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Abstract Selecting the `best' main contractor is a

complex decision process for construction clients. It

requires a large number of criteria to be simultaneously

measured and evaluated. Many of these criteria are

related to one another in a complex way and therefore,

they very often con¯ict insofar as improvement in one

often results in decline of another(s). Furthermore, as

contractors' attributes are expressed in both quantitative

and qualitative terms, decision-makers have to base their

judgements on both quantitative data and experiential

subjective assessments. In this paper, the evidential

reasoning (ER) approach (which is capable of processing

both quantitative and qualitative measures) is applied as

a means of solving the contractor selection problem

(CSP). The process of building a multiple criteria decision

model of a hierarchical structure is presented, in which

both quantitative and qualitative information is

represented in a uni®ed manner. The CSP is then fully

investigated using the ER approach. Both the

advantages of applying this model in practice and the

analysis process itself are discussed.

Keywords bidder evaluation, contractor selection,

evidential reasoning, linguistic variables, multiple criteria

decision analysis, preference elicitation

INTRODUCTION

In increasingly competitive global markets, accurate

and ef®cient decision-making has become more

important than ever before. This is because, once a

decision is made the resources (e.g. labour, materials,

capital) consumed in achieving it may not be recover-

able; whether the decision is robust or not. Decision-

makers (DMs), therefore, very often need to think hard,

and devote much time and effort to such business

`problems'. This is even more so where subjective

(decision) criteria have to be taken into account. In

such cases, it would be helpful if a systematic procedure

were available to deal with this subjective decision

making complexity. Typically, a decision problem is

said to be complex and dif®cult, where the following

conditions apply:

· multiple criteria exist, which can be both quantitative

and qualitative in nature;

· uncertainty and risk is involved;

· there may be multiple DMs;

· decision (input) data may be vague, incomplete or

imprecise (Hipel et al., 1993).

In trying to select the `best' contractor [hereafter

termed the contractor selection problem (CSP)], the

task facing a construction client is a multiple criteria

decision-making (MCDM) process, in which a large

number of criteria need to be evaluated (Hatush &

Skitmore, 1998). Most of these criteria are related to

each other in a complex way. Furthermore, many

usually con¯ict, such that a gain in one criterion

requires a trade-off in another(s). As CSP decision

criteria are a mix of both qualitative and quantitative

characteristics, DMs have to base their decisions on

both quantitative analysis and subjective (typically

experiential) judgements. DMs may intuitively ®nd it

easier to make subjective judgements by using verbal

expressions (i.e. linguistic variables) (Poyhonen et al.,

1997). However, this can cause problems during

evaluation of alternatives, because it is dif®cult to

process (e.g. aggregate) these two types of measure (i.e.

quantitative and linguistic). It is, therefore, necessary

that any MCDM method be capable of aggregating

these two types of measures in a rational and consistent

manner; ultimately providing a ranking of all decision

alternatives. The evidential reasoning (ER) approach

was developed on the basis of decision theory and uses

the Dempster±Shafer theory of evidence (see later), to

aggregate these `con¯icting' types of assessment (Yang

& Sen, 1994; Yang, 2001). In this respect, ER shows

signi®cant potential to solve the CSP (Holt, 1998). To
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date, ER has been used mainly in `arti®cial intelligence'

and `expert systems' as a technique for modelling

reasoning under uncertainty (Beynon et al., 2000).

Uniquely, a demonstrative application of ER to the

CSP is elucidated in this paper.

In practice, contractor selection is normally a two-

stage process whereby contractors are ®rst pre-quali®ed

(for example, to get onto a select list or be invited to

tender for a given project). Subsequently, their tender

submissions are evaluated in the second stage. This

paper describes a method to perform that second stage;

this being mainly to simplify the narrative for elucida-

tion of the technique. Nonetheless, the ER approach

can accommodate either of the two selection stages

mentioned above.

The structure of the paper is as follows. The dif®culty

of knowledge acquisition is explained following the

introduction. Then, the process of building a MCDM

model of a hierarchical structure is presented, in which

both quantitative and qualitative information is proc-

essed in a uni®ed manner (through equivalent know-

ledge transformation). The ER approach is then

explained and applied to the CSP using computer

software in the fourth section of the paper. Results and

discussion follow with the advantages of the ER

approach in this context being reported.

