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ABSTRACT

The rapid progress in human-genome sequencing is leading
to a high availability of genomic data. This data is noto-
riously very sensitive and stable in time. It is also highly
correlated among relatives. A growing number of genomes
are becoming accessible online (e.g., because of leakage, or
after their posting on genome-sharing websites). What are
then the implications for kin genomic privacy? We formal-
ize the problem and detail an efficient reconstruction attack
based on graphical models and belief propagation. With this
approach, an attacker can infer the genomes of the relatives
of an individual whose genome is observed, relying notably
on Mendel’s Laws and statistical relationships between the
nucleotides (on the DNA sequence). Then, to quantify the
level of genomic privacy as a result of the proposed infer-
ence attack, we discuss possible definitions of genomic pri-
vacy metrics. Genomic data reveals Mendelian diseases and
the likelihood of developing degenerative diseases such as
Alzheimer’s. We also introduce the quantification of health
privacy, specifically the measure of how well the predisposi-
tion to a disease is concealed from an attacker. We evaluate
our approach on actual genomic data from a pedigree and
show the threat extent by combining data gathered from a
genome-sharing website and from an online social network.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; J.3 [Life and Medical Sciences]:
Biology and genetics; K.4.1 [Computer and Society]: Pub-
lic Policy Issues—Privacy
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∗The family of Henrietta Lacks (August 1, 1920 - October
4, 1951), whose DNA was sequenced and published online
without the consent of her family.
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1. INTRODUCTION
With the help of rapidly developing technology, DNA se-

quencing is becoming less expensive. As a consequence, the
research in genomics has gained speed in paving the way to
personalized (genomic) medicine, and geneticists need large
collections of human genomes to further increase this speed.
Furthermore, individuals are using their genomes to learn
about their (genetic) predispositions to diseases, their ances-
tries, and even their (genetic) compatibilities with potential
partners. This trend has also caused the launch of health-
related websites and online social networks (OSNs), in which
individuals share their genomic data (e.g., OpenSNP [1] or
23andMe [2]). Thus, already today, thousands of genomes
are available online.

Even though most of the genomes on the Internet are
anonymized, it is possible to find genomes with the iden-
tifiers of their owners (e.g., OpenSNP [1]). Furthermore, it
has been shown that anonymization is not sufficient for pro-
tecting the real identities of the genome donors [29,47]. Once
the owner of a genome is identified, he is faced with the risk
of discrimination (e.g., by employers or insurance compa-
nies) [9]. Some believe that they have nothing to hide about
their genetic structure, hence they might decide to give full
consent for the publication of their genomes on the Inter-
net to help genomic research. However, our DNA sequences
are highly correlated to our relatives’ sequences. The DNA
sequences between two random human beings are 99.9% sim-
ilar, and this value is even higher for closely related people.
Consequently, somebody revealing his genome does not only
damage his own genomic privacy, but also puts his relatives’
privacy at risk [46]. Moreover, currently, a person does not
need consent from his relatives to share his genome online.
This is precisely where the interesting part of the story be-
gins: kin genomic privacy.

A recent New York Times’ article [3] reports the contro-
versy about sequencing and publishing, without the permis-
sion of her family, the genome of Henrietta Lacks (who died
in 1951). On the one hand, the family members think that
her genome is private family information and it should not
be published without the consent of the family. On the
other hand, some scientists argued that the genomes of cur-
rent family members have changed so much over time (due
to gene mixing during reproduction), that nothing accurate
could be told about the genomes of current family members
by using Henrietta Lacks’ genome. As we will also show in
this work, they are wrong. Minutes after Henrietta Lacks’
genome was uploaded to a public website called SNPedia,
researchers produced a report full of personal information



about Henrietta Lacks. Later, the genome was taken offline,
but it had already been downloaded by several people, hence
both her and (partially) the Lacks family’s genomic privacy
was already lost.

Unfortunately, the Lacks, even though possibly the most
publicized family facing this problem, are not the only fam-
ily facing this threat. As we mentioned before, the genomes
of thousands of individuals are available online. Once the
identity of a genome donor is known, an attacker can learn
about his relatives (or his family tree) by using an auxiliary
side channel, such as an OSN, and infer significant informa-
tion about the DNA sequences of the donor’s relatives. We
will show the feasibility of such an attack and evaluate the
privacy risks by using publicly available data on the Web.

Although the researchers took Henrietta Lacks’ genome
offline from SNPedia, other databases continue to publish
portions of her genomic data. Publishing only portions of
a genome does not, however, completely hide the unpub-
lished portions; even if a person reveals only a part of his
genome, other parts can be inferred using the statistical rela-
tionships between the nucleotides in his DNA. For example,
James Watson, co-discoverer of DNA, made his whole DNA
sequence publicly available, with the exception of one gene
known as Apolipoprotein E (ApoE), one of the strongest
predictors for the development of Alzheimer’s disease. How-
ever, later it was shown that the correlation (called link-
age disequilibrium by geneticists) between one or multiple
polymorphisms and ApoE can be used to predict the ApoE
status [40]. Thus, an attacker can also use these statisti-
cal relationships (which are publicly available) to infer the
DNA sequences of a donor’s family members, even if the
donor shares only part of his genome. It is important to
note that these privacy threats not only jeopardize kin ge-
nomic privacy, but, if not properly addressed, these issues
could also hamper genomic research due to untimely fear of
potential misuse of genomic information.

In this work, we evaluate the genomic privacy of an indi-
vidual threatened by his relatives revealing their genomes.
Focusing on the most common genetic variant in human pop-
ulation, single nucleotide polymorphism (SNP), and con-
sidering the statistical relationships between the SNPs on
the DNA sequence, we quantify the loss in genomic privacy
of individuals when one or more of their family members’
genomes are (either partially or fully) revealed. To achieve
this goal, first, we design a reconstruction attack based on
a well-known statistical inference technique. The computa-
tional complexity of the traditional ways of realizing such in-
ference grows exponentially with the number of SNPs (which
is on the order of tens of millions) and relatives. Therefore,
in order to infer the values of the unknown SNPs in linear
complexity, we represent the SNPs, family relationships and
the statistical relationships between SNPs on a factor graph
and use the belief propagation algorithm [37, 41] for infer-
ence. Then, using various metrics, we quantify the genomic
privacy of individuals and show the decrease in their level of
genomic privacy caused by the published genomes of their
family members. We also quantify the health privacy of the
individuals by considering their (genetic) predisposition to
certain serious diseases. We evaluate the proposed inference
attack and show its efficiency and accuracy by using real
genomic data of a pedigree. More importantly, by using ge-
nomic data and pedigree information we collected from a
public genome-sharing website and an OSN, we show that

the proposed inference attack threatens not only the Lacks
family, but also many other families.

