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Abstract
Introduction The US FDA is interested in a tool that would enable pharmacovigilance safety evaluators to automate the 
identification of adverse drug events (ADEs) mentioned in FDA prescribing information. The MITRE Corporation (MITRE) 
and the FDA organized a shared task—Adverse Drug Event Evaluation (ADE Eval)—to determine whether the performance 
of algorithms currently used for natural language processing (NLP) might be good enough for real-world use.
Objective ADE Eval was conducted to evaluate a range of NLP techniques for identifying ADEs mentioned in publicly 
available FDA-approved drug labels (package inserts). It was designed specifically to reflect pharmacovigilance practices 
within the FDA and model possible pharmacovigilance use cases.
Methods Pharmacovigilance-specific annotation guidelines and annotated corpora were created. Two metrics modeled 
the experiences of FDA safety evaluators: one measured the ability of an algorithm to identify correct Medical Dictionary 
for Regulatory Activities  (MedDRA®) terms for the text from the annotated corpora, and the other assessed the quality of 
evidence extracted from the corpora to support the selected  MedDRA® term by measuring the portion of annotated text an 
algorithm correctly identified. A third metric assessed the cost of correcting system output for subsequent training (averaged, 
weighted F1-measure for mention finding).
Results In total, 13 teams submitted 23 runs: the top  MedDRA® coding F1-measure was 0.79, the top quality score was 
0.96, and the top mention-finding F1-measure was 0.89.
Conclusion While NLP techniques do not perform at levels that would allow them to be used without intervention, it is now 
worthwhile exploring making NLP outputs available in human pharmacovigilance workflows.
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Key Points 

The MITRE Corporation and the US FDA conducted 
Adverse Drug Event Evaluation (ADE Eval) to evalu-
ate the ability of software systems to find adverse drug 
events in package inserts (drug labels) using guidelines 
and annotated training data for adverse drug event detec-
tion customized for the pharmacovigilance needs of FDA 
safety evaluators.

In total, 13 teams submitted 23 system runs, evaluated 
using metrics to model the experience of FDA safety 
evaluators, including a novel metric to estimate the cost 
of correcting system output for subsequent training.

Varied approaches achieved high performance, suggest-
ing that the technology is now mature enough to experi-
ment with using natural language processing in human 
pharmacovigilance workflows.

1 Introduction

The US FDA is interested in a tool that would enable phar-
macovigilance safety evaluators (SEs) to automate the 
identification of adverse drug events (ADEs) mentioned 
in FDA prescribing information, which could facilitate the 
triage, review, and processing of postmarket ADE reports, 
also known as individual case safety reports (ICSRs). The 
FDA continually receives ICSRs describing ADEs observed 
during the use of marketed drug and therapeutic biologic 
products from drug manufacturers, healthcare professionals, 

http://orcid.org/0000-0002-0112-1037
http://crossmark.crossref.org/dialog/?doi=10.1007/s40264-020-00996-3&domain=pdf
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and consumers. In addition, the FDA continues to approve 
new drug labels,1 also known as package inserts (PIs),2 and 
update already approved PIs with newly identified postmar-
ket ADE information. In 2019, over 2 million ICSRs were 
submitted to the FDA Adverse Event Reporting System 
(FAERS) database [1], and 48 novel drug products were 
approved by the FDA [2]. As part of the FDA’s postmar-
ket drug safety surveillance activities, SEs are tasked with 
reviewing increasing volumes of ICSRs to identify safety 
concerns associated with drug products to promote and pro-
tect public health.

Safety concerns can be new unlabeled ADEs (those 
that are not yet described in the relevant drug label) or an 
increase in severity or frequency of a labeled ADE. The 
large volume of reports means that SEs face challenges in 
screening and prioritizing ICSRs that implicate a causal 
association between a drug and an ADE of interest. SEs 
must frequently decide whether ADEs that are described in 
the ICSRs are mentioned in the appropriate section (e.g., 
boxed warning, warnings and precautions, contraindication) 
of the relevant PI.

However, within the current SE workflow, the process of 
determining and comparing the labeled status of an ADE 
in a PI with that of the ADEs described in ICSRs is a man-
ual one. This is because the ADEs reported in each ICSR 
are standardized to the Medical Dictionary for Regulatory 
Activities  (MedDRA®; https ://www.meddr a.org) terminol-
ogy3 but the ADEs mentioned in a PI are not and may appear 
as unstructured text in forms that do not exactly match any 
of the alternative terms listed in  MedDRA® for the relevant 
ADE. Because a common terminology is crucial for SEs to 
readily determine and compare the labeled status of ADEs 
with that of the  MedDRA®-coded ADEs reported in ICSRs, 

it would be extremely useful for the FDA to have a tool that 
could summarize, for a set of PIs, the particular ADEs men-
tioned, using  MedDRA® as the reference vocabulary, and 
could locate, within the particular PI sections, the evidence 
for the ADEs mentioned.

