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Abstract 

We present a practical guide, including a step-by-step flowchart, for establishing confidence 

intervals for key model outcomes in the face of uncertain parameters. The process starts with 

Powell optimization (e.g., using VensimTM) to find a set of uncertain parameters (the 

“optimum” parameter set or OPS) that minimize the model fitness error relative to available 

reference behavior data.  The optimization process also helps in refinement of assumed 

parameter uncertainty ranges.  Next, Markov Chain Monte Carlo (MCMC) or conventional 

Monte Carlo (MC) randomization is used to create a sample of parameter sets that fit the 

reference behavior data nearly as well as the OPS.  Under the MC method, the entire 

parameter space is explored broadly (with a very large number of runs), and the results are 

sorted for selection of qualifying parameter sets (QPS) based on goodness-of-fit criteria.  The 

statistical properties of the QPS parameter distributions are analyzed to ensure their centrality 

relative to the uncertainty ranges.  Also, the full set of QPS outputs are graphed (as sensitivity 

graphs or box-and-whisker plots) for comparison with the reference behavior data.  Finally, 

alternative policies and scenarios are run against the OPS and all QPS, and confidence intervals 

are found for key model outcomes.  The method is demonstrated with a non-trivial model, 

and a narrative template is provided to illustrate how such analyses could be described to 

interested parties such as policy or decision makers. 
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1. Introduction 

System dynamics (SD) models frequently employ parameters for which solid empirical data 

is not available. Modelers often use expert judgment, either informally or formally, to provide 

estimates of parameter values for which empirical data is not available. When several experts 

are available, and a formal process such as a Delphi survey is used to obtain their judgments, 

model developers and users may have high confidence in the values of these parameters 

despite the lack of data. Nevertheless, these parameter values remain uncertain to a degree. 

To address parameter uncertainty, SD modelers experiment extensively with alternative 

parameter values in order to understand their degree of influence in the model. Formal 

sensitivity analyses can (and should) be run using features provided in popular SD software 

packages. Results can be displayed in a table or portrayed a graphically as a “Tornado” 
diagram (c.f. Wakeland and Hoarfrost 2005).  

Once the modeler has identified influential parameters, additional effort is applied as time 

and budget allow to increase confidence that the values of these influential parameters are 

well supported. When reliable empirical data are available, ideally from multiple sources, the 

parameter value may be fixed and used with confidence. Usually, however, some, perhaps 

even many, parameter values remain uncertain. This paper describes how the model analysis 

features available in the Vensim TM software, and likely other software, can be used to 

represent and incorporate that uncertainty into the analysis of SD model results, including, 

potentially, providing confidence intervals informed by parameter uncertainty. 

A brief background section will review the use of these methods in recent literature. A 

methods section provides a detailed diagram describing the process for incorporating 

parameter uncertainty in SD models, followed by a results section that provides an illustration 

of the use of the method. The paper closes with a discussion section that illustrates how the 

model results under uncertainty can be described for interested parties such as policy makers 

or other end users of the analyses. 

2. Background 

Helton et al. (2006) provide a general overview of sampling-based methods for sensitivity 

analysis, including Monte Carlo (MC). Cheun and Beck (2009) explain Bayesian updating in MC 

processes, and background material on the mathematics of Markov Chain Monte Carlo 

(MCMC) is readily available (cf. ter Braak 2006 and Vrugt J.A. et al. 2009). Background on 

sensitivity analysis methods for dynamic modeling, and SD in particular, including the MC and 

MCMC methods being employed in this paper, may be found in Houghten et al. (2014), 

Houghten and Siegel (2015), Osgood (2013), and Osgood and Liu (2015). Using conventional 

MC methods to search a parameter space is sometimes considered to a brute force or totally 

random search, whereas the MCMC method, uses a Bayesian update process to guide the 

search of parameter space. In at least some contexts, it has been shown that MCMC optimally 

creates statistically valid samples. 
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Although publications describing the application of these methods are plentiful is some 

scientific and engineering disciplines, publications featuring their use with SD models are 

scant. A search for “system dynamics” AND (“MCMC” or “monte carlo”) return only a handful 
of publications. Two examples are Jeon and Chin (2014), who describe their use of MC with an 

SD model applied to a renewable energy study, and Sterman et al. (2018), who describe their 

use of MCMC in the evaluation of an SD forestry industry model. Conference papers are no 

more numerous. A search of the SD conference proceeds for MCMC or Monte return just one 

result for the period from 2015-2018, a methods paper (Fiddaman and Yeager, 2015). 

3. Method 

Figure 1 summarizes a detailed process for incorporating uncertainty analysis into SD 

models. Two alternative approaches are included. One approach employs a conventional MC-

based search of parameter space, whereas the other uses the MCMC approach. 

In the following text, bold italics are used to highlight the name of the block in Figure 1 

being discussed. The process starts at Create model & modify as needed. This would be a 

model that employs uncertain parameters and includes dynamic outcome variables that strive 

to match the dynamics seen in real world reference behavior data. To use the methods 

described in Figure 1, we need to Define error metric variables and Add error metrics to 

model. A useful example could be to compute the mean absolute error (MAE) between the 

model calculated time series and the reference behavior time series for each outcome 

variable. Care must be taken to consider how to compute MAE when reference data is 

incomplete so as not to distort results. When different outcomes have very different scales, it 

is useful to use MAEM which is MAE over M, where M is the mean value of the metric. In 

addition, composite error statistics are added to the model, such as the average of the MAEMs 

over all the outcomes, and the maximum value of the individual MEAMs. These are used later 

in the process for identifying well-fitting parameter sets. There are statistical macros available 

for Vensim to help with this. 

Another key step at the outset is to Estimate parameter uncertainty ranges, a lower and 

upper bound for each uncertain parameter, and to Specify weights for the outcome variables. 

