSs.

Due to the challenges that this new type of cyber-threat presents,
Snort might not be an efficient solution to detect MSAs. Although
Snort could detect the individual malicious steps that compose
an MSA, Snort may not be able to correlate the relationship
between consecutive steps and fail to detect the completion of
the MSA. Therefore, to overcome these new challenges, novel and
more intelligent detection approaches that exploit new sources of
information need to be proposed.

Current IDSs use measurable network traffic information from
the protected system or signatures of known cyber-attacks during
the intrusion detection process. However, these systems do not
generally take into account available high-level information (i.e.
above the network operation) regarding the protected system [4].
The next generation of IDSs should be able to adapt their detection
characteristics based not only on the measurable network traffic
information, but also on the context in which these systems operate,
and the information provided by the users or administrators.

In [5], we described an unsupervised anomaly-based IDS de-
signed to detect MSAs, which exploits contextual information in
the form of a Pattern-of-Life (PoL) model, and information related
to expert judgment on the network behaviour. In particular, this
IDS focuses on detecting a 5-steps MSA, in real-time, without a
previous training process. The main goal of this MSA is to create
a Point of Entry (PoE) to a targeted machine, which could be used
for the completion of an Advanced Persistent Threat (APT) like
attack [6], [7]. As we demonstrated in [8], a Fuzzy Cognitive Map
(FCM) [9] can be used to incorporate the PoL of the network usage
into the detection process.

In this paper, we have evaluated the efficiency of our anomaly-
based IDS with FCM against Snort, using both the standard
configuration file and adapted rules to detect an MSA. Specifically,
the novel set of rules have been carefully customised to detect the
different steps of the 5-steps MSA. Although the MSA implemented
for this work replicates the same steps as in [5], it is worth noting
that the background network traffic, the duration of the individual
steps, and the time between steps varies. Therefore, the presented
detection results are completely new and unpublished. Additionally,
the efficiency of our anomaly-based IDS has been evaluated in a
live operational manner, analysing real network traffic in real-time.

The rest of the paper is organised as follows. In Section II,
the most relevant previous work is reviewed. The signature-based
IDS Snort is described in Section III. In Section IV, the proposed
approach for the use of an FCM within our anomaly-based IDS
is described. The network testbed, the analysed network traffic



dataset, and the implemented MSA are described in Section V.
Section VI describes the experiment results. Finally, conclusions
and suggestions for future work are given in Section VII.

II. RELATED WORK

Snort has been described extensively in the literature. For in-
stance, the authors of [2] present a good description of the Snort
architecture. This work aims to identify factors that influence and
impact the performance of Snort, by the use of analytical queuing
models. In [10], the authors use Snort in a campus network with
more than 40 thousand hosts. An IDS alert correlator, built upon
Snort, has been deployed in this network aiming to reduce the
number of false positive alarms. The authors of [11] use Snort
to create a training dataset to detect malware. This dataset is
utilised to train a proposed lightweight IDS. Specifically, Snort is
used to scan the malware dataset to separate packets identified as
malicious. The authors highlight the fact that Snort may not be
able to detect the malware if that malware is a novel variant for
which there is no matching signature. In [12], Snort is used as a
mitigation measure to protect networked control systems. A Modbus
control system is deployed to simulate cyber-attacks. In this work,
Snort is customised into the supervisor hardware of the defensive
architecture for Modbus TCP/IP traffic monitoring. In [13], Snort
has also been employed to protect virtual environments such as
Software-Defined Networks (SDN).

The authors of [14] survey current research on context-based
information fusion systems and highlight the importance gained by
these systems in the last few years. One technique that provides
the capability of integrating contextual information to the detec-
tion process is the FCM. The authors of [9] provide a detailed
description of the FCM technique and its mathematical foundation.
The authors of [15] develop, using FCMs, an actionable model of
situation awareness for army infantry platoon leaders that could
replicate human cognition. Their FCM design structures the goals
and subgoals of the platoon, and the relationships between these
goals. A similar approach is introduced in [16], in which situation
awareness is represented using an FCM.