The adverse drug event (ADE) evaluation (ADE Eval) 
shared task was sponsored by the FDA to evaluate a range 
of natural language processing (NLP) techniques for identi-
fying ADEs mentioned in publicly available FDA PIs. The 
ADE Eval task consisted of identifying mentions of ADEs 
in specific sections of PIs and mapping those mentions to 
associated terms in  MedDRA®. The aim of the task was to 
determine whether the performance of current NLP algo-
rithms might be good enough to support real-world pharma-
covigilance use in cases such as those described.

2  Related Work

Evaluation of the ability of NLP systems to extract ADEs 
from unstructured text is a natural consequence of growing 
interest in the application of NLP for postmarket pharma-
covigilance. Initial evaluation of more general NLP-based 
information extraction systems has been followed by the 
development and evaluation of systems designed more spe-
cifically to recognize ADEs and related concepts in a variety 
of textual sources, including biomedical literature, electronic 
health records (EHRs), social media, and PIs.

2.1  US FDA Center for Drug Evaluation 
and Research, National Institute for Standards 
and Technology Text Analysis Conference 
(TAC) Adverse Drug Reactions (ADRs), 
and the Motivation for ADE Eval

The FDA Center for Drug Evaluation and Research (CDER) 
has a long-standing interest in the ability to automatically 
extract ADEs from PIs for the purpose of pharmacovigilance.

Ly et al. [3] evaluated the performance of the following 
three NLP systems for their ability to extract ADE terms 
from PI labels and normalize the terms to  MedDRA® PTs:

• Event-Based Text Mining of Health Electronic Records 
(ETHER) [4, 5], which was designed to extract clinical 
terms and time statements from free-text ADE descrip-
tions in postmarket reports;

• I2E [6], an NLP-based text-mining application designed 
to extract information from a variety of textual sources, 
including scientific literature, EHRs, patents, news feeds, 
clinical trials data, and proprietary content; and

• MetaMap [7], an NLP-based system developed by the 
National Library of Medicine and designed to process 

1 In this document, label refers to the structured product label that 
accompanies a medication. To avoid confusion with this usage of 
label, descriptions added to text to indicate the semantic category of a 
text span are always referred to as annotations or categories.
2 DailyMed is the official provider of FDA label information (PIs). 
The National Library of Medicine provides this as a public service. 
https ://daily med.nlm.nih.gov/daily med/.
3 MedDRA® terminology is the international medical terminology 
developed under the auspices of the International Council on Harmo-
nization (ICH) of Technical Requirements for Registration of Phar-
maceuticals for Human Use. The MedDRA® trademark is registered 
by the International Federation of Pharmaceutical Manufacturers and 
Associations (IFPMA) on behalf of the ICH. MedDRA® is a clini-
cally validated international medical terminology used by regulatory 
authorities and the regulated biopharmaceutical industry. The termi-
nology is used through the entire regulatory process, from premar-
keting to postmarketing, and for data entry, retrieval, evaluation, and 
presentation. MedDRA® formalizes ADEs (medical concepts) as sets 
of phrases called low-level terms (LLTs); each LLT is associated with 
a single preferred term (PT). A PT represents a unique AE/medical 
concept and hierarchically groups the synonymous LLTs for the con-
cept. Every MedDRA® term is associated with a code.

https://www.meddra.org
https://dailymed.nlm.nih.gov/dailymed/
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biomedical literature and map concepts to the Unified 
Medical Language System (UMLS) Metathesaurus.

Ly et al. [3] compared each system’s output to  MedDRA® 
PT ADE lists that had been manually mapped by FDA phar-
macovigilance experts. I2E had the highest precision (0.77), 
recall (0.83), and F measure (0.79). The goal of the study 
was to demonstrate the feasibility of using NLP tools to 
discover these ADEs without human intervention, and the 
authors concluded that existing tools were insufficient to 
meet their needs but that their performance was sufficient to 
consider further development.

In further support of their interest in automated extraction 
of ADE terms, several offices within the FDA cosponsored a 
track of the 2017 National Institute for Standards and Tech-
nology (NIST) Text Analysis Conference (TAC) [8]. The 
NIST TAC adverse drug reaction (ADR) track [9] addressed 
identification of ADRs in structured PIs. The top performing 
system achieved an F1 score of 0.852 on extraction of ADRs 
and 0.853 macro-averaged F1 on  MedDRA® term mapping.4

The TAC ADR evaluation was designed for a generic 
use case that did not align specifically to the FDA FAERS 
review use case. For instance, mentions of death qualify 
as ADRs for the TAC ADR evaluation; however, for the 
pharmacovigilance use case, death represents an outcome.5 
Where ADRs represent medical conditions and are accom-
panied by associated symptoms, TAC ADR track guide-
lines instruct participants to annotate the reaction and the 
symptoms, whereas pharmacovigilance guidelines stipulate 
annotation of only the ADR and not of their symptoms or 
outcomes.

This led to the design of ADE Eval, built on pharma-
covigilance-specific definitions of ADEs and providing diag-
nostic insight into how well existing systems could support 
the pharmacovigilance use cases. Details of how and why 
these two evaluations differ can be found in Sect. A.1 in the 
electronic supplementary material (ESM).