KNOWLEDGE ACQUISITION

Understanding a DM's attitudes towards uncertainty

and risk is an important ingredient for effective decision

making. During the conventional evaluation process of

a decision-making problem, individuals are often

required to give exact or precise numerical assessments

with regard to each decision criterion. Although this is

achievable, the numerical representation of subjective

characteristics may impose a heavy burden on the DM.

Furthermore, these numbers may not `truly' re¯ect the

DM's preferences. It is desirable that DMs not be

forced to provide exact numerical assessments, but

rather, should be free to express their judgements either

numerically or subjectively. The ER method facilitates

this.

MCDM methods as preference elicitation tools

There are many MCDM methods proposed in the

literature (see Hwang & Yoon, 1981, for a classi®cation

of these methods), each having different ways of

eliciting a DM's assessments in order to evaluate

alternatives based on multiple criteria. The analytical

hierarchy process (AHP) developed by Saaty1 , for

example, asks DMs to compare alternatives in a pair-

wise fashion based on each decision criterion (Saaty &

Wind, 1980). Here, DMs are required to make exact or

precise statements like `I think alternative A is three

times more important than alternative B as far as a

particular criterion is concerned'. However, it may be

unrealistic to expect all DMs to be able to provide such

kind of statements, because of, for example, the

complexity of decision problems, a lack of data and

shortcomings in expertise. The AHP method has been

criticized by some academics because: (i) of the scale

used (Poyhonen et al., 1997), (ii) it requires redundant

information from the DM (Islei & Lockett, 1988), (iii)

the occurrence of rank reversals and (iv) the compar-

ison of two criteria represented by two totally different

scales (Belton & Gear, 1983, 1985; Belton, 1986;

Stewart, 1992).

Multiple attribute utility theory (MAUT) on the

other hand, uses the concept of utility to determine a

DM's real preferences, judgements and attitudes

towards risk (Keeney & Raiffa, 1993). However, this

approach also places a burden on DMs by asking a

large number of hypothetical lottery-type questions in

order to discover their real preferences. Subsequently,

DMs may not give consistent answers to these

questions. Like the AHP, MAUT requires DMs to

provide exact numbers (i.e. probability values) so that

their utility functions can be derived. Another disad-

vantage of MAUT is that the decision-making process

takes a long time and becomes tedious if there are

numerous criteria. The method also to some extent

pre-supposes that DMs are very good at probability

theory, which may not be the case in reality. Hatush &

Skitmore (1998) used MAUT to solve a CSP. The

aim of the present paper uses a similar CSP as an

example, to show how the ER approach can be

conveniently, and effectively, applied to deal with this

kind of problem.

Literature review on contractor selection

The recent literature on contractor selection can be

divided into three groups: (i) CSP criteria (attributes)

and their weights, (ii) criteria measurement and (iii)

selection methodologies. Several academics have stud-

ied the decision criteria used by clients for choosing a

contractor (Russell & Skibniewski, 1988; Holt et al.,

1994a; Ng, 1996; Hatush & Skitmore, 1997a). Holt

et al. (1994a) carried out a survey of 53 major UK

construction client organizations to determine the

decision criteria used for contractor selection and the

importance of these criteria in terms of in¯uencing their

choice of contractors. Hatush & Skitmore (1997a)

found that all clients use a `similar' set of criteria for
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contractor selection, but that the way clients quantify

these criteria can be very different in practice. In these

previous works, a contractor's bid amount appears to

be the most dominant and important criterion (Holt

et al., 1993, 1994c; Hatush & Skitmore, 1997a, 1998).

However, choosing a contractor based solely on the

lowest bid price is one of the major causes of project

delivery problems. Another disadvantage of using the

lowest bid as a principal discriminating criterion is that

some contractors (e.g. facing a shortage of work) may

enter unrealistically low bid prices, simply to try and

maintain cash¯ow. Therefore, as Hatush & Skitmore

(1997a) indicated, ®nancial and technical criteria must

be considered in order to assess the potential of

contractors ®nishing projects on time; and to assess

whether contractors have the necessary resources to

complete any contract awarded to them.