Many works on MSAs have used attack graphs on alert messages
for network security assessment, attack countermeasure selection
and mitigation deployment [17]. The attack graph technique has
also been used in collaboration with alert correlation clustering
to decrease the false positive alerts [18]. However, attack graph
techniques do not scale effectively to represent rich and complex
scenarios and for this reason are impractical to use in real case
environments. The authors of [19] propose a flow-based IDS to
detect Brute Force SSH (BFS) attacks in real-time. This work
considers an BFS attack as a 3-phase MSA. The IDS uses the
metrics packets-per-flow and minimum number of flow records to
identify the different phases of the attack. The detection is based
on a number of thresholds defined based on these metrics.

III. SNORT - INTRUSION DETECTION SYSTEM

Snort is a signature-based IDS that captures and inspects the
header and payload in network packets to identify malicious traffic.
It can be configured as a sniffer to simply read network packets
or as a packet logger to analyse and store packets. Snort uses a
signature database of known indicators of attacks. The signatures
are represented as a set of rules. The network packets are analysed
against the signatures, and an alert is raised if a match is identified.

A. Snort Architecture

As represented in Fig. 1, the architecture of Snort comprises five
main components: packet decoder, preprocessor, detection engine,
alert and log system, and output module. Initially, Snort uses
the packet decoder to capture raw network traffic, utilising Data
Acquisition Library (DAQ), to extract and forward network packets
to the preprocessor. Next, the preprocessor is used to arrange or
modify corrupted network packets, before these are sent to the

Fig. 1. Snort architecture schematic representation comprising of five
components: packet decoder, preprocessor, detection engine, alert and log
system, and output module.

detection engine. Among other functionalities, the preprocessor
performs early packet dropping, classification, layer three Internet
Protocol (IP) fragment reassembly, and layer four Transmission
Control Protocol (TCP) session reconstruction [2]. Then, the detec-
tion engine, the most important component of Snort, analyses the
network packets against the rules in the attack signature database.
If no match is found, the frame is dropped otherwise the alert and
log system generates the corresponding output.

By default, Snort generates two outputs: the alert and snort.log
files. The former is human readable and stores essential information
about the rule, such as signature IDs, protocol type, classification,
timestamps, alert description and packet header. In some cases, the
original dump packet is also included. The snort.log file records the
complete packet that triggered the alert, including the information
present in the alert file. The snort.log is machine readable whose
format corresponds to the specified representation, for example, in
unified2 snort.u2 format. Finally, the output module controls the
type of output of the alert and log system, which allows users to
get a customised output, such as csv and unified2.

B. Snort Rules and Configuration

The Snort rules play a critical role in the detection of malicious
activity in a network. Snort uses configuration files to specify all
the rules used during the detection process. The standard Snort
configuration file (i.e. the snort.conf file) can downloaded from the
Snort website [1]. Customised set of rules can be defined by the
IDS administrator, as well as other rule configuration files can be
downloaded from the Internet. For instance, the one managed by
the Pulledpork [20], a Perl script that aggregates all the Snort rules
into a single file. The latest version of Snort rules (2.9.11.1) at the
time when the presented experiments were conducted, as well as a
limited number of previous versions, can be also downloaded from
the Snort website. The paths to all these rules have to be specified
in the configuration file snort.conf. Additionally, the pulledpork can
be configured to update Snort automatically with new rules.

Snort uses the file snort.conf to specify network variables and
to configure the packet decoder, the detection engine, the dynamic
loaded libraries, the preprocessors, and the output plugins. The
configuration file snort.conf is also used to customise the rule
sets (i.e. administrator, preprocessor, decoded and shared object
rules). Redundant rules and rules that generate false positives are
deprecated. Customised rules can also be created by specifying
essential parameters. For simple rules, Snorpy [21], a web-based
Snort rule creator can be used. Optionally, rules can be downloaded
from other sources, for example, Emerging threats website [22]. As
described in Section V, the configuration file snort.conf has been
modified to customise the set of rules, as part of our experiments.