These are needed for the algorithm used in a key part of the process: Estimate Uncertain 

Parameter values. This process employs a Powell optimization process that uses an objective 

function consisting of model outcomes vs. reference data. Each term of the objective function 

represents one of the outcome time series of interest. The algorithm strives to minimize the 

differences between model and reference data. Weights are needed because outcomes may 

have very different scales and variances. This tends to be an iterative process, so Figure 1 

contains a feedback loop, and some of the connections are bidirectional. The end result of this 

step is a set of optimized parameter values for the uncertain parameters (OPS). Its average 

MAEM might be .1 and its max MAEM (worst MAEM for any one of the outcomes) might be .2. 
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Figure 1. Process for addressing SD model uncertainty
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At this point, the user may elect to use conventional Monte Carlo (MC) or Markov Chain 

Monte Carlo (MCMC). MC is discussed first. 

Make very large sensitivity Monte Carlo (MC) run is another key step of the process. It 

employs Vensim’s sensitivity feature to make a very large number of model runs, millions if 

there are many uncertain parameters. Using this feature requires the user to specify how 

many runs to make, the seed to start with, the type of sampling (e.g., multivariate, latin 

hypercube, etc.), and which parameters to vary and how. We used multi-variate, which is a 

totally random search process. Latin hypercube strives to cover a large parameter space more 

efficiently. Both may be valid choices. We experimented with uniform, but settled on 

Triangular with the mode specified as the value from the OPS. Since we are focused on overall 

error, we changed the SAVEPER to be the length of the run. This keeps the output file size 

manageable. We also specified some additional variables to be saved (all the parameters 

being varied are automatically saved). These were the avgMAEM and maxMAEM for the run.  

Note that when >1M runs are needed, we found it practical to make one million at a time 

and to change the seed for each run. At the end of a sensitivity run, the .vdf file is exported to 

a tab-delimited file for further analysis. 

Next, we Determine cutoffs for a “qualified parameter set (QPS) which involves 

determining how well-fitting a parameter set needs to be in order for it to be kept in the 

sample. The vast majority of the MC runs will not be well-fitting like the OPS. One rational 

approach would be to accept parameter sets that performed nearly as well as the OPS, say, for 

example average MAEM < .12 and max MAEM < .25. 

Sort MC runs and create N-QPS employs Excel’s data/import external data from file to 

read in the MC results. The result will be M columns x N rows, where M is the number 

parameters being varied + 4 and N is the number of runs. The 4 is the two saved variables 

saved at two time periods (start and end). The results are then sorted by avgMAEM and all 

rows > avgMAEM cutoff are discarded. The remainder is sorted by maxMAEM and all rows > 

maxMAEM are discarded.  This will likely leave a very tiny fraction of runs, perhaps a few 

hundred out of a million. These N runs are the qualified parameter sets (N-QPS). Save 

sensitivity (MC or MCMC) parameters as a tab-delimited txt file creates the file needed for 

file-driven sensitivity runs. 

Within Excel, the user can proceed to Compute/graph stats by parameter to see what the 

values in N-QPS file look like for each parameter. For example, to see if the entire range of 

possible values for a given parameter represented in N-QPS, and if the mean of this sample is 

near the value of the parameter in the OPS. Also to determine the confidence interval of the 

estimate for the mean of the parameter based on this sample and examine the distribution 

(shape) of the sample? Does this information raise any red flags with respect to the OPS or N-

QPS? Does this information indicate that the N-QPS may be representative of the entire 

parameter space? 
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Moving on, the N-QPS file that can be used in two primary ways. One can Run file-driven 

Trajectory Sensitivity Run for Baseline, for which we change the SAVEPER to a useful time-

period such as by year in order to create a series of N trajectories for each outcome. The result 

is exported to a tab-delimited file that can be imported into Excel to Compute/graph baseline 

stats by primary outcome, including confidence intervals for the model calculated outcome at 

each time period, since there is now a sample of N model-calculated values at each time point. 

Excel can also be used to create box and whisker plots at each time point, with or without 

outliers. However, we found it more expedient to make these plots using Python. 

For the other primary use of the N-QPS file (or the M-SVS file, which is explained later), we 

first need to: Specify primary high level outcomes of interest such as total cost and net 

performance. The previous sensitivity run was focused on behavior over time for all outcome 

time series, but to compare alternative scenarios in an overall sense, a few key end-of-run 

metrics are needed. And, we need to Specify alternative scenarios of interest; these might 

different configurations or policy changes that could be implemented in the model as switches 

that are used in conjunction with ”magnitude of impact” parameters and timing parameters 

linked to specific model constants. 

Using the N-QPS or M-SVS, we change the SAVPER back to the End of Run and then Make 

file driven sensitivity runs for baseline and each alt. scenario. The results, for the baseline 

and for each scenario are matched pairs of data points (where all of the uncertain parameter 

values are the same for baseline and the alternative). This means that the distributions of the 

differences can be used to determine in a statistically valid fashion the confidence interval 

estimates for the mean of the difference by outcome between baseline and the alternative 

that can be attributed to parameter uncertainty. 

We suggest to Assemble a consolidated spreadsheet to do these analyses. In the upper 

left corner, is O x N, where O is the number of overall outcomes and N is the number of runs. 

Note that the raw sensitivity results file has columns for all the parameters as well as two 

columns for each outcome (start and end). You will be selecting and copying into the 

consolidated sheet just the end columns for each outcome. The data for Alternative 1 will be 

placed below the Baseline results; Alternative 2 below Alternative 1, etc. Then, starting at the 

first row of Alternative 1, columns will be added that compute the differences between the 

Alternative 1 numbers and baseline number, one column for each outcome.  Similarly for 

Alternative 2 vs. baseline, and so forth. Columns for percentage differences can also be added. 