The rest of the paper is organized as follows. In Section 2,
we give a brief background on genomics and belief propaga-
tion. In Section 3, we present the proposed framework in
detail. In Section 4, we evaluate the performance of the pro-
posed inference attack using different metrics. In Section 5,
we show how the proposed inference attack threatens the ge-
nomic and health privacy of several families gathered from
OSNs. In Section 6, we summarize the related work on ge-
netic inference and genomic-privacy protection. Finally, we
conclude the paper in Section 7.

2. BACKGROUND
In this section, we briefly introduce the relevant genetic

principles, as well as the concept of belief propagation.

2.1 Genomics 101
DNA is a double-helix structure that consists of two com-

plementary polymer chains. Genetic information is encoded
on the DNA as a sequence of nucleotides (A,T,G,C) and
a human DNA includes around 3 billion nucleotide pairs.
With the decreasing cost of DNA sequencing, genomic data
is currently being used mainly in the following two areas:
(i) clinical diagnostics, for personalized genomic medicine
and genetic research (e.g., genome-wide association stud-
ies1), and (ii) direct-to-consumer genomics, for genetic risk
estimation of various diseases or for recreational activities
such as ancestry search. In the following, we briefly intro-
duce some concepts, which we use throughout this paper,
about the human genome and reproduction.

2.1.1 Single Nucleotide Polymorphism

As already mentioned, human beings have 99.9% of their
DNA in common. Thus, there is no need to focus on the
whole DNA but rather on the most important variants. Sin-
gle nucleotide polymorphism (SNP) is the most common
DNA variation in human population. A SNP occurs when
a nucleotide (at a specific position on the DNA) varies be-
tween individuals of a given population (as illustrated in
Fig. 1). There are approximately 50 million SNP positions
in human population [4]. Recent discoveries show that the
susceptibility of an individual to several diseases can be com-
puted from his SNPs [5, 33]. For example, it has been re-
ported that two particular SNPs (rs7412 and rs429358) on
the Apolipoprotein E (ApoE) gene indicate an (increased)
risk for Alzheimer’s disease. SNPs carry privacy-sensitive
information about individuals’ health, hence we will quan-
tify health privacy focusing on individuals’ published (or
inferred) SNPs and the diseases they reveal.

In general, two different nucleotides (called alleles) are
observed at a given SNP position: (i) the major allele is
the most frequently observed nucleotide, and (ii) the minor
allele is the rare nucleotide.2 From here on, we represent the
major allele as B for a SNP position, and the minor allele
as b (where both B and b are in {A, T,G,C}).
Furthermore, each SNP position contains two nucleotides

(one inherited from the mother and one from the father, as
we will discuss next). Thus, the content of a SNP position

1Examination of many genetic variants in different individ-
uals to determine if any variant is associated with a trait.
2The two alleles for the SNP position in Fig. 1 are C and T.
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Figure 1: Single nucleotide polymorphism (SNP)
with alleles C and T illustrated on a single string
of two different individuals’ DNAs.
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Table 1: Mendelian inheritance probabilities for a
SNP j, given different genotypes for the parents.
The probabilities of the child’s genotype is repre-
sented in parentheses. Each table entry represents
(

Pr(xC
j = BB|xM

j , xF
j ),Pr(x

C
j = Bb|xM

j , xF
j ),Pr(x

C
j =

bb|xM
j , xF

j )
)

.

can be in one of the following states: (i) BB (homozygous-
major genotype), if an individual receives the same major
allele from both parents; (ii) Bb (heterozygous genotype),
if he receives a different allele from each parent (one minor
and one major); or (iii) bb (homozygous-minor genotype),
if he inherits the same minor allele from both parents. We
represent the content of a SNP position as xi

j for SNP j

at individual i, where xi
j ∈ {BB,Bb, bb}. For simplicity

of presentation, in the rest of the paper, we denote BB as
0, Bb as 1, and bb as 2 (i.e., xi

j ∈ {0, 1, 2}). Finally, each

SNP i is assigned a minor allele frequency (MAF), pbi , which
represents the frequency at which the minor allele (b) of the
corresponding SNP occurs in a given population (typically,
0 < pbi < 0.5).

2.1.2 Reproduction

Mendel’s First Law states that alleles are passed indepen-
dently from parents to children for different meioses (the
process of cell division necessary for reproduction). For each
SNP position, a child inherits one allele from his mother and
one from his father. Each allele of a parent is inherited by
a child with equal probability of 0.5. Let FR(x

M
j , xF

j , x
C
j )

be the function modeling the Mendelian inheritance for a
SNP j, where (M,F,C) represent mother, father, and child,
respectively. We illustrate the Mendelian inheritance prob-
abilities for a SNP j in Table 1.

Based on FR(x
M
j , xF

j , x
C
j ), we can say that, given both

parents’ genomes, a child’s genome is conditionally indepen-
dent of all other ancestors’ genomes.

2.1.3 Linkage Disequilibrium

As we discussed before, DNA sequences are highly corre-
lated, leading to interdependent privacy risks. Linkage dis-

equilibrium (LD) [24] is a correlation that appears between
any pair of SNP positions in the whole genome due to the
population’s genetic history. Because of LD, the content of
a SNP position can be inferred from the contents of other
SNP positions. The strength of the LD between two SNP

positions is usually represented by r2 (or D
′

), where r2 = 1
represents the strongest LD relationship.

2.2 Belief Propagation
Belief propagation [37,41] is a message-passing algorithm

for performing inference on graphical models (Bayesian net-
works, Markov random fields). It is typically used to com-
pute marginal distributions of unobserved variables condi-
tioned on observed ones. Computing marginal distributions
is hard in general as it might require summing over an ex-
ponentially large number of terms. The belief propagation
algorithm can be described in terms of operations on a factor
graph, a graphical model that is represented as a bipartite
graph. One of the two disjoint sets of the factor graph’s ver-
tices represents the (random) variables of interest, and the
second set represents the functions that factor the joint prob-
ability distribution (or global function) based on the depen-
dences between variables. An edge connects a variable node
to a factor node if and only if the variable is an argument of
the function corresponding to the factor node. The marginal
distribution of an unobserved variable can be exactly com-
puted by using the belief propagation algorithm if the factor
graph has no cycles. However, the algorithm is still well-
defined and often gives good approximate results for factor
graphs with cycles. Belief propagation is commonly used in
artificial intelligence and information theory. It has demon-
strated empirical success in numerous applications including
LDPC codes [42], reputation management [11, 12], and rec-
ommender systems [10].