IV. CONTEXTUAL INTRUSION DETECTION

METHODOLOGY

The detection methodology that we present to detect MSAs
builds upon the unsupervised anomaly-based IDS that we previ-
ously presented in [8]. It is based on a cross-layer multi-metric



architecture to carry out the detection. This IDS uses the Dempster-
Shafer (D-S) Theory [23] as the data fusion technique to create an
overall belief on whether the currently analysed network traffic is
normal or malicious. Moreover, an FCM is integrated within the
IDS to add the contextual information and expert knowledge into
the detection process. The outcome of the FCM is used to adjust
the values to be fused by the D-S Theory, as described in [8].

A. Modelling Contextual Information

The graphical design of an FCM is characterised by a set of
nodes interconnected by causal links. The nodes represent time-
varying events or actions that describe the behaviour of the system.
Each node C carries a weight A(t) in the fuzzy range [0, 1], which
indicates the importance that the concept has in the system, at
time t. The links between nodes represent the causal relationship
between events. Each link is assigned a weight value wi j(t) in the
fuzzy interval [-1, 1], which indicates the relationship and degree
of influence from the nodes Ci to C j. An FCM can be represented
by an [m×m] adjacency matrix M, where [M(t)]i j = |wi j(t)|, and
m is the number of nodes in the FCM. The matrix M describes the
relationship between the nodes and the weight wi j(t) associated
with each link. A comprehensive description of the design of FCM
models can be found in [9].

An FCM evolves via an iterative process in which, at each future
time step, the weight value of each concept A(t) is computed using
an activation function f . The value of Ai(t) changes at each iteration
as described in Eq. (1):

Ai(t +1) = f (K) = f

(

Ai(t)+
m

∑
j=1 j 6=i

wi j(t) ·A j(t)

)

(1)

where Ai(t +1) is the weight value of node Ci at time t +1, A j(t)
is the weight value of node C j at time t, and wi j(t) is the degree of
influence of node Ci on node C j. In this work, we have employed
the hyperbolic tangent activation function, defined in Eq. (2):

f (K) =
eK − e−K

eK + e−K
(2)

The FCM process continues for a number of iterations until the
output of the activation function converges to a final fixed model
(i.e. when the weight values A(t) in all the nodes do not change
in successive iterations). In our experiments, the output of the
activation function always converges after a number of iterations.

B. FCM Design Based on Contextual Information

In this work, we have made use of contextual information, in
the form of the PoL of the network usage, and expert knowledge
related to judgment on the network behaviour during the different
stages of the MSA. The network administrator defines the relation-
ships between concepts and provides the different weight values
wi j(t) associated with each link, based on previous knowledge and
judgment.

In order to model the PoL, four nodes have been defined. These
represent the different steps that compose the MSA implemented in
this work: fping, nmap, OpenVAS, and BFS. Also, two additional
concepts are defined as the two possible outcomes of the FCM (i.e.
C5 = Normal and C6 = Attack). The weights A(t) associated with
these two concepts are used to adjust the belief values assigned prior
to the data fusion process. This process would allow incorporating
the contextual information into the detection process of our IDS.

The FCM model used in our experiments is represented in Fig. 2.
This is similar to the one that we presented in [5]. To avoid
cluttering the figure, only four weights wi j have been included in
the FCM model representation. All the weights wi j used in our
experiments have been tabulated in the [6×6] matrix M, as shown
in Fig. 3. As an example, the weight w15 = 0.7, which represents
the level of influence of node C1 on C5, corresponds with the (1,5)th

C1

fping

C2
nmap

C3

OpenVAS
C4

BFS

C5

Normal

C6

Attack

w12 = 0.3

w15 = 0.7

w23 = 0.3

w45 = 0.3

Fig. 2. FCM model of the MSA attack used in the presented experiments,
in which nodes represent steps of the MSA and connections denote the
relationships between concepts, previously shown in [5].
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C1 C2 C3 C4 C5 C6

C1 0 0.3 0 0 0.7 0.1
C2 0 0 0.3 0.3 0.5 0.5
C3 0 0 0 0.3 0.3 0.7
C4 0 0 0 0 0.3 0.9
C5 0 0 0 0 0 −0.1
C6 0 0 0 0 −0.3 0





















Fig. 3. [6×6] adjacency matrix including the weight values wi j used in
our experiments. It maps the FCM model shown in Fig. 2.

element of the adjacency matrix. In this example, since fping can
be benign, a high weight value is assigned to w15. Also, since fping
may also be part of an MSA, a very low weight value is assigned
to the concept Attack (i.e. w16 = 0.1). Similarly, a low weight value
is assigned to w12 because fping can be followed by nmap as part
of an MSA, although it may not be always the case.