Finally, Create summary table(s) or tab(s) is used to provide the results of relevant 

calculations, such as means and their confidence intervals for each outcome at baseline and 

for each alternative. Also for the differences by outcome between baseline and Alternative 1, 

baseline and Alternative 2, etc. Similarly for the percentage differences. 

A very different approach for creating a set of runs to be used to evaluate the impacts of 

parameter uncertainty is to use the Markov Chain Monte Carlo (MCMC) approach. This begins 
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with Estimate Optimal Outcome Weights. First, one adds to the model a weight variable for 

each outcome instead of specifying the weights numerically as in the MC process, and then 

one specifies the objective function, which is similar to the prior approach except that the 

weights are variables within the model rather than numeric values. One also needs to specify 

the search range for outcome weight constants. The search ranges for the uncertain 

parameters can be the same as for the MC approach. Or, these ranges could be broader than 

those used with the prior approach. No sampling distribution such as Uniform or Triangular is 

specified because the search of parameter space is guided by a heuristic not random sampling. 

Guidance regarding how broad to set the ranges for MCMC varies by expert. Informally we’ve 
heard the comment that very broad ranges will to give the algorithm “room to work.” Others 

have suggested, again, informally, that ranges should not include implausible values. Both 

comments are sensible, suggesting that a careful study of this question is needed. To proceed, 

first a Powell search is done that optimizes the uncertain parameters and the weights 

simultaneously. In our experience, allowing larger ranges may allow the algorithm to find an 

optimum that achieves slightly lower avgMAEM, but higher maxMAEM. The reason is that 

some of the individual outcome are “sacrificed” to achieve lower overall error. However, these 

results may be less realistic. 

Next, is to Conduct MCMC search& generate SVS, which, like MC, varies the uncertain 

parameters over the specified ranges, but uses in the objective function the outcome weights 

that were found in previous step. The Markov Chain-driven search algorithm is designed to 

create a statistically valid sample. It can be quite large and contain many duplicates (which 

apparently helps to assure a sample with the correct properties). Model fitness may be further 

improved, but be less plausible, as mentioned earlier. Results are then exported as a tab-

delimited file. 

One then must Import results into Excel, and, if the population of runs produced by the 

MCMC search is excessively large, one can select a random sample of desired size M from the 

SVS. This subsample of size M, which is still a statistically valid sample (M-SVS), is comparable 

to the N-QPS set of runs created by the conventional MC process described earlier. One can 

proceed to computing stats by parameter using the M-SVS and/or use it to run file-driven 

sensitivity runs, analyze alternative scenarios, etc. 

4. Results 

As an illustration, the MC method was applied to an SD model of medium complexity that 

represents a simple ecological economic system first published by Brander and Taylor (1999) 

and enhanced significantly by Uehara and colleagues (2013, 2015). The model contains 14 

stocks, 25 constants, and 72 auxiliary variables. There are 1000s of feedback loops. Figure 2 

provides a simplified diagram. Although inspired by real world events, the population 

overshoot and collapse on Easter Island, the model is conceptual and not strongly driven by 

empirical data. Key outcome variables are population, natural resources (vegetation). There is 

also a manufactured item in the economy, called Mgood. 
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Figure 2. Model diagram showing stocks, flows, and primary feedback structures. Hexagons are goal 

seeking subsystems in which stocks seek to achieve a variable representing a dynamic goal. Thick lines are 

links that participate in feedback loops containing several model components labeled with “B” & “R.” 

To apply the parameter uncertainty analysis method, first error metrics are created, in this 

case MAEM (mean absolute error over mean) for the population and resource stock. We used 

the Vensim SSTATS macro (author unknown) attached herewith as Appendix 1. This code is 

inserted via text editor (we used Notepad) at the top of the model file starting at the second 

line. Appendix 2 shows the model code for calculating the statistics, which is also inserted into 

the model file via text editor, typically after the “Control” block, which is located after the 
user-defined model variables/constants section. We also needed to convert our reference 

behavior data (which we had originally entered as a time function with the “as graph” feature) 
to an actual data series. We created an Excel spreadsheet with a sheet named RBP that has 

Price

H

Demand H

Supply
Harvest
Good

Total Labor

Supply

Supply
Mfgd
Good

Price

M

Demand M

- -+

-

+

+

Population

Food per

capita

-

+

Natural

Resource

Man
made
capital

R

B

B

R

B

B

B

B

R

RB

B

Labor

for H

Labor
for M

Carrying

capacity

Resource

Growth Rate -

+

B

R

Resource Limiting

Harvesting Loop

Efficiency

Driver Loop

Multiplier

Effect

Loop

B

R
Malthusian Pop

Growth Loop

R

Depreciation

Capital
Formation

Growing

+

Harvesting

+

Shifting
Labor

Adding Lh

Adding Lm

+

+

Consumption
rate M

Production
Rate M

+

+

Capital

Rent

Rate, r

-

+

-

Factor

Demand

Hm

Consumption
Rate H

+

net births

++

Wealth

Labor for
Harvesting

Loop

Technology

Loop

wage H

wage M

+

-

Demand M vs

Supply M

+

+

+

+

+

-

Production
rate

rent income

+

+

Chg in
Wealth

+

+

+

+

+

+

+

+
+

+

+

+

+

-

-

+ +

+

R

R

B

B

Key:                         

* Hexagons contain a

goal-seeking process 

* Thick links

participate in the

significant feedback

loops



Addressing parameter uncertainty in SD Models 9/20/2019, page 9 

 

Time in Row 1 and the two RBP series in Rows 2 and 3. Note that one of these series had data 

for every 20 periods, and the other for every 10 time periods. The SSTATS macro calculations 

are designed to handle this correctly. The Vensim equation for reading this data is “GET XLS 

DATA('Demonstration model RBP data.xlsx','RBP','1','B2')” 

Another step to get the model ready for model analysis is to add a custom graphs file via 

the Control Panel and add custom tables that display the variables calculated by the SSTATS 

macro (R2, MAPE, MAEM, RMSE, Um, Us, Uc, and Count), one table for each Outcome variable 

(Population L and Natural Resource R in the demonstration model). Finally, I/O Objects are 

added to one of the views to display the custom tables. Figure 3 shows the starting point 

outcome trajectories vs. RBP as well as the statistical parameter displays from SSTATS. 