The following four weaknesses were found in con-

tractor selection practice: (i) lack of a universal

approach, (ii) long-term con®dence attributed to

results of pre-quali®cation, (iii) reliance on tender

sum in decision making and (iv) inherent subjectivity

of the process (Holt et al., 1993, 1995a). A summary of

current evaluation strategies can be found in Hatush &

Skitmore (1997a,b). Holt et al. (1994b) classi®ed the

contractor selection process into three stages: (i) pre-

quali®cation, (ii) contractor evaluation and (iii) ®nal

selection. For each stage, three types of scores were

proposed (P1, P2 and P3, respectively). P1 scores

represent the general organizational attributes of a

contractor and also provide insight of speci®c contrac-

tor weakness(es). A multiattribute analysis (MAA)

technique was used to combine P2 scores (representing

the scores of project-speci®c criteria) and P3 scores

(representing bid amount) into a simple index. This

index was determined by assigning a 40% weighting to

the P2 scores and a 60% weighting to the P3 scores

(sensitivity analysis revealed these percentages to the

best discriminate among contractors).

Holt et al. (1993, 1994a,b,c,d, 1995b) provided

example application of MAA to the evaluation of

construction bidders. They developed a method to

evaluate contractor pre-quali®cation criteria and provi-

ded guidelines for practitioners, highlighting areas to

address when evaluating a contractor based on a

particular criterion (Holt et al., 1994d). Holt et al.

(1996)2 applied cluster analysis as a means of reducing a

large number of potential bidders, to identify only those

suitable to tender for a particular project. Ng (1996)

investigated different decision support systems (DSS)

for contractor pre-quali®cation. Amongst the surveyed

DSS's were database management systems (DBMS),

expert systems (ES), fuzzy sets (FS) and case based

reasoning (CBR). Database management systems is a

proprietary software capable of storing and retrieving

data with the help of a user friendly query language [i.e.

structured query language (SQL)] (Kerry, 1990). The

contractor management information system (CMIS)

maintained by the Department of the Environment is

probably the most universally recognized system in the

UK and stores around 8000 records of contractors who

work for public clients (Deparment of Environment,

1992). Expert systems mimic the problem solving

process of users in a particular problem domain

(Adelman, 1992). The two types of ES ± rule-based

and object oriented ± were discussed in Ng (1996).

Russell et al. (1990)3 developed a rule-based ES called

`QUALIFIER-2' for contractor pre-quali®cation. Ng

(1993) developed an integrated object oriented ES for

contractor pre-quali®cation, whilst Taha et al. (1995)

proposed a knowledge-based DSS for predicting con-

struction contract bond claims using contractor ®nan-

cial data. This DSS employed inductive learning and

neural networks to extract the problem solving know-

ledge. The concept of FS was ®rst introduced by Zadeh

(1965) to deal with fuzzy and uncertain data that is

typically represented by linguistic, rather than numeric,

variables. Nguyen (1985) proposed and applied an FS

model to contractor pre-quali®cation and tender eval-

uation. CBR reuses or modi®es experiential knowledge

to solve problems, which are ill de®ned and contain

both qualitative and quantitative criteria. Hence, Ng

(1996) found CBR as a suitable tool to study contractor

pre-quali®cation.

Hatush & Skitmore (1997b) applied programme

evaluation and review technique (PERT) to assess and

evaluate contractor data against client goals (time, cost

and quality). Hatush & Skitmore (1998) used MAUT

to select the best contractor based on a mixture of

qualitative and quantitative criteria. In a recent study,

Holt (1998) reviewed the use of different CSP

methods and the following were identi®ed as having

been applied in this context: bespoke approaches,

MAA, MAUT, cluster analysis, multiple regression,

fuzzy set theory and multivariate discriminant analysis.

The advantages and disadvantages of these methods

were also discussed. Despite this previous research, the

problem of reconciling quantitative and qualitative

CSP data remains. It is this aspect that the present

paper concentrates upon by applying the ER

technique.

THE ER APPROACH TO CSP

One mistake that DMs often make is to try to solve a

decision-making problem straight away. As a result of

SoÈnmez, M. et al.200

ã 2001 Blackwell Science Ltd, Engineering, Construction and Architectural Management 8 3, 198±210



this, because of lack of forethought, very often the

problem is approached incorrectly. Therefore, DMs

should understand and have a clear picture of the whole

problem before they start trying to solve it. This is

much more important when there are many criteria to

consider, which in turn may comprise sub criteria and

even sub, sub criteria. For this reason, it is useful to

display the problem in the form of a hierarchical

structure, as follows.