We have defined a number of thresholds for each metrics, in
order to allow the detection system inferring which of the MSA
steps is being measured. These thresholds correspond with the
metric value expected at a given time and day, based on the PoL
of the network. This is based on the assumption that the network
usage would show unexpected measurable changes from the normal
behaviour during the implementation of the various steps of the
MSA. These abnormal changes, which could occur at any time of
the day, would manifest themselves differently in each analysed
metric when different MSA steps are conducted.

In [5], we introduced an approach to address the challenge
created by the temporal relation between the different steps of the
MSA. We have defined a fixed time frame within which the weight
value of Ai(t) remains active after the attack in Ci, i=[1, 4] has been
detected. Since the MSA design for this work lasted for 7 minutes,
we have empirically set the time frame to 2 minutes. As an example,
consider the situation in which the IDS detects C2 = nmap, the
initial vector state would be A(0) = [0, 1, 0, 0, 0, 0]. Within the
following 2 minutes, if the IDS detects C3 = OpenVAS, the initial
vector state would be A(0) = [0, 1, 1, 0, 0, 0]. However, if the IDS
detects C3 = OpenVAS after the 2 minutes time frame has expired,
the initial vector state would then be A(0) = [0, 0, 1, 0, 0, 0]. This
approach brings the temporal relation between the different MSA
steps into the initial vector state employed in Eq. (1).



Fig. 4. Testbed LAN topology; PC on the right initiates an MSA against the
victim PC in the left. The PCs in the Office Network generate background
traffic, and the Snort IDS performs the signature-based detection.

V. EXPERIMENTAL SETUP

A. Network Traffic Measurements

The network traffic used in the experiments has been gathered
in the Local Area Network (LAN) presented in Fig. 4. This
testbed LAN includes an attacker PC running Kali Linux, an IDS
PC running Snort 2.9.11.1 on Ubuntu 16.04, and a victim PC
running our IDS. The attacker initiates an MSA against the victim.
Additionally, the LAN comprises a portion of the University’s
network traffic, used as background traffic to construct the PoL.

The victim PC, which runs the IDS on Ubuntu 16.04, gathers the
network traffic in pcap format using the network packets analyser
tcpdump [24]. Next, the pcap file is processed using tshark [25] to
filter the relevant set of metrics employed during the MSA detection
process. The Snort IDS PC also gathered network traffic in pcap
format using tcpdump. Then, the pcap file is used for offline analysis
by Snort. It is worth noting that the network traffic from the office
network, used as background traffic, was collected beforehand and
retransmitted using tcpreplay [26]. A detailed description of the
office network traffic can be found in [8].

In total, the gathered dataset comprises 300730 network traffic
frames. In the case of the presented anomaly-based IDS, five
different metrics have been extracted from the dataset, which are
used to carry out the intrusion detection analysis. These metrics are
the number of frames transmitted per second; the number of unique
destination ports that receive traffic per second; Throughput, i.e. the
number of transmitted bytes per second; the number of Address
Resolution Protocol (ARP) frames transmitted per second; and the
number of SSH requests transmitted per second.

B. Evaluated Multi-Stage Attack

The attacker implements a five-steps MSA against the victim.
All the tools used to implement the MSA can be found as part
of the Penetration Testing Linux distribution Kali Linux [27]. A
bash script was used to automate and reduce the delay of imple-
menting the different MSA steps. The attack lasted for 7 minutes
approximately, and the different steps were launched stochastically.
It is worth noting that, although the script used to launch the
MSA is similar to the one used in [5], this script allows the
attacker to pause and resume each step at any time. Therefore,
the duration of the individual steps and the time between steps
changes stochastically. Furthermore, since the launch of the MSA
is stochastic, the background network traffic used to construct the
PoL would be different every time the MSA is conducted.