3. THE PROPOSED FRAMEWORK
In this section, we formalize our approach and present

the different components that will allow us to quantify kin
genomic privacy. Fig. 2 gives an overview of the framework.

In a nutshell, the goal of the adversary is to infer some
targeted SNPs of a member (or multiple members) of a tar-
geted family. We define F to be the set of family members
in the targeted family (whose family tree, showing the fa-
milial connections between the members, is denoted as GF)
and S to be the set of SNP IDs (i.e., positions on the DNA
sequence), where |F| = n and |S| = m. Note that the SNP
IDs are the same for all the members of the family. We
also let xi

j be the value of SNP j (j ∈ S) for individual i

(i ∈ F), where xi
j ∈ {0, 1, 2} (as introduced in Section 2.1).

Furthermore, Xi = {xi
j : j ∈ S, i ∈ F} represents the set

of SNPs for individual i. We let X be the n × m matrix
that stores the values of the SNPs of all family members.
Some entries of X might be known by the adversary (the
observed genomic data of one or more family members) and
others might be unknown. We denote the set of SNPs from
X whose values are unknown as XU, and the set of SNPs
from X whose values are known (by the adversary) as XK.

FR(x
M
j , xF

j , x
C
j ) is the function representing the Mendelian

inheritance probabilities (in Table 1), where (M,F,C) rep-
resent mother, father, and child, respectively. The m × m
matrix L represents the pairwise linkage disequilibrium (LD)
between the SNPs in S, that can be expressed by r2 and
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Figure 2: Overview of the proposed framework to quantify kin genomic privacy. Each vector Xi (i ∈ {1, . . . , n})
includes the set of SNPs for an individual in the targeted family. Furthermore, each letter pair in Xi represents
a SNP xi

j; and for simplicity, each SNP xi
j can be represented using {BB,Bb, bb} (or {0, 1, 2}), as discussed in

Section 2.1.1. Once the health privacy is quantified, the family should ideally decide whether to reveal less
or more of their genomic information through the genomic-privacy preserving mechanism (GPPM).

D′; Li,j refers to the matrix entry at row i and column j.
Li,j > 0 if i and j are in LD, and Li,j = 0 if these two
SNPs are independent (i.e., there is no LD between them).
P = {pbi : i ∈ S} represents the set of minor allele probabil-
ities (or MAF) of the SNPs in S. Finally, note that a joint
probability p(xi, xj) can be derived from Li,j , p

b
i , and pbj .

The adversary carries out a reconstruction attack to infer
XU by relying on his background knowledge, FR(x

M
j , xF

j , x
C
j ),

L, P, and on his observation XK. Once the targeted SNPs
are inferred by the adversary, we evaluate genomic and health
privacy of the family members based on the adversary’s suc-
cess and his certainty about the targeted SNPs and the dis-
eases they reveal. Finally, we discuss some ideas to preserve
the individuals’ genomic and health privacy.

3.1 Adversary Model
An adversary is defined by his objective(s), attack(s), and

knowledge. The objective of the adversary is to compute
the values of the targeted SNPs for one or more members of
a targeted family by using (i) the available genomic data of
one or more family members, (ii) the familial relationships
between the family members, (iii) the rules of reproduction
(in Section 2.1.2), (iv) the minor allele frequencies (MAFs)
of the nucleotides, and (v) the population LD values be-
tween the SNPs. We note that (i) and (ii) can be gathered
online from genome-sharing websites and OSNs, and (iii),
(iv), and (v) are publicly known information. Note that, in
the future, the increasing possibility to accurately sequence,
and to impute the actual haplotypes carried by an individ-
ual in each of the copies of the diploid genome will allow a
more accurate inference of relatives’ genotype than relying
on population LD patterns only.

Various attacks can be launched, depending on the adver-
sary’s interest. The adversary might want to infer one par-
ticular SNP of a specific individual (targeted-SNP-targeted-
relative attack) or one particular SNP of multiple relatives
in the targeted family (targeted-SNP-multiple-relatives at-
tack) by observing one or more other relatives’ SNP at the
same position. Furthermore, the adversary might also want
to infer multiple SNPs of the same individual (multiple-SNP-
targeted-relative attack) or multiple SNPs of multiple fam-
ily members (multiple-SNP-multiple-relatives attack) by ob-
serving SNPs at various positions of different relatives. In
this paper, we propose an algorithm that implements the lat-
ter attack, from which any other attacks can be carried out.
We formulate this attack as a statistical inference problem.

3.2 Inference Attack
We formulate the reconstruction attack (on determining

the values of the targeted SNPs) as finding the marginal
probability distributions of unknown variables XU, given the
known values in XK, familial relationships, and the publicly
available statistical information. We represent the marginal
distribution of a SNP j for an individual i as p(xi

j |XK).
These marginal probability distributions could tradition-

ally be extracted from p(XU|XK,FR(x
M
j , xF

j , x
C
j ),L,GF,P),

which is the joint probability distribution function of the
variables in XU, given the available side information and the
observed SNPs. Then, clearly, each marginal probability
distribution could be obtained as follows:

p(xi
j |XK) =

∑

XU\{xi
j
}

p(XU|XK,FR(x
M
j , xF

j , x
C
j ),L,GF,P),

(1)



where the notation XU\{x
i
j} implies all variables in XU ex-

cept xi
j . However, the number of terms in (1) grows expo-

nentially with the number of variables, making the compu-
tation infeasible considering the scale of the human genome
(which includes tens of million of SNPs). In the worst case,
the computation of the marginal probabilities has a com-
plexity of O

(

3nm
)

. Thus, we propose to factorize the joint
probability distribution function into products of simpler lo-
cal functions, each of which depends on a subset of variables.
These local functions represent the conditional dependences
(due to LD and reproduction) between the different variables
in X. Then, by running the belief propagation algorithm on
a factor graph, we can compute the marginal probability
distributions in linear complexity (with respect to nm).