The DM is to choose an alternative ai from a ®nite

number of alternatives a1, a2, a3, ¼, an (i � 1, 2, 3,¼,

n). These alternatives have to be evaluated based on m

main criteria c1, c2, c3,¼, cm. Each main criterion may

have a different number of k sub criteria such that ci1,

ci2, ¼, cik (i � 1, 2, 3, ¼, m). It is necessary to assign

weights to the main criteria according to their contri-

bution to the overall objective w1, w2, w3, ¼, wj (j � 1,

2, 3, ¼, m) and also to the sub-criteria wi1, wi2, wi3, ¼,

wik (i � 1, 2, 3,¼, m). This is so as to show the relative

importance of each sub-criterion to its associated upper

level criterion. Several methods for weight assignment

have been proposed in the literature (Barron & Barrett,

1996; Sen & Yang, 1998, pp. 26±43). These weights

are used for propagating lower level criteria assessments

to respective upper levels. For simplicity, in this paper

the same set of decision criteria and weights are used as

proposed in Hatush & Skitmore (1998). These decision

criteria and their weights are shown in Fig. 1.

The ER approach

ER has increasingly been used in a diverse range of

areas ranging from engineering, management, to safety

and has been applied to different MCDM problems.

Interested readers may refer to the following references

for a full explanation of the method and its associated

algorithm: Yang & Singh (1994), Yang & Sen (1994,

1997), Wang et al. (1995, 1996), Yang (2001).

Recently, Beynon et al. (2000) gave a number of

simple examples to explain the Dempster±Shafer

theory of evidence (DST). The ER approach uses the

concept of `degree of belief (DoB)' as a preference

elicitation tool. The DoB can be described as the

degree of expectation that an alternative will yield an

anticipated outcome on a particular criterion. An

individual's DoB depends on their knowledge of the

subject and their experience. The use of the DoB can

be justi®ed by the fact that human decision making

involves ambiguity, uncertainty and imprecision. That

is, individuals can convey judgements in probabilistic

terms with the help of their knowledge and real life

experience. Probability has long been used to deal with

uncertainty and risk in decision problems; it can be a

powerful tool to overcome the imprecision and ambi-

guity of human decision making.

Decision problems are usually structured in a hierar-

chical order (refer Fig. 1). In the ®rst level, the goal of

the problem is stated. In the second level, there are

several criteria, each of which has a different contribu-

tion to measuring, and helping achieve the overall goal.

Then, some of these criteria may be broken down into

further sub-criteria. The process (i.e. disaggregating

main criteria into sub-criteria, and then sub-criteria into

sub, sub-criteria) continues up to the point where DMs

are able to make practical assessments (on these lower

level criteria). Once the subdivision of criteria is com-

plete, DMs evaluate each alternative based on the lowest

level criteria. In order to ®nd out how well an alternative

performs across all criteria, the lowest level criteria

assessments need to be ®rst transformed to their relevant

upper levels and ultimately, to the top-level goal. This

requires an appropriate MCDM method. The ER

approach is such a method that cannot only combine

both qualitative and quantitative assessments, but can

also handle uncertain and imprecise information or data.

Implementation of the ER approach

The ER approach can be described as a hierarchical

evaluation process in which all decision criteria are

aggregated into one (i.e. the goal of the problem). As

the ER algorithm has previously been well-explained

(Yang & Sen, 1994; Yang, 2001), the ER process is

brie¯y described here in a stepwise manner:

1. display a decision problem in a hierarchical structure;

2. assign weights to each (main) problem criterion and

also to their sub-criteria (if any);

3. choose a method for assessing a criterion either

quantitatively or qualitatively;

4. transform assessments between a main criterion and

its associated sub-criteria if they are assessed using

different methods (i.e. quantitative and qualitative);

5. evaluate each alternative based on the lowest (i.e.

bottom) level criteria in the hierarchical structure;

6. quantify qualitative assessments at the top level if

necessary and determine an aggregated value for

each alternative;

7. rank alternatives based on this aggregated value and

(normally) choose the highest rank.

The ER algorithm is integrated into a software

package called `intelligent decision system via evidential

reasoning' (IDS11A demonstration version of IDS with

the example of CSP presented in this paper can be

obtained from Dr J.B. Yang through e-mail request:

jian-bo.yang@umist.ac.uk.). Intelligent decision system
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is a WindowsTM based and graphically designed

decision support tool developed by Yang & Xu (2000).