2.2  Other Adverse Drug Event (ADE)‑Related Shared 
Tasks

A number of other ADE-related shared tasks have been con-
ducted to support the development and evaluation of systems 
designed specifically to extract ADEs and related concepts 

from unstructured text. The scope of these tasks is broader 
than TAC ADR or ADE Eval; because they do not focus on 
PI documents (and are thus not focused specifically on a 
single drug), they must include both a medication recogni-
tion task and a medication–ADE relation extraction task.

The Medication and Adverse Drug Events from Elec-
tronic Health Records (MADE) 1.0 challenge for extract-
ing medication, indication, and ADEs from EHR notes was 
held in 2018 [10]. It consisted of three tasks: (1) identifying 
medications and their attributes (dosage, route, duration, and 
frequency), indications, ADEs, and severity; (2) identifying 
relations between the entities (with named entities provided 
in input): medication–indication, medication–ADE, and 
attribute relations; and (3) performing end-to-end entity and 
relation identification on unlabeled input.

National NLP Clinical Challenges (n2c2) held a shared 
task on ADEs and medication extraction in EHRs in 2018 
[11]. Track 2 of the shared task included (1) identifying 
medications, their signature information, and ADEs; (2) 
identifying relationships between medications and their 
attributes and between medications and ADEs; and (3) 
building an end-to-end system that extracts concepts and 
finds relations of those concepts to their medications.

Three Social Media Mining for Health (SMM4H) shared 
tasks included extraction of ADEs from Twitter tweets. All 
three shared tasks included classification of tweets according 
to whether or not they mentioned an ADR. SMM4H 2017 
[12, 13] and SMM4H 2018 [14] also included classifica-
tion of posts based on medication mention and medication 
intake status. SMM4H 2019 [15] added extraction of ADR 
mentions from tweets and normalization of extracted ADRs 
to  MedDRA® PT identifiers. For further details, see Tables 
A-1, A-2, and A-3 in the ESM. Additional pharmacovigi-
lance evaluations involving social media include work by 
Caster and colleagues [16, 17] and Pierce et al. [18].

All of these shared tasks focused on ADE mentions, 
whereas TAC and ADE Eval were oriented towards 
 MedDRA® codes.

3  Methods

The ADE Eval consisted of two tasks: (1) finding ADE men-
tions and (2) coding ADE mentions to  MedDRA®. The spec-
ificity of the pharmacovigilance use case provided a concrete 
opportunity to evaluate NLP technology for ADE detection 
by coordinating the design of annotation guidelines, corpus 
definition, and metrics.

3.1  Training and Test Corpora

The training data for ADE Eval consisted of 100 annotated 
documents, 50 of which were also included in the 2017 

4 Note that the mapping was performed for already extracted ADR 
strings.
5 For the pharmacovigilance use case, an ADE is any undesirable 
experience associated with the use of a medical product in a patient. 
Outcome refers to the status of a patient’s health condition, how the 
patient feels, functions, or survives. An outcome may be attributable 
to an ADE. Serious outcomes include death, life-threatening experi-
ence, hospitalization or prolongation of hospitalization, disability, and 
birth defects [32].
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NIST TAC ADR test set. The test data for the evaluation 
consisted of 2000 unannotated test documents, 100 of 
which were annotated for evaluation. The identity of this 
100-document test subset was not revealed to performers. 
Each document consisted of a subset of the sections found 
in a single PI label, accessed from DailyMed [19] (https ://
daily med.nlm.nih.gov/daily med/). The sections of interest 
were adverse reactions, boxed warnings, and either one or 
two sections devoted to warnings and precautions. All docu-
ments contained an ADR section; the other sections might 
or might not appear in a given document. For the purposes 
of the evaluation, the raw text to the relevant sections was 
extracted from the PIs.6

The completed annotated corpus is complex and exten-
sive: more than 60,000 mention annotations (each of them 
 MedDRA® coded) over approximately 690,000 words. 
These test mention annotations amount to almost 14,000 
 MedDRA® code occurrences across the specified sections 
of the test corpus documents. Detailed annotation statistics 
for the full corpus can be found in Sect. B.1 of the ESM.

3.1.1  Guidelines and Annotation Schema

The annotation guidelines reflected pharmacovigilance SEs’ 
interpretations of PIs as well as application of that expertise 
to ICSR screening; it followed the FDA labeling guidance, 
in which adverse experience is defined as “any adverse event 
associated with the use of a drug in humans, whether or not 
considered drug related, including the following: an adverse 
event occurring in the course of the use of a drug product in 
professional practice; an adverse event occurring from drug 
overdose whether accidental or intentional; an adverse event 
occurring from drug abuse; an adverse event occurring from 
drug withdrawal; and any failure of expected pharmacologi-
cal action”. See Sect. A.1 in the ESM for more details.

To explore potentially confusable phrase types, the FDA 
created separate annotation categories for phrases meeting 
the use-case-specific ADE definitions as well as phrases 
that might be confusable with this definition, along with the 
reason for classifying each phrase. These latter categories 
were labeled in the training and test data but used only for 
diagnostics and not for scoring.