A factor graph is a bipartite graph containing two sets
of nodes (corresponding to variables and factors) and edges
connecting these two sets. Following [37], we form a factor
graph by setting a variable node for each SNP xi

j (j ∈ S
and i ∈ F). We use two types of factor nodes: (i) famil-
ial factor node, representing the familial relationships and
reproduction, and (ii) LD factor node, representing the LD
relationships between the SNPs. We summarize the connec-
tions between the variable and factor nodes below (Fig. 3):

• Each variable node xi
j has its familial factor node f i

j

and they are connected. Furthermore, xk
j (k 6= i) is

also connected to f i
j if k is the mother or father of i

(in GF). Thus, the maximum degree of a familial factor
node is 3.

• Variable nodes xi
j and xi

m are connected to a LD factor

node gij,m if SNP j is in LD with SNP m. Since the
LD relationships are pairwise between the SNPs, the
degree of a LD factor node is always 2.

Given the conditional dependences given by reproduction
and LD, the global distribution p(XU|XK,FR(x

M
j , xF

j , x
C
j ),

L,GF,P) can be factorized into products of several local
functions, each having a subset of variables from X as argu-
ments:

p(XU|XK,FR(x
M
j , xF

j , x
C
j ),L,GF,P) =

1

Z

[

∏

i∈F

∏

j∈S

f i
j (x

i
j ,Θ(xi

j),FR(x
M
j , xF

j , x
C
j ),P)

]

×

[

∏

i∈F

∏

(j,m) s.t.
Lj,m 6=0

gij,m(xi
j , x

i
m,Lj,m)

]

, (2)

where Z is the normalization constant, and Θ(xi
j) is the set

of values of SNP j for the mother and father of i (in GF).
Next, we introduce the messages between the factor and

the variable nodes to compute the marginal probability dis-
tributions using belief propagation. We denote the messages
from the variable nodes to the factor nodes as µ. We also
denote the messages from familial factor nodes to variable
nodes as λ, and from LD factor nodes to variable nodes as

β. Let X(ν) = {xi
j

(ν)
: j ∈ S, i ∈ F} be the collection of vari-

ables representing the values of the variable nodes at the

iteration ν of the algorithm. The message µ
(ν)
i→k(x

i
j

(ν)
) de-

notes the probability of xi
j

(ν)
= ℓ (ℓ ∈ {0, 1, 2}), at the νth

iteration. Furthermore, λ
(ν)
k→i(x

i
j

(ν)
) denotes the probability

that xi
j

(ν)
= ℓ, for ℓ ∈ {0, 1, 2}, at the νth iteration given

F
(2)

C
(3)

M
(1)

(c)

Set of family members: Mother (M), Father (F) and 

Child (C). We represent M as 1, F as 2, and C as 3.

Set of SNP IDs.

Variable node representing the value of SNP j for 

individual I, where .

Familial factor node, representing the familial 

relationships and reproduction.

LD factor node, representing the LD relationship 

between the SNPs.

(a) (b)

Figure 3: The factor graph representation of a trio
(mother, father, child) using 3 SNPs. (a) GF, show-
ing the familial connections among the trio. (b) de-
scriptions of the notations in the factor graph. (c)
factor graph representation of the trio using SNPs
in S = {1, 2, 3}. The message passing is described on
the nodes (x1

1, f
3
1 , and g11,2) highlighted in the graph.

Θ(xi
j), FR(x

M
j , xF

j , x
C
j ), and P. Finally, β

(ν)
k→i(x

i
j

(ν)
) denotes

the probability that xi
j

(ν)
= ℓ, for ℓ ∈ {0, 1, 2}, at the νth

iteration given the LD relationships between the SNPs.
For the clarity of presentation, we choose a simple fam-

ily tree consisting of a trio (i.e., mother, father, and child)
in Fig 3(a), and 3 SNPs (i.e., |F| = 3 and |S| = 3). In
Fig. 3(c), we show how the trio and the SNPs are repre-
sented on a factor graph, where i = 1 represents the mother,
i = 2 represents the father, and i = 3 represents the child.
Furthermore, the 3 SNPs are represented as j = 1, j = 2,
and j = 3, respectively. We describe the message exchange
between the variable node representing the first SNP of the
mother (x1

1), the familial factor node of the child (f3
1 ), and

the LD factor node g11,2. The belief propagation algorithm
iteratively exchanges messages between the factor and the
variable nodes in Fig. 3(c), updating the beliefs on the val-
ues of the targeted SNPs (in XU) at each iteration, until
convergence. We denote the variable and factor nodes x1

1,
f3
1 , and g11,2 with the letters i, k, and z, respectively.
The variable nodes generate their messages (µ) and send

to their neighbors. Variable node i forms µ
(ν)
i→k(x

1
1
(ν)

) by
multiplying all information it receives from its neighbors ex-
cluding the familial factor node k.3 Hence, the message from
variable node i to the familial factor node k at the νth iter-
ation is given by

µ
(ν)
i→k(x

1
1
(ν)

) =
1

Z
×
∏

w∈(∼k)

λ
(ν−1)
w→i (x1

1
(ν−1)

)×
∏

y∈{z,g1
1,3

}

β
(ν−1)
y→i (x1

1
(ν−1)

),

(3)

3The message µ
(ν)
i→z(x

1
1
(ν)

) from the variable node i LD fac-
tor node z is constructed similarly.



where Z is a normalization constant, and the notation (∼
k) means all familial factor node neighbors of the variable
node i, except k. This computation is repeated for every
neighbor of each variable node. It is important to note that
the message in (3) is valid if the value of x1

1 is unknown to the
adversary (i.e., x1

1 ∈ XU). However, the value of x1
1 can also

be observed by the adversary (i.e., x1
1 ∈ XK). Thus, if x1

1 ∈

XK and x1
1 = ρ (ρ ∈ {0, 1, 2}), then µ

(ν)
i→k(x

1
1
(ν)

= ρ) = 1 and

µ
(ν)
i→k(x

1
1
(ν)

) = 0 for other potential values of x1
1 (regardless

of the values of the messages received by the variable node
i from its neighbors).