Visually, it is clear that the Population L outcome is reproduced less accurately than Natural 

Resource S. The STATS bear this out: the MAEM Population L is .28 vs .11 for MAEM Natural 

Resource S. 

 

 

 

Figure 3: Initial outcome graphs, model vs. RBP for Population L and Natural Resource S, and SSTATS display 

Before we can use optimization to estimate uncertain parameter values, we need to 

determine appropriate ranges for each parameter to be varied by the Powell search algorithm 

in order to bound its search. Appendix 3 provides an example vensim optimization control file 

(.voc) in which specifies nine uncertain parameters to be varied (see Table 1 below). 

In addition, weights must be specified for the objective function, informed by the relative 

magnitudes and variances of the outcome variables. In this case, Population L weight is set to 

1 and Natural Resource S weight set to 50. The optimization run using the CG (calibration 
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Gaussian) option ran for 20 minutes on a laptop computer. Table 1 shows the resulting optima 

reported in the Vensim “.out” file placed in the directory from which the model was run. 

 Min Start Optima Max 

Regeneration Rate r 0.003 0.04 0.0156 0.1 

Maximum birth rate b0 0.03 0.1 0.1002 0.5 

Maximum death rate d0 0.03 0.2 0.0821 0.5 

Sensitivity of birth rate to manufactured 

good intake b2 

0.3 1 8.287 10 

Sensitivity of birth rate to resource good 

intake b1 

0.3 1 2.705 10 

Sensitivity of death rate to manufactured 

good intake d2 

0.3 1 10 10 

Sensitivity of death rate to manufactured 

good intake d1 

0.1 1 0.958 3 

tau 1 20 83.8 100 

sensitivity to price gap 0.001 .01 0.00196 0.05 

Table 1: Uncertain parameters, Min, Start, Optimal, Max 

All but two of the parameters were modified by a factor of at least 2 and as much as a 

factor of 10. One parameter was selected as the maximum value allowed, which raises a 

yellow flag. Was the upper limit truly an upper limit? The revised MEAMs are .13 for 

population and .17 for the resource. Figure 4 shows the model fitness using the optimal 

values.  

Figure 4: Model fit using the optimal values 

The resource plot looks much worse, and population much better. There could be two 

reasons for this. One, the weight applied to the Natural Resource may have allowed the search 

to sacrifice its fitness; and two, the resource has half as many data points (every 20 time 

periods), so its standardized errors carry half as much weight overall. One could change the 

weights to find a more balanced solution. One could also increase the limits, if plausible, to 

allow the search more latitude. And, one must ask, are the large changes in the parameter 

values consistent with theory, etc.? For this demo, we will move on to the next step. 

Making a large Monte Carlo (MC) run is easy using the sensitivity feature in Vensim, which 

creates a .vsc file. One option for exploring parameter space could be to use Uniform 

distributions between thoughtfully chosen minima and maxima. These values could be the 
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same as those used during calibration or perhaps narrowed somewhat. Another option could 

be to use a Triangular distribution with the optimum value as the mode, which would increase 

samples near the optima. In the demo, since several of the optima are near one of the limits 

set earlier, the min/max will be set to approximately the optimum/3 and 3*optimum. We also 

need to specify a .lst file that lists what we want to be saved in each run. Sensitivity runs 

automatically save the varied parameters used for each run, and in addition, we want to know 

the maxMAEM and average MAEM (to be used to select which runs are qualified). Since we 

don’t need to know the time trajectories, we set the model SAVEPER to the max time (300 in 

this case). This keeps the output file modest in size. Appendix 4 shows the .vsc and .lst files. 

The simulation was set to create 20,000 runs, which took 100 minutes on a laptop. The 

resulting .vdf (vensim data file) was exported (via the model menu) to a tab-delimited file and 

read into Excel using data/get external data/from text (switch to “all files” to see .tab files). 

This was sorted by simple average of MAEMS.  About 800 of the 20K runs were below .25 and 

kept. The other rows were deleted. The file was then sorted by max MAEM, and 213 were less 

than .25 on this metric. The rest were deleted. The two columns for “T1” were also deleted, 

leaving a matrix with 11 columns and 213 rows of data (the parameters for the best-fitting 213 

of the 20K runs). Table 2 shows the first few rows of the spreadsheet.  

Table 2: Initial rows of the N-QPS file 

 

After saving the spreadsheet, one can delete Col A and the metrics columns at the right, and 

then save the file as a .txt (tab-delimited file), the N-QPS. The N-QPS is used to run file-driven 

sensitivity runs in two ways. The first way is make a sensitivity run to obtain outcome 

trajectories for the different well-fitting runs an examine whether they are tightly grouped or 

spread out. The second usage is to capture final outcomes (one or more metrics regarding 

overall ”goodness” or “badness” of the outcome) for base case and alternative configurations. 

But first, we examine the properties of the parameter samples contained in the N-QPS. 

One can easily compute their range compared to the allowed (min to max) range, their mean 

value, and a confidence interval. This is easy, so there is no need to demonstrate this. One can 

also quickly create histogram plots. Figure 5 shows an example. This parameter was limited to 

be in the .03 to .3 range, so none of the well-fitting runs “hit the rails” so to speak, but much 
of the range was included. The mode is about .1 (the optimal value). No yellow flags here. One 

could examine all the parameter in this fashion to build confidence in the sample. 