SEs from the Office of Surveillance and Epidemiology 
(OSE)—the FDA CDER office responsible for monitoring 
ICSRs reported to FAERS—annotated the training and test 
corpus, and the categories were named accordingly. The cat-
egory names OSE_Labeled_AE, NonOSE_AE, and Not_
AE_Candidate represent OSE’s workflow and do not have 

regulatory implications. The category names were chosen to 
distinguish between the present evaluation and the previous 
annotations made by the FDA for the 2017 NIST TAC ADR 
test set. The ADE Eval annotation schema consisted of three 
top-level annotation categories:7

• OSE_Labeled_AE Primary ADEs listed in a drug product 
label and associated with that particular drug exposure. 
This category was the only category scored.

• NonOSE_AE Adverse events (AEs) other than OSE_
Labeled_AE that are potentially confusable with OSE_
Labeled _AE, such as ADEs identified in an unapproved 
use of the drug, ADEs occurring in the context of animal 
exposure, ADEs representing a sign/symptom/manifesta-
tion of an OSE_Labeled_AE, and ADEs resulting from 
a drug interaction. ADEs that result from drug interac-
tions are not associated with either drug alone but are 
associated with exposure to the drug combination. This 
is why pharmacovigilance reviewers consider ADEs 
resulting from drug–drug interactions as different from 
OSE_Labeled_AEs and, for the purpose of the study, we 
categorized them as NonOSE_AEs. A label may state an 
ADE (categorized as an OSE_Labeled_AE) and include 
its typical manifestations (NonOSE_AEs). Manifesta-
tions are categorized as NonOSE_AEs because they 
could potentially be associated with multiple primary 
AEs (OSE_Labeled_AEs) or could present as a stand-
alone ADE with a distinct mechanism, thus warranting 
further exploration/characterization. (See Table B-1 in 
the ESM for the different subtypes of NonOSE_AE). 
This category was not scored.

• Not_AE_Candidate Terms that describe a condition unre-
lated to AEs such as the drug’s indication, contraindica-
tion, and patient’s medical history. Like NonOSE_AE 
terms, the terms in this class are potentially confusable 
with AEs but occur in a different context. This category 
was not scored.

Each annotated mention bore a number of additional 
attributes, which fell into three distinct groups:

• Discontinuities Attributes that help determine the exact 
span of the mention in the case of so-called discontinu-
ous mentions (i.e., mentions whose text is not an uninter-
rupted phrase). An example of this sort of discontinuity 
is found in the phrase “suicidal thoughts and behaviors,” 

6 A production system would require an ability to process the XML 
in the PIs as well as navigate between the visual presentation and the 
underlying XML.

7 For historical reasons, while we refer to the phenomena under dis-
cussion as ADEs throughout this paper, the names of the categories 
and attributes in the ADE Eval use the abbreviation “AE” instead of 
“ADE.”.

https://dailymed.nlm.nih.gov/dailymed/
https://dailymed.nlm.nih.gov/dailymed/
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where the phrase “suicidal … behaviors” is a candidate 
ADE that is discontinuous. The discontinuity attributes 
were used in the scoring of discontinuous mentions.

• MedDRA® Attributes that capture the  MedDRA® infor-
mation (PT and code, LLT and code) associated with the 
mention.  MedDRA® PTs/codes were used in scoring.

• Reasons Attributes that indicate the reason for the choice 
of top-level category. Each of the three annotation cat-
egories is associated with a different set of reasons 
(e.g., the AE_animal reason is associated with the Non-
OSE_AE category because ADRs observed in animal 
data, although informative, do not necessarily translate 
to AEs observed in humans). The reason attributes were 
recorded for the purposes of information and data analy-
sis only and were not scored. The specific values for the 
reason attributes are listed and defined in Table B-1 in 
the ESM.

3.1.2  Corpus Preparation

Before human annotators examined the documents, each 
document was pre-tagged for possible ADEs using MITRE’s 
jCarafe conditional random field mention-finding tool [20], 
trained on the NIST TAC ADR data set. A team of 17 phar-
macovigilance SEs produced the annotations by correcting 
and reviewing this pre-tagging using a customized version 
of the MITRE Annotation Toolkit [21]. All documents were 
double-annotated during this phase, and the annotations 
were reconciled by a team of two pharmacovigilance adju-
dicators. Subsequently, a team of two  MedDRA® experts, 
working in consultation, jointly annotated the mentions for 
 MedDRA® LLTs and PTs. Once annotation was complete, 
MITRE and the FDA jointly conducted a detailed quality 
control review to ensure the consistency of the annotated 
corpus.

After an initial tranche of mention annotation, MITRE 
computed a pairwise inter-annotator agreement rate [22] 
of approximately 0.65 on mention annotation (where exact 
agreement of annotation category, annotation extent, and 
annotation reason was required), and the FDA revised and 
clarified the guidelines. At the end of the annotation pro-
cess, MITRE once again computed pairwise inter-annotator 
agreement for the initial tranche of annotation and for the 
remainder of the annotation. For this second review, MITRE 
focused specifically on the inter-annotator agreement rate for 
the OSE_Labeled_AE category, since it was the category 
scored in the evaluation, and the other two categories were 
not intended to have been completely annotated. MITRE 
also used a more generous comparison requiring category 
match and extent overlap (not match) and did not require 
the reason attribute to match. MITRE discovered that, under 
this comparison metric, the pairwise inter-annotator agree-
ment rate for OSE_Labeled_AE was 0.81 after the initial 

tranche of mention annotation and 0.87 for the remainder of 
the annotation, for a reduction in error of almost 30% after 
additional clarification of the guidelines. The overall pair-
wise inter-annotator agreement rate for OSE_Labeled_AE 
under this latter comparison metric was 0.86.