Next, the factor nodes generate their messages. The mes-
sage from the familial factor node k to the variable node i
at the νth iteration is formed using the principles of belief
propagation as

λ
(ν)
k→i(x

1
1
(ν)

) =
∑

{x2
1
,x3

1
}

f3
1 (x

1
1,Θ(x1

1),FR(x
M
j , xF

j , x
C
j ),P)

∏

y∈{x2
1
,x3

1
}

µ
(ν)
y→k(x

1
1
(ν)

). (4)

Note that f3
1 (x

1
1,Θ(x1

1),FR(x
M
j , xF

j , x
C
j ),P) ∝ p(x1

1|Θ(x1
1),

FR(x
M
j , xF

j , x
C
j ),P), and this probability is computed using

Table 1. Furthermore, if the degree of the familial factor
node is 1 for a particular SNP, then the local function cor-
responding to the familial factor node only depends on the
MAF of the corresponding SNP. For example, the degree of
f1
1 (in Fig. 3(c)) is 1, hence f1

1 (x
1
1,Θ(x1

1),FR(x
M
j , xF

j , x
C
j ),P)

∝ p(x1
1|p

b
1). The above computation must be performed for

every neighbor of each familial factor node.
Similarly, the message from the LD factor node z to the

variable node i at the νth iteration is formed as

β
(ν)
z→i(x

1
1
(ν)

) =
∑

x1
2

g11,2(x
1
1, x

1
2,L1,2)

∏

y∈{x1
2
}

µ
(ν)
y→k(x

1
1
(ν)

). (5)

As before, this computation is performed for every neighbor
of each LD factor node. We further note that g11,2(x

1
1, x

1
2,L1,2)

∝ p(x1
1, x

1
2), which is derived from L1,2, p

b
1, and pb2. The al-

gorithm proceeds to the next iteration in the same way as
the νth iteration.

The algorithm starts at the variable nodes. Thus, at the
first iteration of the algorithm (i.e., ν = 1), the variable node
i sends messages to its neighboring factor nodes based on the
following rules: (i) If the value of x1

1 is unknown to the ad-

versary (x1
1 ∈ XU), µ

(1)
i→k(x

1
1
(1)

) = 1 for all potential values
of x1

1 and, (ii) if the value of x1
1 is known to the adversary

(x1
1 ∈ XK) and x1

1 = ρ (ρ ∈ {0, 1, 2}), µ
(1)
i→k(x

1
1
(1)

= ρ) = 1

and µ
(1)
i→k(x

1
1
(1)

) = 0 for other potential values of x1
1. The

iterations stop when all variables in XU have converged. The
marginal probability of each variable in XU is given by mul-
tiplying all the incoming messages at each variable node.

3.3 Computational Complexity
The computational complexity of the proposed inference

attack is proportional to the number of factor nodes. In our
setting, there are nm familial factor nodes and a maximum
of nm(m − 1)/2 LD factor nodes. Hence, the worst-case
computational complexity per iteration is O

(

nm2
)

. How-
ever, as each SNP is in LD with a limited number of other
SNPs, the matrix L is sparse and the number of LD factor
nodes grows with m rather than with m(m−1)/2, especially

if we focus on SNPs in strong LD only. Thus, the average
computational complexity per iteration is O

(

nm
)

. Based
on our experiments, we can state that the number of itera-
tions before convergence is a small constant, between 10 and
15. Note finally that this complexity can be further reduced
by using similar techniques developed for message-passing
decoding of LDPC codes (e.g., working in log-domain [20]).

3.4 Privacy Metrics
A crucial step towards protecting kin genomic privacy is to

quantify the privacy loss induced by the release of genomic
information. Through the inference attack, the adversary
infers the targeted SNPs (in XU) belonging to the members
of a targeted family by using his background knowledge and
observed genomic data (of the family members). The in-
ferred information can be expressed as the posterior distri-
bution p(XU|XK,FR(x

M
j , xF

j , x
C
j ),L,GF,P). Moreover, each

posterior marginal probability distribution is represented as
p(xi

j |XK), for all i ∈ F, j ∈ S. We propose to quantify kin
genomic privacy using the following metrics: expected esti-
mation error (incorrectness) and uncertainty.4

Correctness was already proposed in the context of loca-
tion privacy [45]. In our scenario, correctness quantifies the
adversary’s success in inferring the targeted SNPs. That is,
it quantifies the expected distance between the adversary’s
estimate on the value of a SNP, xi

j (xi
j ∈ XU) and the true

value of the corresponding SNP, x̂i
j . This distance can be

expressed as the expected estimation error as follows:

Ei
j =

∑

xi
j
∈{0,1,2}

p(xi
j |XK)||x

i
j − x̂i

j ||. (6)

Privacy can also be represented as the adversary’s uncer-
tainty [22, 43], that is the ambiguity of p(xi

j |XK). This un-
certainty is generally considered to be maximum if the pos-
terior distribution is uniform. This definition of uncertainty
can be quantified as the (normalized) entropy of p(xi

j |XK)
as follows:

Hi
j =

−
∑

xi
j
∈{0,1,2} p(x

i
j |XK) log p(x

i
j |XK)

log(3)
. (7)

The higher the entropy is, the higher is the uncertainty.
Finally, we propose another entropy-based metrics that

quantifies the mutual dependence between the hidden ge-
nomic data that the adversary is trying to reconstruct, and
the observed data. This is quantified by mutual information
I(xi

j ;XK) = H(xi
j) − H(xi

j |XK) [8]. As privacy decreases
with mutual information, we propose the following (normal-
ized) privacy metrics:

Iij = 1−
H(xi

j)−H(xi
j |XK)

H(xi
j)

=
H(xi

j |XK)

H(xi
j)

. (8)

The aforementioned metrics are useful for quantifying the
genomic privacy of individuals. In order to quantify a more
tangible privacy, we must convert these genomic-privacy met-
rics into health-privacy metrics. To quantify an individual’s
health privacy, we focus on his predisposition to different
diseases. Let Sd be the set of IDs of the SNPs that are as-
sociated with a disease d. Then, a metrics quantifying the

4These metrics are not specific to the proposed inference
attack; they can be used to quantify genomic privacy in
general.



health privacy for an individual i regarding the disease d can
be defined as follows:

Di
d =

1
∑

k∈Sd
ck

∑

k∈Sd

ckG
i
k, (9)

where Gi
k is the genomic privacy of a SNP k for individual

i, computed using (6), (7), or (8), and ck is the contribution
of SNP k to disease d.5 Other health-privacy metrics based
on non-linear combinations of genotypes or combinations of
alleles will be defined in future work. Note that health-
privacy metrics are valid at a given time, and cannot be used
to evaluate future privacy provision, as genome research can
change knowledge on the contribution of SNPs to diseases.