The implemented MSA is composed of the following steps:
1) Scanning for active machines in the network, using fping
2) Scanning for open network ports, using nmap
3) Scanning for vulnerabilities, using OpenVAS
4) Dictionary brute force SSH, using Metasploit
5) Drop malicious payload, also using Metasploit

Fig. 5 represents the different stages and steps that compose the
implemented MSA. The steps that comprise the MSA have been
specifically designed for this work. However, the order at which the

Fig. 5. Diagram comprising the different stages and steps that compose
the 5-steps MSA employed in this work.

different stages are implemented follows the Zero Entry Hacking
(ZEH) methodology described in [3].

Initially, we assume that a passive reconnaissance stage has been
conducted in which the attacker obtains the username and the
network IP address where the targeted machine is connected. Since
the reconnaissance is implemented passively and does not actively
interact with the targeted victim, this step has been excluded from
the MSA detection process.

The first step in the scanning stage uses fping to obtain a list
of IP addresses for all the live machines in the network. This step
provides the attacker with the information required to identify the
specific IP address of the target. The next step is implemented using
the network mapper nmap [28]. This is a popular open source
tool that provides a variety of probing techniques for network
exploitation and security auditing. This step would provide the
attacker with a list of open ports in the target machine. The last step
during the scanning stage aims to identify possible vulnerabilities.
The vulnerability scan is implemented using OpenVAS [29], a soft-
ware framework that offers vulnerability scanning and vulnerability
management capabilities.

During the exploitation stage, the attacker makes use of the
information obtained during the scanning stage. In particular, the
fourth step attempts to guess the login credentials of the target
victim using a dictionary brute force. The attacker uses a list of
frequently used passwords to establish an SSH connection to the
target. Finally, the attacker uses the connection established with the
target to install a malware payload that will leave a back-door open
in the victim machine. In other words, it will create a PoE to the
target. The penetration testing framework Metasploit [30] has been
used to implement the last two steps.

C. Snort Rules Customisation

For the Snort experiments, we have made use of the default set of
rules, as well as a new set of rules, customised to detect the MSA.
Regarding the default rules, the rules of Snort version 2.9.11.1 were
used, as well as, the community rules, which are aggregated by
pulledpork 0.7.4. The default set of rules contained 10444 rules, out
of which 10026 were for the detection engine, 150 for the packet
decoder, and 268 for the preprocessor. Regarding the customised
rules, these were created in the directory /etc/snort/rules, and the
paths to these rules were specified in the snort.conf configuration
file. All the default Snort preprocessor rules were used, along with
13 customised detection rules. Hence, the customised configuration
file consisted of 281 rules in total (i.e. 13 rules for the detection
engine, and 268 rules for the preprocessor). Next, a description of
the Snort rules customization for the four MSA steps is provided.

During the fping attack, ARP packets were sent to probe for
active machines. ARP detection rules could not be used for this step,
because Snort supports only four protocols: TCP, UDP, IP and Inter-
net Control Message Protocol (ICMP). Alternatively, the ARPSpoof
preprocessor was used, which detects ARP spoofing attacks, unicast
ARP requests, and Ethernet to IP mapping inconsistencies [1]. In
particular, the preprocessor set of rules with Generator ID (GID)



112 was used, which raises an alert for any of the following four
events: (i) unicast ARP request, (ii) Ethernet frame ARP mismatch
at source, (iii) Ethernet frame ARP mismatch at destination, and (iv)
ARP cache overwrite attack. However, the use of the preprocessor
rules was ineffective because the fping attack was of an ARP
scanning nature, rather than ARP spoofing, which the preprocessor
could not detect.

To detect nmap, a set of representative Snort network scanning
rules pertaining to port scanning, IP mapping, and various applica-
tion scanners, have been used. These are rules for the detection
engine and can be found in [31]. In addition, one sfPortscan
preprocessor was also used to trigger alerts for three types of
port scanning threats: nmap, decoy and distributed, as well as, for
portsweep events. Regarding the detection of OpenVAS , one single
rule was manually created to raise an alert for any established TCP
flow destined to the victim’s range of HTTP ports. Finally, the BFS
attack step was detected using both the Snort SSH preprocessor and
a detection engine rule. The SSH preprocessor detects several SSH
related exploits, including challenge response buffer overflow and
protocol mismatch exploits. The detector rule was created to alert
for any manifestation of the string “SSH” in the content of TCP
packets, with a destination port number equal to 22.