It allows DMs to build their own models and input

their own data. The CSP is hierarchically displayed and

weights are assigned to the decision criteria (Fig. 1).

Alternatives (i.e. contractors) can be assessed using

clearly de®ned standards (grades). It is assumed that a

single decision-maker (DM) is involved in the decision-

making process who is ®rst asked to de®ne assessment

grades for the goal of the problem. Let us suppose that

-

Figure 1 Hierarchical display of the CSP and the relative importance of criteria and sub criteria (Source: Hatush & Skitmore, 1998).
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the DM wants to classify contractors being evaluated,

into the following grades: worst, poor, average, good

and excellent at the top level. Next, the DM is required

to de®ne assessment grades for the main criteria. The

outcomes for each criterion may be expressed in dif-

ferent terms in the mind of the DM who may wish to

use the most appropriate vocabulary to evaluate (and

represent) each criterion. Therefore, the DM may well

use the same set of grades as de®ned for the goal of the

problem for some main criteria, and develop new sets of

grades for other main criteria. In Fig. 2, the DM used

seven grades for the criterion `®nancial soundness'

whilst the other main criteria were evaluated with a set

of ®ve grades each, using different wordings. The use of

different grades facilitates data collection and allows

capture of the DM's preferences, experience, intuition

or beliefs and also implies that the DM is not mani-

pulated (by the method or decision analyst who may

help them during the decision process). This is because

they use their own expressions to evaluate decision

criteria. Although this may increase ambiguity, uncer-

tainty or imprecision in the data, the ER approach

facilitates this through rule and utility based knowledge

transformation, which will be explained in the subse-

quent sections.

In a similar manner to that shown in Fig. 2, the DM

is asked to assign classi®cation grades to the bottom

level criteria. Note that again different sets of grades

were used at the bottom level criteria shown in Fig. 3 in

order to evaluate contractors based on the sub-criteria.

If a sub-criterion is evaluated quantitatively, then there

is no need to de®ne grades for it. For example, because

the sub-criteria of the criterion `bid amount' are all of a

quantitative nature, these monetary values are used to

evaluate the contractors.

Next, the DM is asked to evaluate each contractor

based on the sub-criteria by using the grades de®ned in

Fig. 3. Suppose the evaluation yields the assessments

shown in Fig. 4, which are obviously multivariate: (1) It

is noted that on some of the criteria, assessments for

different contractors are missing. Take contractor K,

for example, who has no assessment on the criterion

(technical ability) `personnel'. This may be because of

the fact that contractor K has not provided any

information on this criterion. (2) Some of the assess-

ments are incomplete and uncertain as the total DoB is

less than unity. Again, contractor K has been assessed

to be 50% average and 40% strong in terms of ®nancial

stability. This assessment is said to be uncertain and

incomplete because the total DoB is less than 1 (0.9).

The `missing' 10% may represent the doubts of the

DM, a lack of evidence and/or missing information. (3)

Some assessments are certain. Contractor K is rated as

100% on the criterion `management organization'. This

assessment is said to be certain and complete because

the DoB is equal to 1. In order to make more accurate

and complete assessments, it might be useful to provide

the DM with a checklist that shows the areas to address

and what to look at, as suggested in Holt et al. (1994a)4 .

This checklist would also be of help in reminding the

DM of the grades associated with criteria. For example,

when assessing a contractor's past performance, sup-

pose there are ®ve areas to address. The contractor is

said to have a 100% very good past performance, if the

contractor has a very good record in all these areas.

Assessment transformation

Here, it is shown how the ER approach deals with the

multidisciplinary data given in Fig. 4. The process of

transforming the bottom level criteria assessments to

the associated upper level criterion will be explained.

The assessment transformation can be made using

either the rules given by the DM or by using utility

theory. Take the criterion `advance payment', for

example, it is a sub-criterion of the upper level criterion

`bid amount'. As the bid amount is classi®ed against

one of ®ve grades (very high, high, average, low and

very low), the DM is required to convert the monetary

values into one of these descriptive grades. For this

example, it is assumed that the DM expressed these as

shown in Fig. 5.