3.5 Genomic-Privacy Preserving Mechanism
Individuals willing to share genomic data for research or

recreational purposes might be unwilling to share all their
DNA sequence, and thus need to properly obfuscate the sen-
sitive part(s) before releasing their genomic data. To do so,
their DNA will go through an obfuscation process, that we
call genomic-privacy preserving mechanism (GPPM). GPPM
can be implemented using one of the following techniques:
(i) hiding the SNPs, or (ii) reducing the precision or the
quantity of the revealed SNPs.

Hiding all or specific SNPs can be achieved either by not
releasing them or by encrypting them. Obviously, not re-
leasing any of the SNPs would hinder genetic research, thus
it is not a preferred way to protect the genomic privacy
of individuals. Instead of not releasing the SNPs, the use of
cryptographic algorithms to encrypt the genome is proposed.
For example, Kantarcioglu et al. propose using homomor-
phic encryption on the SNPs of the individuals to perform
genetic research on the encrypted SNPs [35]. However, the
security of an individual’s genome should be guaranteed for
at least 70-100 years (i.e., during the typical lifetime of a
human). As we show in this paper, even lifelong protection
is not enough, considering kin privacy implications (e.g., for
offsprings). It is known that even the best of the crypto-
graphic algorithms we use today could be broken in around
30 years. Therefore, the appropriateness of cryptographic
techniques for storing and processing the genomic data has
been questioned due to long-term security requirements of
the genomic data.

As an alternative to the cryptographic techniques, utility
(i.e., precision and quantity of the revealed SNPs) can be
traded for privacy. The precision of the revealed SNPs can
be reduced, for example, by revealing only one of the two
alleles of a SNP. Similarly, family members’ SNPs can be se-
lectively revealed by also considering the previously revealed
SNPs from the corresponding family (to keep the genomic
privacy of other family members above a desired threshold):
we evaluate the privacy provided by this technique in Sec-
tion 4 by assessing the inference power of the adversary for
different fractions of observed data from a targeted family.

Eventually, using one of the above techniques, the GPPM
will take X as input and output XK as the set of revealed
SNPs. We note that a detailed implementation of the GPPM
by using one of the aforementioned techniques is out of the
scope of this work. We plan to study it in the future.

5These contributions are determined as a result of medical
studies. Some SNPs might increase (or decrease) the risk
for a disease more than others.

GP2

C7 C8 C9 C10 C11

P5 P6

GP1 GP3 GP4

Figure 4: Family tree of CEPH/Utah Pedigree 1463
consisting of the 11 family members that were con-
sidered. The symbols ♂ and ♀ represent the male
and female family members, respectively.

4. EVALUATION
In this section, we first evaluate the performance of the

proposed inference attack, then compare the performance
of the inference with and without considering the linkage
disequilibrium (LD) between SNPs, and finally evaluate the
entropy-based metrics with respect to the expected estima-
tion error in quantifying the genomic privacy.

For this evaluation, we use the CEPH/Utah Pedigree 1463
that contains the partial DNA sequences of 17 family mem-
bers (4 grandparents, 2 parents, and 11 children) [23]. We
note in Fig. 4 that we only use 5 (out of 11) children for our
evaluation because (i) 11 is much above the average number
of children per family, (ii) we observe that the strength of
adversary’s inference does not increase further (due to the
children’s revealed genomes) when more that 5 children’s
genomes are revealed, and (iii) the belief propagation algo-
rithm (in Section 3.2) might have convergence issues due to
the number of loops in the factor graph, and this number
increases with the number of children. As the SNPs related
to important diseases, like Alzheimer’s, are not included in
this dataset, we quantify health privacy in Section 5 by using
the data collected from a genome-sharing website.

To quantify the genomic privacy of the individuals in the
CEPH family, we focus on their SNPs on chromosome 1
(which is the largest chromosome). We rely on the three
metrics introduced in Section 3.4. That is, we compute the
genomic privacy of each family member using the expected
estimation error in (6), the (normalized) entropy in (7), and
the (normalized) mutual information in (8) on the targeted
SNPs, and we average the result based on the number of
targeted SNPs for each individual. We rely on the L1 norm
to measure the distance between two SNP values in (6).

First, we assume that the adversary targets one family
member and tries to infer his/her SNPs by using the pub-
lished SNPs of other family members without considering
the LD between the SNPs. We select an individual from
the CEPH family and denote him as the target individual.
We construct S, the set of SNP IDs that we consider for
evaluation, from 80k SNPs on chromosome 1. Thus, the set
of targeted SNPs (XU) includes 80k SNPs of the target in-
dividual. Furthermore, we gradually fill the set of observed
SNPs (XK) with the set of 80k SNPs of other family mem-
bers. That is, we sequentially reveal 80k SNPs (whose IDs
are in S) of all family members (excluding the target in-
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Figure 5: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent (P5), and (c) child (C7).
We reveal all the 80k SNPs on chromosome 1 of other family members starting from the most distant family
members of the target individual (in terms of number of hops to the target individual in Fig. 4); the x-axis
represents the disclosure sequence. We note that x = 0 represents the prior distribution, when no genomic
data is observed by the adversary.

dividual) beginning with the most distant family members
from the target individual (in terms of number of hops in
Fig. 4) and we keep revealing relatives until we reach his/her
closest family members.6

In Fig. 5 we show the evolution of the genomic privacy of
three target individuals from the CEPH family (in Fig. 4):
(i) grandparent (GP1), (ii) parent (P5), and (iii) child (C7).
We note that all entropy-based metrics for each target indi-
vidual start from the same values. We also observe that the
parent’s and the child’s genomic privacy decreases consid-
erably more than the grandparent’s (the adversary’s error
for the grandparent’s genome does not go below 0.3). More-
over, the observation of GP3, GP4 and P6’s genomes has no
effect on GP1 and P5’s privacy as their genomes are inde-
pendent (if no other relatives’ genomes are observed). We
observe in Fig. 5(a) that the grandparent’s genomic privacy
is mostly affected by the SNPs of the first revealed children
(C7, C8), and also by those of his spouse and his child (P5).
We also observe (in Fig. 5(b)) that, by revealing all fam-
ily members’ SNPs (expect P5), the adversary can almost
reach an estimation error of 0. The target parent’s genomic
privacy significantly decreases only with the observation of
his children’s and spouse’s SNPs. Finally, we observe in
Fig. 5(c) that C7’s genomic privacy decreases smoothly with
the observation of his grandparents’ SNPs, and then of his
siblings’. We also observe a slight decrease of privacy once
the parents’ SNPs (P5 and P6) are also revealed, but the
observation of parents (after the other children) does not
have a significant effect on the adversary’s error. It is im-
portant to note that the importance of a family member for
the inference power of the adversary also depends on the
sequence at which his/her SNPs are revealed in Fig. 5. For
example, in Fig. 5(c), if the SNPs of the parents (P5 and
P6) of the target child (C7) were revealed before her sib-
lings (C8-C11), then the observation of her parents would
reduce the genomic privacy of the target child more than her
siblings (but the final genomic privacy would not change).