The default output plugins have been used, and a script was
created to extract essential fields (e.g. timestamp, signature ID, alert
description, alert category, source and destination IPs, and source
and destination port numbers) from the alert file for processing.

VI. RESULTS AND ANALYSIS

This section describes the detection results of the presented IDS
in an online and live mode, with and without an FCM. Additionally,
these results are compared against those generated by the signature-
based IDS Snort. The analysis of Snort has been conducted using
the standard configuration and community rule files, and the cus-
tomised set of rules previously defined. The efficiency of the IDS
has been evaluated using the following performance metrics, which
provide evidence of how effective the IDSs are at making correct
detections:

• Detection Rate (DR) - Proportion of malicious data correctly
classified as anomalous among all the malicious data:

DR =
T P

T P+FN
(3)

• False Positive Rate (FPr) - Proportion of normal data misclas-
sified as malicious among all the normal data:

FPr =
FP

T N +FP
(4)

• Overall Success Rate (OSR) - Proportion of frames correctly
classified among all the data:

OSR =
T P+T N

T P+FP+T N +FN
(5)

• F-score - Tradeoff between Precision and DR, used to compare
two distinctive classification methodologies:

F-score =
2 ·Precision ·DR

Precision+DR
(6)

where True Positive (TP) represents anomalies classified as ma-
licious; True Negative (TN) represents normal instances classi-
fied as normal; False Positive (FP) represents normal instances
misclassified as attack; False Negative (FN) represents anomalies
misclassified as normal; and Precision = T P/(T P+FP).

A. Signature-based IDS Snort Results

As expected from a signature-based IDS, Snort produced re-
markably low number of FP alarms, both when the default and
the customised set of rules are used. Regarding the default set of
rules, Snort triggered 16879 alerts, 16512 TP alerts (i.e. 97.83% of
all the alerts) and only 367 FP alerts (i.e. 2.17% of all the alerts).
In terms of FPr, Snort produced 0.15% FPr using the default set of
rules. In terms of OSR, Snort also produced encouraging results,
reaching 87.38% OSR. However, there were a high number of FNs.
The most plausible reason to this is the misdetection of fping attack.
As elaborated in Section V-C, Snort currently detects ARP spoofing
and not ARP scanning, hence it missed the entire fping attack. In
total, 37580 malicious packets were undetected. Therefore, Snort
only produced 30.53% DR. It is worth highlighting that these results
have been generated using the default set of rules, which require
minimal time-consuming to configure by the IDS administrator.

Regarding the customised set of rules, Snort triggered 21180
alerts, 20728 TP alerts (i.e. 97.86% of all the alerts) and only 462 FP
alerts (i.e. 2.14% of all the alerts). We can already appreciate a small
improvement in comparison with the default set of rules. Although
Snort produced 0.19% FPr using the customised set of rules (i.e.
0.04% increase), Snort improved the OSR results, reaching 88.75%
OSR. The most encouraging improvement is generated in terms
of DR. Snort produced 38.3% DR, which represents a 7.77%
improvement (i.e. 4216 more malicious packets correctly detected).
All these results have been tabulated in Table I.

B. Anomaly-based IDS Results

The comparison evaluation of the experimental results with and
without the use of an FCM are presented in Figs. 6-8. The Y-axis of
the figures represents the results in a percentage, while the X-axis
of the graphs represents time in seconds. The graphs in blue and
red correspond to the results with and without the use of contextual
information, respectively. All the figures include extra annotations
to help identify the different steps of the MSA.

Regarding the DR, there is an evident improvement in the results
when contextual information is included in the detection process.
The graphs in Fig. 6 display a step change improvement, which
relates to the different stages of the MSA that have been detected.
When the contextual information is considered, the IDS generates
80% DR at the end of the experiment, reaching 82% peak DR. The
improvement is almost consistent in both graphs. When the MSA
reaches the step BFS, the IDS without an FCM starts misclassifying
a large portion of malicious traffic (i.e. produces FN alarms). At
the end of the MSA, the DR reaches 31% produced by the IDS
without contextual information. Additionally, the detection results
when FCM is considered are better for most of the experiments due
to a more accurate detection of most of the MSA steps.