3.1.3  Comparison with the TAC ADR Corpus

The ADE Eval annotation schema included the NonOSE_
AE and Not_AE_Candidate categories, and the reasons for 
assigning mentions to these various categories, to enable 
better diagnostics in the ADE Eval and to analyze and quan-
tify differences in the FDA and TAC ADR corpora. The 
inventory of reasons, and their distribution in the ADE Eval 
corpus, are shown in Tables B-2 and B-3 in the ESM.

As noted in Sect. 3.1, 50 of the drug labels in the ADE 
Eval training corpus were chosen for overlap with the NIST 
TAC ADR evaluation. The ADE Eval annotation scheme 
made it possible to see the effect of differences in the two 
evaluations. For further details, see Table B-4 in the ESM.

3.2  Evaluation Metrics

The ADE Eval envisioned two types of use cases, described 
in Sects. 3.2.1 and 3.2.2, referred to as “front office” and 
“back office”. The front office use case is supported in the 
ADE Eval by two section- and label-level metrics intended 
to measure the submission’s ability to discover  MedDRA® 
codes and their supporting evidence (namely, at least one 
corresponding mention within that section or label). The 
back office use case is supported by more traditional men-
tion-level precision and recall metrics, weighted in a way 
that attempts to model the effort involved in correcting any 
mention annotation errors, with a view to creating com-
pletely annotated training data for machine-learning-based 
NLP systems.

The evaluation metrics assume that the gold and sub-
mission mentions are paired with each other and divided 
into exact match mention pairs (which match in span and 
 MedDRA® PT code), inexact match mention pairs (which 
overlap in span but do not count as exact matches), missing 
gold mentions, and spurious submission mentions, which 
have no gold counterpart. The process that produces this 
pairing is described in Sect. B.1 in the ESM.

3.2.1  Front Office Use Case

In the front office use case, pharmacovigilance SEs need to 
know whether a  MedDRA® code-associated ADE is present 
in a given section of the PI label and may want to see evi-
dence of the presence of this ADE. The section-level analy-
sis is crucial because the SE needs to know what level of 
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severity the PI reflects for the given ADE, and the different 
severity levels are associated with specific sections.

For the front office use case, the scorer treated as legal 
matches both exact match mention pairs and inexact match 
mention pairs matching in  MedDRA® code, where any 
degree of overlap was acceptable. The intuition behind this 
decision is that, in this use case, the SEs are looking for evi-
dence, and as long as the mention draws the SE’s attention 
to the evidence, it is acceptable.

For this use case, we computed two primary metrics. The 
first metric is macro-averaged precision/recall/F1-measure 
(P/R/F1) on  MedDRA® codes. The scope of the macro-
averaging was the section; P/R/F1 were computed per sec-
tion and the values averaged together. In this computation, 
a correct  MedDRA® code was one that was realized by at 
least one legal match. (We refer to these codes as properly 
grounded.) All other  MedDRA® codes were judged to be 
either missing (i.e., it was the  MedDRA® code for at least 
one mention in the gold standard, but none of those mentions 
were paired with a similarly coded submission mention) or 
spurious (i.e., it was the  MedDRA® code for at least one 
mention in the submission, but none of those mentions were 
paired with a similarly coded gold standard mention).

We also introduced a second, new metric that attempts to 
assess the quality of the evidence for the properly grounded 
 MedDRA® codes. The metric is designed in such a way that 
the higher the score, the more likely it is that a mention 
for any properly grounded code is valid evidence for that 
code. This metric was a macro-averaged precision measure 
on submission mentions associated with each correct code. 
Each correct  MedDRA® code was assigned a score based 
on the fraction of the linked submission mentions that were 
paired with an identically coded gold mention. Each men-
tion score was scaled by the overlap of the mention with its 
gold pair. The reason for scaling the score by the overlap 
was to give more credit to more precise evidence. The score 
for the  MedDRA® codes within a section were averaged to 
create the section-level score, and these scores were macro-
averaged across the corpus.

3.2.2  Back Office Use Case

The back office use case tests the scenario where pharma-
covigilance SEs use an automated system to identify ADEs, 
and some of the PI labels annotated by the system are hand 
corrected by human annotators to create a completely anno-
tated reference. In this use case, every mention is important 
and some corrections are more time consuming than others.

The primary metric for this use case was weighted, micro-
averaged, corpus-level P/R/F1 measure on mentions. A per-
fect score was awarded to each exact match mention pair, 
and all other elements were weighted in an attempt to model 
the time cost of correcting the errors. Given a count of M 

exact match mention pairs, C inexact match mention pairs 
(differing in span or  MedDRA® code), N missing mentions, 
and S spurious mentions,

N′ = N (missing mentions are weighted 1, because adding 
a mention is hard).