Sim# 

Maximum 

birth rate 

b0 

Maximum 

death 

rate d0 

Regeneration 

Rate r 

Sensitivity of 

birth rate to 

manufactured 

good intake 

b2 

Sensitivity of 

birth rate to 

resource 

good intake 

b1 

Sensitivity of 

death rate to 

manufactured 

good intake 

d2 

Sensitivity of 

death rate 

to resource 

good intake 

d1 

sensitivity 

to price 

gap Tau 

T2 Max 

of all 

MAEM 

T2 

Simple 

avg of all 

MAEM 

15680 0.087207 0.143948 0.0142 8.28863 1.93021 22.321 2.22121 0.002694 139.841 0.161356 0.015478 

7842 0.116089 0.108901 0.014539 6.24487 1.6217 19.6976 1.03318 0.001929 57.1568 0.166286 0.015137 

2975 0.137109 0.095993 0.016006 9.77164 3.30537 8.86094 0.441421 0.001468 51.0105 0.166973 0.016589 

6032 0.083993 0.110925 0.014528 12.2336 5.62019 11.3299 1.61066 0.004399 98.231 0.16705 0.016654 

9965 0.122615 0.096897 0.015558 7.0892 1.07825 14.0869 1.99178 0.00213 75.8887 0.167135 0.014925 

4540 0.107372 0.082053 0.015048 9.76103 2.14145 9.51846 1.40379 0.001687 124.302 0.168646 0.015623 
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Figure 5: Example histogram for a parameter from the N-QPS 

To put the N-QPS sample to use, a file-driven sensitivity run is done. The SAVEPER is 

changed to 10, and the Sensitivity tool is selected. Previous settings are cleared, and the Type 

is changed to “File.” The N-QPS text file is selected as the file. Next a save list is created. The 

previous one (with the stat variables) is cleared and the two primary outcome variables are 

entered, Population L, and Natural Resource S, for which there is RBP data (and, therefore, 

were used during the model calibration phase). This run took just a minute to complete, and 

the .vdf file it produced is exported via Vensim and imported into Excel. 

The first 10 columns of this trajectory spreadsheet provide the run number (1-213) and the 

the values of the nine uncertain parameter values used for each specific run. The remaining 62 

columns are values at time 0 to 300 (by 10) for the two outcome variables. Amazingly, if one 

selects the 213 rows and the 31 columns for one of the outcome variables, and then requests 

a Box and Whisker plot, it works, although it does not know the time periods. Figure 6: shows 

the trajectory under uncertain for Natural Resource S using box and whiskers. Also, using the 

data in the spreadsheet, the confidence interval of the estimate at each time point can be 

calculated, as well as other statistics. 

 

Figure 6: Box and whisker time series plot using Excel. 
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There is no easy way using Excel to superimpose the RBP on this plot, which would be very 

helpful. Python can be used create much better formatted and more complex charts as 

needed. Figure 9 shows the plots produced using Python showing confidence interval 

trajectories overlaid with the actual data. To prepare the file needed by Python, a version of 

the trajectory spreadsheet was created, named OutcomeTrajectory DataforPythonPlotting 

(OTDPP), in which the columns for run number and the parameter value were deleted. Also, 

two rows were added below the first row. Row 2 contains the actual data to be overlaid. For 

each outcome variable, the appropriate row of the RBP spreadsheet is copied above its 

corresponding section in OTDPP. Since RBP contains 31 values for each outcome trajectory, 

and since the data sections for each outcome in OTDPP is 31 columns wide, it is a simple 

copying process, even for several outcomes. Row 3 in OTDPP provides the time values, which 

can also be copied from RBP (31 cells copied once and pasted N times in OTDPP). 

 

 

Figure 7: Outcome trajectories with confidence Intervals based on N-QPS, with actual data (dots) 
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Another important use of the N-QPS is to compare a baseline case with one or more 

alternative cases. For example, a situation where, as the Natural Resource declines, a new 

technology is developed at a particular point in time that effectively increases the carrying 

capacity by 30%. How much will this impact the most important outcome indicator(s)? That 

indicator could be the size of the net reduction in population from its peak to its trough. Such 

a metric could be added to the model and captured at the end of the run, both for baseline 

and the alternative. Both cases would use the N-QPS file. And the net change in the metric for 

the alternative case, run by run would be calculated, in absolute and percentage terms  

To demonstrate, the variable Pop loss was added to the model, and the SAVEPER changed 

to 300. A basecase N-QPS sensitivity run was done, with the .lst file changed so that Pop loss 

was saved. The run took just a minute or two. Figure 8 shows the distribution of Pop loss in 

the baseline case. The Pop loss for the optimal parameter set was 260, which lies in the middle 

bar, but it appears that a more modest loss is more likely, urging caution when reporting 

“optimal” results. The mean of the sample is 246, and, although the sample clearly would not 

meet a stringent test for normality, the 95% confidence interval for this estimate (treating the 

sample as being “close enough” to normal) is 240 to 252. The result for the optimal parameter 

set (OPS) is not within this interval. However, such a difference may be inconsequential in 

terms of policy-making. 

 

Figure 8: Histogram for outcome metric in baseline case 

Next, the alternative scenario was created, and another file-drive sensitivity run was done. 

Figure 9 shows the Pop loss histogram for the alternative scenario, and the distribution of the 

matched pairs of differences. The mean and confidence interval for Pop loss under alternative 

1 is 219 and [213, 225], and the mean and CI for the distribution of differences between 

baseline and Alternative 1 are -29 and [-31, -27]. The technology helps to a modest degree. 

This completes the demonstration. 
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Figure 9: Alternative 1 Pop loss and differences vs. baseline 

Discussion  

This section is a narrative adapted from a specific, but proprietary, model development 

and application that employed the uncertainty methods discussed in this paper. The narrative 

began by explaining that it accompanies a series of tables and graphs that lay out the 

assumptions and results of a complex system dynamics model, and that all of the graphs in the 

package are time plots covering a specific multi-year time period. It then went on to say that 

the purpose of the model is to determine the extent to which changes over time in keyaspects 

of the system contributed to negative outcomes. The way we have analyzed this question is by 

comparing the results from historically accurate baseline simulations to those representing 

alternative system configurations. In these alternatives simulations, we go back in time to ask 

“what if” things had been different, or what if things are different in the future? 