The FPr results of our IDS with and without the use of an FCM
are compared in Fig. 7. We can see that the use of contextual
information produces a relatively low number of false positive
alarms, reaching 12% FPr at the end of the MSA. This represents
a 10% worsening in the FPr results in comparison with the IDS
alone, which reaches 2% FPr. Nonetheless, it is worth repeating that

Fig. 6. Detection Rate - Comparison of DR results between the method-
ologies IDS with and without FCM.



Fig. 7. False Positive Rate - Comparison of FPR results between the
methodologies IDS with and without FCM.

Fig. 8. Overall Success Rate - Comparison of OSR results between the
methodologies IDS with and without FCM.

these results are generated by an unsupervised IDS detecting MSA,
without any prior training process. Therefore, producing 12% FPr at
the end of the MSA can be considered as good results, considering
the improvement provided in terms of DR.

Fig. 8 presents the OSR comparison results. There is no evident
difference between the two approaches. When the contextual infor-
mation is considered as part of the detection process, 87% OSR is
reached at the end of the attack. Both the IDS with and without
FCM produce significant results in terms of OSR. In particular,
the presented results evidence that the use of the FCM improves
the effectiveness of the IDS, without greatly affecting the correct
classification of normal network traffic. All these results have been
also tabulated in Table I.

VII. CONCLUSIONS

In this paper, we have presented and evaluated a live operational
IDS able to efficiently detect the presence of an MSA in real-time,
without prior training process. This novel IDS exploits contextual
information in the form of PoL model, and expert knowledge by the
use of an FCM in conjunction with our IDS. The performance of
our anomaly-based IDS has been compared against the signature-
based IDS Snort. We have used both the default Snort rules and a
customised set of rules adapted to detect the implemented 5-steps
MSA.

From the presented results, the use of our anomaly-based IDS
with an FCM outperforms the overall detection result generated by
the rest of approaches evaluated in this work. The use of Snort
with the customised set of rules generates better detection results
than those generated by our IDS without an FCM. It also produces
remarkably low number of false alarms using both, the default
and the customised set of rules are used. However, Snort only
produced 38.3% DR for the customised rules. When Snort uses the
default rules, only 30.53% DR is reached. Furthermore, the time
and the level of involvement required from the IDS administrator to
customise the rules does not justify the small 7.77% improvement.
Additionally, the use of signature-based IDS cannot adapt the
frequent appearance of new forms of cyber-threats in a timely
manner. On the other hand, the use of contextual information clearly
improves the efficiency of our IDS detecting an MSA, as well as
outperforming the efficiency of Snort. In terms of DR, the proposed
live operational detection system, including an FCM, improves by
41−49% DR when compared against the IDS without an FCM and

TABLE I

MSA DETECTION RESULTS COMPARISON

Detection Approach DR(%) FPr(%) OSR(%) F-score

IDS with FCM 80 12 87 0.62

IDS w/o FCM 31 2 89 0.43

Default Snort Rules 30.53 0.15 87.38 0.46

Custom Snort Rules 38.3 0.19 88.75 0.55

Snort. Despite the clear increase in FP alarms, reaching 12% FPr,
the gain in terms of DR well justifies the use of an FCM, and does
not significantly affect the results in terms of OSR.

It is important to highlight that the design of an FCM is
very context-specific, and may not be easily generalised. In our
experiments, the design of the FCM has been adapted to an MSA
specifically designed for this work. Furthermore, the approach that
we have implemented to address the temporal relation between
MSA steps does not efficiently adapt to the implementation of other
MSAs. Hence, addressing this challenge remains an open issue.

Finally, it is worth noting that the results generated by Snort
have not been plotted in graphs, similar to those used to represent
the results if our IDS. This is because Snort works with individual
network packets, instead of aggregated traffic, making the graphical
representation of the results more complex. Therefore, we decided
to present the absolute result values only, once the analysis finished.
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