S′ = 0.25 × S (spurious mentions are weighted 0.25, since 
deleting a mention is easy).

C′ = 0.5 × C (errors are weighted 0.5, since correcting a 
mention is hard but likely not as hard as adding one).

M′ = M + (0.5 × C) (matches accrue the correct share of 
the clash).

P/R/F1 measure are now computed normally:
P = M′/(M′ + C′ + S′).
R = M′/(M′ + C′ + N′).
F = (2 × P × R)/(P + R).

4  Results

4.1  Summary of Results

In total, 13 teams collectively returned 23 system submis-
sions for ADE Eval. The submission scores are listed in 
Table 1.

4.2  Mention Finding

The primary mention-finding metric for the back office 
use case (see Table 1, column 3) is based on a match of 
both extent and  MedDRA® code, weighted as described in 
Sect. 3.2.2.8 The highest F1 score here was 0.89, achieved by 
both submissions of the MelaxNLP system (using technol-
ogy from University of Texas – Houston, a top performer in 
TAC ADR) and one of the UMLBioNLP submissions. About 
half of the submissions achieved an F1 of ≥ 0.8, including 
submissions from NaCTeM, Linguamatics, UPenn, Beta-
Research, CONDL, and GMU. Figure 1 shows a precision 
versus recall graph.

The distribution of mention-finding methods among 
the responding sites ref lects the NLP community’s 
current preference for statistical approaches: only two 
of 13 sites (JHU, Linguamatics) used a nonstatisti-
cal approach. The distribution of statistical approaches 
also reflected the current direction of NLP work. Using 
standard sequence tagging approaches such as conditional 

8 This mention-finding metric is stricter than the one in TAC ADR 
in that it considers the MedDRA® code when scoring the mention 
finding but is more generous in granting partial credit for overlap-
ping mentions and discounting the penalty for spurious mentions. The 
mention-finding task differs from TAC ADR Task 1 in other ways, 
as described in Sect. A.1 in the ESM, but the MedDRA® coding 
dependency is the prominent factor here.
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random fields (CRFs) [23, 24] alone is falling out of 
favor as the community moves toward neural-network-
oriented approaches; only one site (NLP@VCU) used a 
CRF alone. In many cases, CRFs are used as a layer on 
top of a complex neural network architecture known as 
bidirectional long short-term memory (Bi-LSTM) [25, 
26]. At least five of the 13 responding sites used Bi-
LSTM + CRF for at least one of their runs, and a sixth 
(GMU-VCU-VASaltLake) used such an approach as 
a component of its ensemble. Four others that did not 
explicitly use Bi-LSTM + CRF used neural-based deep-
learning approaches as some component of their mention-
finding approach.

While all the Bi-LSTM + CRF submissions achieved 
an F1 of ≥ 0.8, using this technique is not a fundamental 
requirement for good results; for example, Linguamatics 

did relatively well with a nonstatistical approach. See Table 
C.1 in the ESM for further details. Further analysis of the 
mention-finding results, including score breakdowns by 
error type and significance testing, can be found in Sect. 
C.1 of the ESM.

4.3  MedDRA® Coding

The first primary front office metric is  MedDRA® code 
retrieval, macro-averaged by section. The top performer 
here, again, was MelaxNLP, with an F1 of 0.79 for both 
runs, followed by UMLBioNLP, with scores of 0.76 and 
0.75. Overall, four teams had runs scoring ≥ 0.7 F1, includ-
ing Linguamatics and NaCTeM with scores of 0.70. This 
metric is more demanding than the equivalent TAC ADR 
metric because the  MedDRA® codes must be properly 
grounded in a correctly matching gold mention in order to 
count as a match, and the scope of the macro-averaging is 

Table 1  ADE Eval submission scores

BetaResearch Uppsala Monitoring Centre, CONDL University of North Dakota, School of Medicine and Health Sciences, GMU George Mason 
University, JHU Johns Hopkins School of Medicine, MayoNLPTest Mayo Clinic, MC MeaningCloud, MedDRA® Medical Dictionary for Regu-
latory Activities, MelaxNLP Melax Technologies, Inc., NaCTeM National Centre for Text Mining, University of Manchester, NLP@VCU Natu-
ral Language Processing at Virginia Commonwealth University, P/R/F1 precision/recall/F1-measure, UC3M Universidad Carlos III de Madrid, 
UMLBioNLP University of Massachusetts at Lowell, UPennHLP University of Pennsylvania, VASaltLake Veterans Administration, Salt Lake 
City, VCU Virginia Commonwealth University
a Note that the Quality metric should be interpreted with care when the recall in the middle column is very low

Team Run Mentions—exact match, 
weighted (P/R/F1)

MedDRA® coding—macro-
averaged by section (P/R/F1)