Part one: baseline modeling and parameter estimation 

The model was developed and tested using the VensimTM simulation software (version 7.2 

Professional dated 2017). Model development was carried out according to established 

practices of system dynamics, which include information gathering, model formulation, model 

testing, and revising of model assumptions as necessary to improve model realism and 

usefulness.  Information came from published studies as well as online data sources.  During 

the process, the model progressed through many iterations.  

The model contains hundreds of interacting equations, over a hundred input constants 

and time series, and over two hundred primary and secondary outputs.  “Primary outputs” 
refers to nearly two dozen variables for which we had historical time-series data, covering 

many aspects of the system. A few time series included all of the historical data, but many 

provided historical data at only a few time points, averaging perhaps half of the historical 

period on average. 

The model’s input constants and time series include many that were estimated with high 

confidence from empirical data, but nearly half of them must be considered to have a wider 
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range of uncertainty. The model’s fixed constants are listed in a table, and the input time 

series are presented as figures. These materials also include data sources and derivations 

(associated logic).  

We used Vensim’s optimization feature (utilizing a standard Powell hill-climbing routine) to 

test the uncertain constants over their plausible ranges and found the best fit to the primary 

output data. The best-fit metric was the Mean Absolute Error as a percent of the Mean 

(MAEM), for each of the primary output variables and for all of them combined.  From this 

testing came the “optimized” version of the model. 

We also used Vensim’s sensitivity testing feature (using standard Monte Carlo 

randomization) to perform millions of runs. In these runs, we allowed the uncertain constants 

to vary over their plausible (or allowed) ranges according to triangular probability 

distributions. We set each triangular peak at the constant’s optimized value, the lower 
extreme at the minimum allowed value, and the upper extreme at the maximum allowed 

value. 

From these runs we found N “qualifying parameter sets” (QPS) with a good fit to the 
primary output data, a fit comparable to that of the optimized run. In particular, we selected 

as QPS only those runs for which the maximum of the individual MAEMs for each of the 

primary outputs was no greater than XX% (the value achieved by the optimized run), and 

where the average across the MAEMs was no greater than YY%. The average MAEM was ZZ% 

for the optimized run, and ZZ was appreciably less than YY. 

The model’s uncertain constants are listed in a table, with relevant sources and notes, as 

well as their optimized values, the min and max allowed values for each, and summary 

statistics for the values of these constants in the QPS. These summary statistics include, for 

each constant, the QPS mean, the 95% sample interval based on the QPS (CI: the 2.5 

percentile and 97.5 percentile), and the sample range as a percentage of the min-to-max 

allowed range.  These summary statistics indicate whether the assumed triangular 

distributions are adequately wide enough to capture the universe of well-fitting parameter 

sets.  If the QPS mean values strayed away from the optimized value, or if the sample range 

were close to 100% of the allowed range, it would indicate that the assumed distributions 

were skewed or insufficiently wide. 

In fact, only a handful of the uncertain constants has a QPS mean value that differed by 

more than X% from the optimized value (and only one [or none] by more than YY%), and all of 

the CI ranges are well within the allowed range.  We conclude that the assumed distributions 

for the uncertain constants are appropriate for finding the universe of well-fitting parameter 

sets.  

Another table lists the MAEM values for the optimized run, including MAEMs for each of 

the primary outputs; for all data points combined; for the average of the outputs; and the 

maximum MAEM across all of the outputs.  This table also lists MAEM summary statistics for 
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the N QPS runs; those statistics include, for each of the primary output variables, the mean of 

the N QPS runs and its 95% sample interval. 

The optimized run provides a better fit to the data (a lower MAEM) than the mean of the 

N QPS runs for all but two of the outputs.  Moreover, the average of the MAEMs (A%) is lower 

for the optimized run than the mean of average MAEMs for the N QPS runs (B%). On the other 

hand, the maximum of the MAEMs is a little greater for the optimized run (C%) than it is for 

the mean of the N QPS runs (D%).  

From these results, we conclude that our Monte Carlo-based approach provided N 

qualifying parameter sets that yield a good fit to the data, nearly as good as that of the 

optimized run.  

The good fits to history of the optimized run may be seen is several figures, where we 

show line graphs for the simulated trajectories for each of the outcomes superimposed on the 

historical data (vertical bars), along with data sources and derivations.   

The good fits to history of the N QPS runs may be seen in additional figures which present 

box-and-whisker plots (see http://mathworld.wolfram.com/Box-and-WhiskerPlot.html) for the 

N QPS, one plot for each year over the modeled time period, superimposed on the historical 

data (green dots).  

Part two: testing alternative situations 

We defined several conditions representing alternatives to be tested using the optimized 

parameter set, as well as against the N QPS.  Each alternative represents a change to the 

system, often at a particular point in time. There changes are often parameterized (made 

controllable) by adding a switch or flag that controls alternative logic (invokes alternative logic 

when the switch is “on.” Often, alternatives are simply parameter changes at particular points 

in time, with constants being added to the model to represent the magnitude of the change 

and the timing of the change. 

We selected several outcome metrics for comparing alternatives against the baseline run.  

Five of these six metrics are key cumulative (end of run) statistics for key results of interest. 

The sixth is the number the state of the systems at the end of the time-period of interest. The 

results are presented in a series of tables, one for each outcome metric.  These tables also 

describe what the alternative configuration represents.   

Each table presents the outcome metric for the baseline and for each of the alternatives.  