Figure 2 Assessment grades de®ned by

the DM for the second level criteria.
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According to this information, contractor K is said to

have a low bid amount as far as the criterion `advance

payment' is concerned (refer Fig. 4). Contractor N's

advance payment is £0.15 m. This amount is converted

to 50% average and 50% low because it is mid-way

between these two grades (refer Fig. 5). When a

contractor is evaluated based on the criterion `®nancial

soundness', for example, the following sub-criteria

(attributes), such as ®nancial stability, credit rating, bank

arrangements and®nancial status could be used (Fig. 1).

These sub attributes are assessed by subjective judge-

ments (Fig. 3). Because a different number of grades are

used for the upper level criterion and the sub-criteria, the

DM is asked to establish rules to propagate sub criteria

assessments to the associated upper level criterion.

The rules given by the DM are shown in Fig. 6.

-

Figure 3 Assessment grades de®ned for sub-criteria.
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In Fig. 6, the DM indicated that a contractor with

strong ®nancial stability means that the ®nancial sound-

ness of this contractor is 85% good and 15% very good as

far as ®nancial stability is concerned. As far as selecting

the best bidder is concerned, a contractor with a good

®nancial soundness is considered to be 20% average

-

Figure 4 The assessment of contractors based on the six main criteria (note that the assessment grades are abbreviated).
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and 80% good. A contractor with a very good ®nancial

soundness is, on the other hand, considered to be 30%

good and 70% excellent. Such rules are based on

evidence and the past experience of the DM. As

required by the ER approach, individuals are asked to

describe the assessment grades so that results can be

interpreted, be quanti®ed and be reproducible. Rules

for other criteria can be provided in a similar way. If the

DM provides no rule, the ER approach assumes that

the DM is neutral to risk and the utility of the grades

are equidistantly assigned in the normalized space.

RESULTS AND DISCUSSION

The assessments given by the DM in Fig. 5 are fed

into IDS and the aggregated results are yielded at the

main criteria level (refer Table 15 ). The assessment

grades for each main criterion are abbreviated in

Table 1. The numbers in brackets show the degrees of

belief of the DM that are aggregated from the

assessments of the sub-criteria. One can rank the

contractors for each criterion in order of preference by

comparing the distributed assessments shown in

Figure 5 Transforming a quantitative sub-criterion assessment

to the associated upper level criterion.

-

Figure 6 The process of converting lower level criterion assess-

ments to the upper level criterion.

Table 1 Combined assessments of the contractors at the main criteria level.

Contractors

Main criteria K L M N O

Bid amount VH (0.579) VH (0.000) VH (0.000) VH (0.915) VH (0.000)

H (0.390) H (0.029) H (0.032) H (0.034) H (0.516)

A (0.016) A (0.971) A (0.936) A (0.043) A (0.436)

L (0.015) L (0.000) L (0.032) L (0.008) L (0.032)

VL (0.000) VL (0.000) VL (0.000) VL (0.000) VL (0.016)

Financial soundness W (0.000) W (0.000) W (0.000) W (0.000) W (0.000)

VB (0.000) VB (0.000) VB (0.000) VB (0.005) VB (0.000)

B (0.029) B (0.041) B (0.026) B (0.139) B (0.054)

I (0.243) I (0.363) I (0.295) I (0.630) I (0.732)

G (0.593) G (0.487) G (0.563) G (0.025) G (0.160)

VG (0.085) VG (0.084) VG (0.077) VG (0.000) VG (0.024)

E (0.000) E (0.000) E (0.000) E (0.000) E (0.000)

Technical ability VL (0.001) VL (0.000) VL (0.000) VL (0.000) VL (0.105)

L (0.021) L (0.015) L (0.333) L (0.003) L (0.267)

A (0.478) A (0.273) A (0.494) A (0.131) A (0.046)

H (0.135) H (0.562) H (0.087) H (0.607) H (0.324)

VH (0.000) VH (0.000) VH (0.006) VH (0.170) VH (0.010)

Management capability VL (0.000) VL (0.000) VL (0.000) VL (0.000) VL (0.000)

L (0.047) L (0.000) L (0.070) L (0.164) L (0.036)

A (0.317) A (0.465) A (0.238) A (0.652) A (0.667)

H (0.565) H (0.496) H (0.556) H (0.028) H (0.097)

VH (0.071) VH (0.039) VH (0.136) VH (0.126) VH (0.000)