Quality

BetaResearch Submission1 0.90/0.70/0.79 0.75/0.57/0.61 0.91
BetaResearch Submission2 0.87/0.78/0.82 0.64/0.62/0.60 0.90
CONDL CONDL_E19 0.97/0.68/0.80 0.89/0.55/0.63 0.96
CONDL CONDL_E46 0.97/0.69/0.80 0.87/0.56/0.63 0.95
GMU-VCU-VASaltLake Ensemble 0.89/0.73/0.80 0.67/0.59/0.50 0.85
GMU_VASALTLAKE Submission_run1 0.89/0.71/0.79 0.70/0.57/0.48 0.84
GMU_VASALTLAKE Submission_run2_resubmission 0.87/0.75/0.80 0.68/0.59/0.47 0.81
JHU JHU_System_Submission_1st_Run 0.86/0.73/0.79 0.66/0.62/0.58 0.84
Linguamatics AEs 0.85/0.83/0.84 0.66/0.82/0.70 0.79
Linguamatics Baseline 0.80/0.82/0.81 0.57/0.83/0.64 0.76
MC-UC3M Run1 MC-UC3M fixed 0.82/0.74/0.78 0.58/0.53/0.53 0.92
MC-UC3M Run2 MC-UC3M fixed 0.83/0.72/0.77 0.58/0.50/0.51 0.93
MayoNLPTest Test_sub_r1 0.82/0.75/0.79 0.61/0.64/0.59 0.85
MayoNLPTest Test_sub_r2 0.81/0.68/0.74 0.57/0.55/0.52 0.86
MelaxNLP Run1_submission 0.93/0.85/0.89 0.83/0.79/0.79 0.93
MelaxNLP Run2_submission 0.92/0.86/0.89 0.80/0.81/0.79 0.92
NLP@VCU Test_submission 0.94/0.19/0.31 0.88/0.17/0.22 0.96a

NaCTeM Run1_HYPHEN 0.93/0.79/0.86 0.79/0.68/0.70 0.96
NaCTeM Run2_Neural 0.75/0.64/0.69 0.56/0.48/0.50 0.94
UMLBioNLP Submission1 0.92/0.83/0.87 0.83/0.74/0.75 0.93
UMLBioNLP Submission2 0.92/0.86/0.89 0.81/0.77/0.76 0.93
UPennHLP Run1_unsupervised 0.76/0.79/0.77 0.50/0.66/0.53 0.79
UPennHLP Run2_supervised 0.84/0.83/0.84 0.61/0.75/0.65 0.86
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the individual PI section, rather than the union of PI sections 
as in TAC ADR.

Figure 2 shows a precision versus recall graph to illustrate 
the relative strengths of each system in  MedDRA® coding.

The correlation between the mention-finding submission 
score order and the  MedDRA® code retrieval submission 
score order, at least among the higher performing systems, 
was striking; once we created groupings of F1 scores based 
on statistical significance thresholds, the members of the 
top two equivalence classes (taken together) across the two 
metrics were identical (see Tables C-3 and C-4 in the ESM). 
This is reminiscent of TAC ADR; clearly, the quality of the 
mention finding is a dominant factor.

For the 11 sites that reported their  MedDRA® coding 
strategy, the following strategies were reported:

• mention finding and  MedDRA® coding occurred simul-
taneously, using retrieval or pattern matching on known 
 MedDRA® terms (four sites);

• lookup tables or dictionaries (two sites);
• information retrieval-based indexing (three sites);
• rules (three sites);
• neural approaches (four sites).

Multiple sites used a combination of these approaches, 
and multiple sites used different  MedDRA® coding 
approaches in different submissions.

4.4  Quality

The front office quality metric is intended to determine 
the user’s experience when encountering system output. It 
judges the quality of the evidence for each code that has 
at least one properly grounded mention. These scores were 
very high, with half > 0.9. This score is informative only in 
conjunction with the  MedDRA® retrieval score because the 
quality metric does not assign a penalty for a truly spurious 
code (i.e., a code that the system did not associate with any 
mention). This metric shows that, where the systems prop-
erly find a  MedDRA® code, the evidence they provide for 
that code is of high quality.

The highest-ranking systems were NLP@VCU (achiev-
ing a score of 0.96), CONDL (0.96 and 0.95), and NaCTeM 
(0.96 and 0.94). The top two sites according to the previous 
metrics—MelaxNLP and UMLBioNLP—followed imme-
diately, along with MC-UC3M, with scores of 0.93 and 
0.92. In this case, the best correlation with other metrics, 
as one might expect, was with  MedDRA® coding precision; 
whereas NLP@VCU scored poorly in F1 on  MedDRA® cod-
ing, it scored second in precision and achieved the top score 
here. Eight of the top 11 quality submissions were the top 
eight submissions for  MedDRA® coding precision.

Fig. 1  Precision vs. recall for 
exact mention match (weighted)
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4.5  Mention Reasons and Confusability of Spurious 
Annotations

As part of each submission, systems generated mentions that 
did not match any OSE_Labeled_AE in the gold standard, 
i.e., they were spurious. Each mention in the gold standard 
was marked with a reason that the category was selected 
(e.g., a mention might be marked as a NonOSE_AE because 
it describes an ADR in animals, which does not neces-
sarily translate to humans). To diagnose these errors, we 
applied the ADE Eval pairing algorithm again to all sub-
missions, this time targeting the (unscored) NonOSE_AE 
or Not_AE_Candidate mentions in the gold standard test 
corpus. Across the entire range of submissions, a total of 
97,173 spurious mentions were generated, of which 44,585 
(46%) were paired with some unscored gold standard men-
tion using this alignment process (even though the unscored 
categories were not exhaustively annotated). In other words, 
almost half the spurious submission mentions were confus-
able, aligning with a NonOSE_AE or Not_AE_Candidate 
gold standard mention. Table C-5 in the ESM shows the 
confusability data for these two additional categories; see 
also Sect. C.3 of the ESM.