Next, we include the LD relationships and observe the
change in the inference power of the adversary using the LD

6The exact sequence of the family members (whose SNPs
are revealed) is indicated for each evaluation.

values. We construct S from 100 SNPs on chromosome 1.
Among these 100 SNPs, each SNP is in LD with 5 other
SNPs on average. Furthermore, the strength of the LD (r2

value in Section 2.1.3) uniformly varies between 0.5 and 1
(where r2 = 1 represents the strongest LD relationship, as
discussed before). We note that we only use 100 SNPs for
this study as the LD values are not yet completely defined
over all SNPs, and the definition of such values is still an
ongoing research. As before, we define a target individual
from the CEPH family, construct the set XU from his/her
SNPs, and sequentially reveal other family members’ SNPs
to observe the decrease in the genomic privacy of the target
individual. We observe that individuals sometimes reveal
different parts of their genomes (e.g., different sets of SNPs)
on the Internet. Thus, we assume that for each family mem-
ber (except for the target individual), the adversary observes
50 random SNPs from S only (instead of all the SNPs in S),
and these sets of observed SNPs are different for each family
member. In Fig. 6, we show the evolution of genomic privacy
of three target individuals when the adversary also uses the
LD values. We observe that LD decreases genomic privacy,
especially when few individuals’ genomes are revealed. As
more family member’s genomes are observed, LD has less
impact on the genomic privacy.

We also evaluate the inference power of the adversary to
infer multiple SNPs among all family members, given a sub-
set of SNPs belonging to some family members, and also
considering the LD between SNPs. That is, we evaluate the
inference power of the adversary for different fractions of
observed data for the family members. Using the same set
of 100 SNPs, we construct XU from (κ × 100 × n) SNPs,
randomly selected from all family members, where n is the
number of family members in the family tree (n = 11 for this
scenario), and 0 ≤ κ ≤ 1. We assume that the SNPs that
are not in XU are observed by the adversary (i.e., in XK),
and we observe the inference power of the adversary for the
SNPs in XU, for different values of κ. In Fig. 7, we observe
an exponential decrease in the global genomic privacy (pri-
vacy of all family members), showing that the observation
of a small portion of the family’s SNPs can have a huge im-
pact on genomic privacy. The estimation error is decreased
by around 3 by observing only the first 10% of the SNPs.
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Figure 6: Evolution of the genomic privacy of the (a) grandparent (GP1), (b) parent (P5), and (c) child (C7),
with and without considering LD. For each family member, we reveal 50 randomly picked SNPs (among 100
SNPs in S), starting from the most distant family members, and the x-axis represents the exact sequence of
this disclosure. Note that x = 0 represents the prior distribution, when no genomic data is revealed.
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Figure 7: Evolution of the global privacy for the
whole family by gradually revealing 10% of SNPs.

5. EXPLOITING GENOME-SHARING WEB-

SITES AND ONLINE SOCIAL NETWORKS
In order to show that the proposed inference attack threat-

ens not only the Lacks family, but potentially all families,
we collected publicly available data from a genome-sharing
website and familial relationships from an OSN, and evalu-
ated the decrease in genomic and health privacy of people
due to the observation of their relatives’ genomic data.

We gathered individuals’ genomic data from OpenSNP [1],
a website on which people can publicly share sets of SNPs.
Then, we identified the owners of some gathered genomic
profiles by using their names and sometimes profile pictures.
Among these identified individuals, we managed to find fam-
ily relationships of 6 of them (who publicly reveal the names
of some of their relatives) on Facebook.7 We expect this
number to increase in the future, as more health-related
OSNs (which let people share their genomic profiles, such

7According to [28], around 12% of Facebook users publicly
share at least one family member on their profiles.

as 23andMe [2]) emerge. Furthermore, we anticipate that
the current widely used health-related OSNs (e.g., Patients-
LikeMe [6]) will let users upload and share their genomic
data. We identified 29 target individuals from 6 different
families, whose genomic data can be inferred using the ob-
served SNPs of the identified individuals.

We focus on 2 individuals I1 and I2 out of these 6 identi-
fied individuals and evaluate the genomic and health privacy
for their family members. We observed that both I1 and I2
publicly disclosed around 1 million of their SNPs. Further-
more, we identified the names of (i) 1 mother, 2 sons, 2
daughters, 1 grandchild, 1 aunt, 2 nieces, and 1 nephew of
I1, and (ii) 1 sibling, 1 aunt, 1 uncle, and 6 cousins of I2
on Facebook. We compute the genomic and health privacy
of these target individuals using the (normalized) entropy
in (7) on the targeted SNPs, and normalize the result based
on the number of targeted SNPs for each individual. We do
not use the expected estimation error in (6), as we do not
have the ground truth for the genomes of the target individ-
uals. Thus, privacy is quantified as the uncertainty of the
adversary in this section.

To quantify the genomic privacy of the target individuals
(i.e., family members of I1 and I2), we first construct S from
all SNPs on chromosome 1 (from the observed genomes of
I1 and I2). The set of observed SNPs (XK) includes the
observed SNPs of I1 (respectively I2) for the inference of
family members of I1 (respectively I2). The set of targeted
SNPs (XU) includes 77k SNPs for I1’s family and 79k for I2’s
family (from S) for each evaluation. In Fig. 8, we show the
decrease in the genomic privacy for different family members
of I1 (aunt, niece/nephew, grandchild, mother, child) and
I2 (cousin, aunt/uncle, sibling) as a result of our proposed
inference attack, first without considering the LD depen-
dencies (similarly to previous section). We observe that as
expected, the decrease in the genomic privacy of close fam-
ily members is significantly higher than that of more distant
family members. However, as we have seen in Section 4, the
observation of one (or more) additional family member(s)
has often much more impact on the target’s privacy than
the observation of only one relative.
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Figure 9: Attacker’s uncertainty about values of
100 SNPs on chromosome 1 for two families, by ob-
serving (i) all 100 SNPs of the relative that reveals
his/her genome, and (ii) only 50 SNPs but using LD.