Health and safety records VP (0.000) VP (0.000) VP (0.000) VP (0.112) VP (0.000)

P (0.244) P (0.312) P (0.042) P (0.410) P (0.000)

I (0.510) I (0.266) I (0.345) I (0.355) I (0.200)

G (0.206) H (0.341) H (0.259) H (0.103) H (0.250)

VG (0.000) VG (0.051) VG (0.034) VG (0.000) VG (0.520)

Reputation VB (0.000) VB (0.000) VB (0.000) VB (0.000) VB (0.013)

B (0.340) B (0.000) B (0.065) B (0.306) B (0.295)

A (0.353) A (0.518) A (0.459) A (0.271) A (0.616)

H (0.274) H (0.449) H (0.387) H (0.023) H (0.036)

VH (0.014) VH (0.033) VH (0.050) VH (0.000) VH (0.000)
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Table 1. For example, the ranking for `bid amount' is

as follows: M > L > O > K > N (a > b means a is

preferred to b). Note that the criterion `bid amount'

is negatively oriented in terms of preference, that is,

the lower the bid amount, the better. The results in

Table 1 are also useful in that they indicate the weak

and strong points of each contractor regarding the

decision criteria applied. The IDS provides a graphical

display of the results presented in Table 1, which is

very useful for DMs to compare contractors `at a

glance' (refer Fig. 7).

The assessments in Table 1 need to be propagated to

the top level. In doing this, the IDS produced the

results shown in Table 2. The numbers under each

grade indicate the aggregated assessments (or degrees

of belief) of the DM. For instance, the results for

contractor K can be interpreted as follows: contractor

K is assessed to be 39% worst, almost 30% poor, 13%

average, 12% good and only 1% excellent. The total DoB

does not add up to one (or 100%) as a result of

incomplete and/or missing assessments. The results in

Table 2 are supported by a graphical display (Fig. 8).

The contractors could be ranked in order of preference

by comparing them with each other as in Table 2.

However, a comparison may not be possible when

contractors have very similar degrees of belief assigned

to each grade, such as contractors L and M (see Fig. 8).

One way to solve this problem is to quantify the grades.

There are several ways of quantifying grades. One of

them is to use MAUT to assign a utility for each grade

and then obtain an expected utility for each contractor

(cf.Hwang&Yoon, 1981).Then, contractors are ranked

based on their expected utility. Another way is to use a

goal programming technique such as suggested in Yang

& Sen (1997)6 . In this study, the former approach is used.

A number of hypothetical lottery type questions were

presented to the DM in order to establish preference

among grades (Farquhar, 1984). The following utilities

are assigned to each grade: worst � 0, poor � 0.4,

average � 0.7, good � 0.85 and excellent � 1.

Figure 7 Aggregated assessments of contractors on six main decision criteria.

Table 2 The overall assessment of alternative contractors.

Grades

Alternative Worst Poor Average Good Excellent Total DoB* Unassigned DoB

K 0.3908 0.2987 0.1290 0.1239 0.0105 0.9529² 0.0471³

L 0.0000 0.0304 0.8164 0.1234 0.0094 0.9796 0.0204

M 0.0000 0.0478 0.7836 0.1220 0.0147 0.9681 0.0319

N 0.6260 0.0705 0.1716 0.0506 0.0182 0.9369 0.0631

O 0.0062 0.3688 0.4838 0.0660 0.0315 0.9563 0.0437

* Degree of belief.
² 0.3908 + 0.2987 + 0.1290 + 0.1239 + 0.0105.
³ 1 ± total DoB = 1 ) 0.9529 = 0.0471.
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The total DoB for each contractor in Table 2 does

not add up to one, because some of the assessments

were incomplete and missing because of the reasons

explained earlier in the paper. For example, the total

DoB assigned to contractor M is almost 97%. That is,

there is a 3% unassigned DoB. The IDS uses the

concept of utility interval to characterize the unassigned

DoB (or ignorance) which can actually fall into any

grade. The ER algorithm generates a utility interval

enclosed by two extreme cases where the unassigned

DoB goes either to the least preferred grade (minimum

utility) or goes to the most preferred grade (maximum

utility). The minimum and maximum possible utilities

of each alternative generated by the IDS (based on the

given utility values for each grade above) are shown in

Table 3. For example, the results for contractor M

from Table 2 are as follows:

Contractor M's minimum utility � {[(DoB assigned

under grade worst + unassigned DoB) ´ utility of

grade worst] + (DoB assigned under grade poor ´ uti-

lity of grade poor) + (DoB assigned under grade

average ´ utility of grade average) + (DoB assigned

under grade good ´ utility of grade good) + (DoB

assigned under grade excellent ´ utility of grade excel-

lent)}. Hence, contractor M's minimum utility �

{[(0 + 0.0319) ´ 0] + (0.0478 ´ 0.4) + (0.7836 ´ 0.7)

+ (0.122 ´ 0.85) + (0.0147 ´ 1)} � 0.686.