They also show the difference between each alternative outcome and the baseline outcome 

(“change vs baseline”), as well as the percentage difference (“% change vs baseline”).  These 

results and calculations are shown for the optimized parameter set; and also for the QPS 

(summarized in terms of mean and the 95% sample interval).  

http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
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When changes against baseline have a negative sign, it means that the net impact of the 

alternative being tested was harmful.  When these changes have a positive sign, it means the 

net impact of the alternative was beneficial.  

The final section of the report from which this documentation sample was extracted 

discussed what the results (described here in completely generic terms) actually mean in real 

context. Of course, this is exactly how any report of simulation results should end: explaining 

what all the modeling and analysis reveals about the system of interest that was previously 

unknown and very important to know! 

 

In conclusion, it is not difficult to evaluate the degree of uncertainty in model outcomes 

due to uncertainty in the parameters used in the model. This paper has provided a flowchart 

that summarizes two ways to do this, and demonstrates one of these approaches with a 

concrete example. A template for documenting results was also provided. 
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Appendix 1: SSTATS Vensim Macro (need to give credit) 

:MACRO: SSTATS(historical,simulated:R2,MAE,MAE over Mean,MAPE,RMSE,MSE,Um,Us,Uc,Count\ 
  ) 
SSTATS = residuals 
 ~ simulated 
 ~ Note that first argument (historical) must be data;  
  second argument (simulation) can be data or a simulation,  
  but if it is data, it will not be checked for existence. 
  This could easily by changed by modifying the code below. 
  Arguments following the : are outputs. They generate model 
  variables that are visible in the listing on the Variable 
  tab of the control panel, and can be used in equations 
  and custom graphs/tables/reports. However, they cannot be 
  made visible on diagrams. 
 | 
 
R2 = r*r 
 ~ Dimensionless 
 ~ Correlation coefficient squared 
 | 
 
MAE= 
 ZIDZ(sum ae,Count) 
 ~ simulated 
 ~ mean absolute error 
 | 
 
MAE over Mean= 
 ZIDZ(MAE,meanx) 
 ~ Dimensionless 
 ~ Mean Absolute Error as a fraction of the mean of the data 
 | 
 
MAPE = ZIDZ(Sum APE,Count) 
 ~ Dimensionless 
 ~ Mean Absolute Percent Error is reported as fraction rather than 
  percentage (x100) for consistency with other the other metrics 
 | 
 
RMSE = SQRT(MSE) 
 ~ simulated 
 ~ Root Mean Square Error 
 | 
 
MSE = dif mea + dif var + dif cov 
 ~ simulated*simulated 
 ~ Mean Square Error. The addition of the three components 
 | 
 
Um = ZIDZ(dif mea,MSE) 
 ~ Dimensionless 
 ~ Bias inequality proportion 
 | 
 
Us = ZIDZ(dif var,MSE) 
 ~ Dimensionless 
 ~ Variance inequality proportion 
 | 
 
Uc = ZIDZ(dif cov,MSE) 
 ~ Dimensionless 
 ~ Covariance inequality proportion 
 | 
 
Count = INTEG(pick/dt,0) 
 ~ Dimensionless 
 ~ Counter for # of points 
 | 
 
residuals= 
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 IF THEN ELSE(pick, Yi - Xi, :NA:) 
 ~ simulated 
 ~ Errors 
 | 
 
r = MIN(1,ZIDZ(Mxy-(meanx*MeanY),Sx*Sy)) 
 ~ Dimensionless 
 ~ Correlation coefficient. Calculated through the 'hand computation' formula. 
     Sterman (1984) pg. 63 
 | 
 
sum ae= INTEG ( 
 ABS(Xi - Yi)/dt, 
  0) 
 ~ simulated 
 ~ Sum of Absolute Errors 
 | 
 
meanx = ZIDZ(Sum Xi,Count) 
 ~ simulated 
 ~ Mean of x (sum x)/n 
 | 
 
Sum APE = INTEG(ABS(ZIDZ(Xi-Yi,Yi))/dt,0) 
 ~ Dimensionless 
 ~ Sum of Absolute Percent Errors is reported as fraction rather than 
  percentage (x100) for consistency with other the other metrics 
 | 
 
dif mea = (meanx-MeanY)*(meanx-MeanY) 
 ~ simulated*simulated 
 ~ Difference of Means (bias) 
 | 
 
dif var = (Sx-Sy)*(Sx-Sy) 
 ~ simulated*simulated 
 ~ Difference of variances 
 | 
 
dif cov = 2*Sx*Sy*(1-r) 
 ~ simulated*simulated 
 ~ Difference of covariances 
 | 
 
pick= IF THEN ELSE(Y = :NA: :OR: X = :NA:, 0, 1) 
 ~ Dimensionless 
 ~ Takes a value of one for every data point available, assuming the data are \ 
  available at intervals of Interval between the Start Time and End Time. 
 | 
 
dt = TIME STEP$ 
 ~ Time$ 
 ~  | 
 
Yi = pick*Y 
 ~ simulated 
 ~ Sampled simulated variable 
 | 
 
Xi = pick*X 
 ~ simulated 
 ~ The historic data series 
 | 
 
Mxy = ZIDZ(SumXY,Count) 
 ~ simulated*simulated 
 ~ Mean of x*y (sum x*y)/n 
 | 
 
MeanY = ZIDZ(Sum Yi,Count) 
 ~ simulated 
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 ~ Mean of y (sum y)/n 
 | 
 
Sx = SQRT(MAX(0,MX2-(meanx*meanx))) 
 ~ simulated 
 ~ Standard Deviation of x. Calculated using the 'hand computation' 
  formula to calculate the standard deviation without prior knowledge of 
  the mean.  Sterman (1984), pg. 64  MAX prevents spurious numerical 
  problems from roundoff 
 | 
 