5  Discussion

The ADE Eval task was conducted to evaluate a range of 
NLP techniques for identifying ADEs mentioned in publicly 
available FDA drug labels. The purpose of the task was to 

determine whether the performance of algorithms currently 
used for NLP might be good enough for real-world use. The 
top performing systems used a combination of Bi-LSTMs 
and CRFs, but high performance was also achieved by sys-
tems using neither of these technologies, suggesting that 
there are many possible technological paths towards high 
performance.

The  MedDRA® coding metric is the metric most relevant 
to the front office use case described in Sect. 3.2.1, and it is 
likely that the best  MedDRA® coding performance reported 
in ADE Eval exceeds the performance found in Ly et al. [1] 
and TAC ADR. As discussed in Sect. 4.3, the ADE Eval 
 MedDRA® coding metric is stricter than that of TAC ADR 
(and, also, of Ly et al. [3]); it requires linked evidence and 
for the  MedDRA® code to be found in a specific section 
rather than in any of the relevant sections. The top perform-
ing MelaxNLP F1 score of 0.79 likely represents an advance 
over the top score reported in Ly et al. [3], which is no higher 
even though the ADE Eval task is more challenging. Simi-
larly, while a direct comparison with TAC ADR is difficult 
to quantify, Sect. C.7 of the ESM attempts to elucidate this 
comparison, exploiting the fact that the UTH-CCB system, 
a predecessor of MelaxNLP, participated in the TAC ADR 
evaluation. The best available comparison suggests that 
UTH-CCB would have achieved an ADE-Eval-equivalent 
 MedDRA® coding F1 score of 0.69 rather than the label-
level score of 0.853 reported in TAC ADR.

As discussed in Sect. 2.1, Ly et al. [3] concluded that 
the NLP tools they investigated did not perform at levels 

Fig. 2  Precision vs. recall for 
Medical Dictionary for Regula-
tory Activities  (MedDRA®) 
retrieval (macro-averaged by 
section)
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that would allow them to be used without human interven-
tion, and the results of the ADE Eval do not change this 
conclusion. (See Sect. D.1 in the ESM for a discussion of 
what might make it hard to find a particular ADE in PI text.) 
However, there are other ways to use these NLP tools, for 
example, as inputs to a human correction activity. Multiple 
studies [27–31] have considered this option in NLP, and—
while the results are not universally positive—they are 
promising enough, and the activity is similar enough to the 
PI preparation activities required for the pharmacovigilance 
use cases, that we should begin to consider how and where 
to insert these tools into the pharmacovigilance workflow to 
maximize benefit for pharmacovigilance applications.

6  Conclusion

MITRE and the FDA conducted the ADE Eval, an evalua-
tion of tools designed to identify ADEs mentioned in pub-
licly available FDA PIs. The custom design of the ADE Eval 
enabled the FDA to assess the applicability of current NLP 
technologies to its specific use cases. The following were 
valuable outcomes of ADE Eval:

• Some participants were previously unknown to MITRE 
and the FDA; one (UMLBioNLP) was among the top 
performers.

• Confirmation that the additional complexities related to 
the pharmacovigilance annotation guidelines did not cre-
ate an obstacle to good performance.

• Computation of finer-grained mention-finding scores by 
reason, quantitative description of the effect of differ-
ences between the pharmacovigilance and TAC ADR 
annotation guidelines, and better error analysis.

• Careful alignment of the ADE Eval results with concrete 
pharmacovigilance tasks.

The similarity of the ADE Eval and TAC ADR results 
suggests that a sufficiently similar evaluation might serve 
as a valuable proxy in situations where it is not possible, or 
desirable, to conduct a bespoke evaluation. Finally, while 
the results of the ADE Eval are not directly comparable with 
previous evaluations because of the difference in evaluation 
metrics, the available evidence suggests that NLP tools con-
tinue to improve, and it is likely that exploring the benefits of 
making NLP outputs available in human pharmacovigilance 
workflows would be worthwhile. One insertion point might 
be an NLP-enabled curation environment to build a central 
repository for ADE presence/absence in PIs. SEs currently 
apply their expert knowledge of PIs, and/or manually consult 
PIs, to determine ADE labeled status during ICSR evalua-
tion. However, there is currently no such central facility for 
capturing SE judgments, although individual SEs may create 

their own tabulations of this information. (See Sect. D.2 and 
D.3 of the ESM for a discussion of real-world usefulness of 
NLP to human pharmacovigilance workflows.) A curation 
environment would allow SEs to record their expert judg-
ments and to validate or correct NLP-based ADEs. Further 
exploration of these approaches to capture efficiency gains, 
both quantitative and qualitative, would be informative, in 
the form of human factors observation and/or human-in-the-
loop experimentation.
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