In Fig. 9, we display the decrease of genomic privacy with
respect to 100 SNPs of chromosome 1.8 We first show the
different privacy levels by using all 100 SNPs of the observed
relative (i.e., I1 or I2), and then show the same by using only
50 SNPs of the observed relative and LD values. We note
that the use of LD decreases privacy slightly more for the
first familyt than for the second family. This is because we
randomly picked 50 different SNPs for both families, and
those picked in the second family had weaker LD relation-
ships with other SNPs. We finally observe that the difference
between the two observation cases (50 SNPs with LD and
100 SNPs without LD) is higher for close relatives (mother,
child, or sibling) than for others.

We also evaluate the health privacy of the family members
of I1 and I2 considering their predispositions to various dis-
eases. We first noticed that almost all important SNPs for
privacy-sensitive diseases affected by genomic factors, like
Alzheimer’s, ischemic heart disease, or macular degenera-
tion, were revealed by I1 and I2. Due to lack of space, we
focus on Alzheimer’s as it is one of the most important dis-
eases that are mainly attributable to genetic factors. Having
two ApoE4 alleles (in SNPs rs7412 and rs429358 located on

8We consider only 100 SNPs here for the same reason as in
Section 4.

chromosome 19) dramatically increases an individual’s prob-
ability of having Alzheimer’s by the age of 80. Thus, the con-
tents of these two SNPs carry privacy-sensitive information
for individuals. We use the metrics in (9) to quantify the
health privacy of family members for Alzheimer’s disease.
We assign equal weights to both associated SNPs (as their
combination determines the predisposition to Alzheimer’s
disease). In Fig. 10, we show the attacker’s uncertainty
about the predisposition to Alzheimer’s disease for the fam-
ily members of I1 and I2. We notice a decrease of around
0.2 (from 0.5 to 0.3) in uncertainty between close relatives.
Clearly, the knowledge of the SNPs of more relatives would
further worsen the situation.
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Figure 10: Adversary’s uncertainty about
Alzheimer’s disease predisposition for 2 families.

6. RELATED WORK
Stajano et al. [46] were among the first to raise the is-

sue of kin privacy in genomics. Cassa et al. [19] provide
a framework for measuring the risks to siblings of someone
who reveals his SNPs. They show that the inference error
is substantially reduced when the sibling’s SNPs are known,
compared to when only the population frequencies are used.
We push this work further, by considering any kind of family
members, and LD relationship between SNPs, by proposing
and evaluating different privacy metrics, and by presenting
a real attack scenario using publicly available data. Our
generic framework considers any observation of a family’s
genomic data, and the adversary’s background knowledge.

Several algorithms for inference on graphical models have
been proposed in the context of pedigree analysis. Exact
inference techniques on Bayesian networks are used in order
to map disease genes and construct genetic maps [26,34,38].
Monte Carlo methods (Gibbs sampling) were also proved
to be efficient for genetic analyses in the case of complex
pedigrees [31,44,48]. All these methods aim to infer specific
genotypes given phenotypes (like diseases). Another paper
relies on Gibbs sampling in order to infer haplotypes (used
in association studies) from genotype data [36]. Genotype
imputation [39] is another technique used by geneticists to
complete missing SNPs based upon given genotyped data.
A similar approach has recently been used to infer high-
density genotypes in pedigrees, by relying notably on low-
resolution genotypes and identity-by-descent regions of the
genome [18]. None of these contributions addresses privacy.

We also briefly summarize the research on the privacy
of genomic data in the following. Homer et al. [30] prove
that de-identification is an ineffective way to protect the



privacy of genomic data, which is also supported by other
works [27, 50, 52]. Most recently, Gymrek et al. [29] show
how they identified DNAs of several individuals who par-
ticipated in scientific studies. Fienberg et al. [25] propose
using differential privacy to protect the identities of scien-
tific study participants, however this approach reduces the
accuracy of the research results. Some pieces of work also
focus on protecting the privacy of genomic data and on pre-
serving utility in medical tests such as (i) search of a partic-
ular pattern in the DNA sequence [16,49], (ii) comparing the
similarity of DNA sequences [15,17,32], and (iii) performing
statistical analysis on several DNA sequences [35]. Further-
more, Ayday et al. propose privacy-preserving schemes for
medical tests and personalized medicine methods that use
patients’ genomic data [7,14]. For privacy-preserving clinical
genomics, a group of researchers proposes to outsource some
costly computations to a public cloud or semi-trusted service
provider [21, 51]. Finally, Ayday et al. propose techniques
for privacy-preserving management of raw genomes [13].

In contrast with these contributions, in this paper, we pro-
pose a novel and efficient inference attack in order to recon-
struct genomic data of individuals given observed genomic
data of their family members and special characteristics of
genomic data. Furthermore, we quantify the genomic pri-
vacy of individuals as a result of this attack using different
metrics, and show the real threat by using the data collected
from different websites and OSNs.

7. CONCLUSION AND FUTURE WORK
We have proposed a novel reconstruction attack for in-

ferring the genomic data of individuals from the observed
genomes of their relatives, and we have compared several
metrics to quantify genomic and health privacy.

As pointed out by Rebecca Skloot, the author of “The
Immortal Life of Henrietta Lacks”, the view we have today
of genomes is like a world map, but Google Street View
is coming very soon. This growing precision can be highly
beneficial in terms of personalized medicine, but it can have
devastating consequences on a family’s peace of mind. As
we already mentioned, the Lacks family is just one (albeit
famous) example. In the future (and already today), peo-
ple of the same family might have very different opinions on
whether to reveal genomic data, and this can lead to dis-
sent: relatives might have divergent perceptions of possible
consequences. It is high time for the security research com-
munity to prepare itself for this formidable challenge. The
genetic community is highly concerned about the fact that
the proliferation of negative stories could potentially lead to
a negative perception by the population and to tighter laws,
thus hampering scientific progress in this field.

In future work, we plan to apply the proposed framework
to more pedigrees, in order to fine tune our numerical results.
We will also study the trade-off between utility and privacy
of genomic data in order to design an optimized GPPM.
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