Contractor M's maximum utility � {(DoB assigned

under grade worst ´ utility of grade worst) + (DoB

assigned under grade poor ´ utility of grade poor) +

(DoB assigned under grade average ´ utility of grade

average) + (DoB assigned under grade good ´ utility of

grade good) + [(DoB assigned under grade

excellent + unassigned DoB) ´ utility of grade excel-

lent]}. Hence, contractor M's maximum utility

� {(0 ´ 0) + (0.0478 ´ 0.4)+(0.7836´ 0.7)+(0.122 ´

0.85) + [(0.0147 + 0.0319) ´ 1] � 0.718. Contractor

M's average utility � (maximum utility + minimum

utility)/2, i.e. (0.686 + 0.718) � 0.702.

The contractors may be ranked based on the average

utility but this may be misleading. In order to say that

one contractor theoretically dominates another, the

preferred contractor's minimum utility must be equal

or greater than the dominated contractor's maximum

utility. For example, based on an average utility,

contractor L is preferred to contractor M. On the

other hand, this comparison may differ if it is based on

the maximum and minimum utilities. There is a small

possibility that contractor M may be preferred to

contractor L because M's maximum utility is greater

than L's minimum utility (i.e. 0.7180 > 0.6981). To

precisely differentiate between contractors L and M,

the quality of the original assessments related to L and

M needs to be improved. In response to the DM's

request for simplicity, average utilities are used to rank

contractors. The ranking of contractors is as follows:

L > M > O > K > N.

CONCLUSION

In this paper, an ER approach to solve the CSP has

been described that is capable of accommodating both

Figure 8 Graphical performance pro®les of contractors.

Table 3 The expected utilities of alternative contractors.

Utility

Alternative Minimum Maximum Average

K 0.3257 0.3727 0.3492

L 0.6981 0.7183 0.7082

M 0.6860 0.7180 0.7020

N 0.2096 0.2726 0.2411

O 0.5737 0.6175 0.5956
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quantitative and qualitative data. A decision-maker (i.e.

a client or their representative) may be willing or able to

provide only incomplete, imprecise and vague informa-

tion because of time pressure, a lack of data or

shortcomings in expertise when evaluating contractors

against a pre-determined set of criteria. In addition, the

DM may wish to evaluate intangible criteria by using

linguistic variables, which facilitate the processing of

raw (normally dif®cult to represent) data. Thus there

are two problems to address: (1) how to reconcile

quantitative and qualitative decision criteria (data) and

(2) how to deal with incomplete information in a

rational way. It is shown that the ER approach is able to

tackle these two problems and can help DMs reach a

robust decision although some data may be missing

and/or assessments may be incomplete. A further

advantage of the method is that uncertainty and risk

surrounding the decision problem can be represented

through the concept of `the DoB'. The computer

software IDS facilitates the implementation of the ER

approach. One of the disadvantages of the method may

be that it requires more complicated calculations than

some other methods such as MAUT.

Selecting the best contractor is one of the most

important decisions a client has to make. Conversely, it

is equally important for contractors to know why their

bids are rejected. In the case of a public client, the

results and reasons for awarding a contractor and/or

rejecting others should be explicit because of public

accountability. If the client is a private one, such results

might be sold to those contractors who may wish to

know the reasons for their failure. In either case, the

feedback of contractors' weaknesses can only help

improve ®rms to the betterment of the industry. The

IDS software based on the ER approach enables users

to provide results of evaluation both in tabular and

graphical forms; showing the contractors' strongest and

weakest areas. Such a computer support system may

also be useful, because in that a large number of

contractors' data can be stored and recorded for the

future use. Contractors who fail to make satisfactory

bids over a period of time can be monitored and

removed from the database if desired.
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