Sy = SQRT(MAX(0,MY2-(MeanY*MeanY))) 
 ~ simulated 
 ~ Standard Deviation of y. Calculated using the 'hand computation' 
  formula to calculate the standard deviation without prior knowledge of 
  the mean.  Sterman (1984), pg. 64 
 | 
 
Sum Xi = INTEG(Xi/dt,0) 
 ~ simulated 
 ~ Sum of x's (simulated) 
 | 
 
Y = simulated 
 ~ simulated 
 ~ The simulated data series 
 | 
 
X :RAW: := historical 
 ~ simulated 
 ~ The historical data input 
 | 
 
SumXY = INTEG(Xi*Yi/dt,0) 
 ~ simulated*simulated 
 ~ Sum of x*y 
 | 
 
Sum Yi = INTEG(Yi/dt,0) 
 ~ simulated 
 ~ Sum of y 
 | 
 
MX2= 
  ZIDZ(SumX2,Count) 
 ~ simulated*simulated 
 ~ Mean of x^2 
 | 
 
MY2 = ZIDZ(SumY2,Count) 
 ~ simulated*simulated 
 ~ Mean of y^2 
 | 
 
SumX2 = INTEG(Xi*Xi/dt,0) 
 ~ simulated*simulated 
 ~ Sum of x^2 
 | 
 
SumY2 = INTEG(Yi*Yi/dt,0) 
 ~ simulated*simulated 
 ~ Sum of y^2 
 | 
 
:END OF MACRO: 
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Appendix 2: Example Vensim Code to Specify Error Varisbles 

 
******************************************************** 
 .Stats 
********************************************************~ 
  Summary Statistics 
 | 
 
Max of all MAEM = MAX(MAEM Natural Resource S, MAEM Population L) 
 ~ Dmnl 
 ~  | 
 
Residuals Natural Resource S = SSTATS(S actual,Natural Resource S:R2 Natural Resource S\ 
  ,MAE Natural Resource S,MAEM Natural Resource S,MAPE Natural Resource S,RMSE 

PNatural Resource S\ 
  ,MSE Natural Resource S,Um Natural Resource S,Us Natural Resource S,Uc Natural 

Resource S\ 
  ,Count Natural Resource S) 
 ~ Dmnl 
 ~  | 
 
Residuals Population L = SSTATS(pop actual,Population L:R2 Population L,MAE Population L\ 
  ,MAEM Population L,MAPE Population L,RMSE Population L,MSE Population L,Um 

Population L\ 
  ,Us Population L,Uc Population L,Count Population L) 
 ~ Dmnl 
 ~  | 
 
Simple avg of all MAEM = (MAEM Natural Resource S + MAEM Population L) / 2 
 ~ Dmnl 
 ~  | 
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Appendix 3: Sample .voc and .vpd files for the “Estimate Uncertain Parameters” Step 

.voc 

 
:OPTIMIZER=Powell 
:SENSITIVITY=Off 
:MULTIPLE_START=RRandom 
:RANDOM_NUMBER=Default 
:OUTPUT_LEVEL=On 
:TRACE=Off 
:MAX_ITERATIONS=1000 
:SIMS_MAX=10000 
:RESTART_MAX=5 
:PASS_LIMIT=2 
:FRACTIONAL_TOLERANCE=0.0003 
:TOLERANCE_MULTIPLIER=21 
:ABSOLUTE_TOLERANCE=1 
:SCALE_ABSOLUTE=1 
:VECTOR_POINTS=25 
:MCINITMETHOD=2 
:MCPAYOFFTYPE=0 
:MCRECORD=0 
:MCSCHEDULE=0 
:MCLIMIT=10000 
:MCBURNIN=0 
:MCNCHAINS=4 
:MCOUTLIER=0.05 
:MCGAMMA=0.5 
:MCEPSILON=0.01 
:MCDELTA=0.001 
:MCJUMP=0.05 
:MCUPDATEPAIRS=2 
:MCXOVER=0.2 
:MCTEMP=1 
:MCFTEMP=1 
:MCCOOLING=1000 
0.003<=Regeneration Rate r=0.04<=0.1 
0.03<=Maximum birth rate b0=0.1<=.5 
0.03<=Maximum death rate d0=0.2<=0.5 
0.3<=Sensitivity of birth rate to manufactured good intake b2=1<=10 
0.3<=Sensitivity of birth rate to resource good intake b1=1<=10 
0.3<=Sensitivity of death rate to manufactured good intake d2=1<=10 
0.1<=Sensitivity of death rate to resource good intake d1=1<=3 
1<=tau=20<=100 
.001<=sensitivity to price gap=.01<=.05 
 
 

.vpd 
 
*CG 
Population L |pop actual/1 
Natural Resource S |S actual/50 
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Appendix 4: Demo .vsc and .lst files for the Sensitivity MC run step 

.vsc 
 
100000,M,1234,,0 
Maximum birth rate b0=RANDOM_TRIANGULAR(.03,.3,.03,.1,.3) 
Maximum death rate d0=RANDOM_TRIANGULAR(.03,.3,.03,.08,.3) 
Sensitivity of birth rate to manufactured good intake 

b2=RANDOM_TRIANGULAR(2,20,2,8.3,20) 
Sensitivity of birth rate to resource good intake b1=RANDOM_TRIANGULAR(1,10,1,2.7,10) 
Sensitivity of death rate to manufactured good intake 

d2=RANDOM_TRIANGULAR(3,30,3,10,30) 
Sensitivity of death rate to resource good intake d1=RANDOM_TRIANGULAR(.3,3,.3,.96,3) 
tau=RANDOM_TRIANGULAR(20,200,20,84,200) 
sensitivity to price gap=RANDOM_TRIANGULAR(.0005,.005,.0005,.002,.005) 
Regeneration Rate r=RANDOM_TRIANGULAR(.005,.05,.005,.016,.05) 
 

.lst 
 
Max of all MAEM 
Simple avg of all MAEM 
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