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ABSTRACT
◥

Purpose: There are several agents in early clinical trials targeting

components of the adenosine pathway including A2AR and CD73.

The identification of cancers with a significant adenosine drive is

critical to understand the potential for these molecules. However, it

is challenging to measure tumor adenosine levels at scale, thus

novel, clinically tractable biomarkers are needed.

Experimental Design:We generated a gene expression signature

for the adenosine signaling using regulatory networks derived from

the literature and validated this in patients.We applied the signature

to large cohorts of disease from The Cancer Genome Atlas (TCGA)

and cohorts of immune checkpoint inhibitor–treated patients.

Results: The signature captures baseline adenosine levels in vivo

(r2¼ 0.92, P¼ 0.018), is reduced after small-molecule inhibition of

A2AR in mice (r2¼�0.62, P¼ 0.001) and humans (reduction in 5

of 7 patients, 70%), and is abrogated after A2AR knockout. Analysis

of TCGA confirms a negative association between adenosine and

overall survival (OS, HR ¼ 0.6, P < 2.2e–16) as well as progression-

free survival (PFS, HR ¼ 0.77, P ¼ 0.0000006). Further, adenosine

signaling is associated with reducedOS (HR¼ 0.47, P < 2.2e–16) and

PFS (HR¼ 0.65, P¼ 0.0000002) in CD8þT-cell–infiltrated tumors.

Mutation of TGFb superfamily members is associated with

enhanced adenosine signaling and worse OS (HR ¼ 0.43, P <

2.2e–16). Finally, adenosine signaling is associated with reduced

efficacy of anti-PD1 therapy in published cohorts (HR ¼ 0.29, P ¼

0.00012).

Conclusions: These data support the adenosine pathway as a

mediator of a successful antitumor immune response, demonstrate

the prognostic potential of the signature for immunotherapy, and

inform patient selection strategies for adenosine pathway modula-

tors currently in development.

Introduction
The role of the immune system in controlling cancer is widely

recognized (1). Therapeutically, this is evidenced by a number of recent

drug approvals for immunotherapy agents that enhance endogenous

antitumor immunity (reviewed by ref. 2) or target tumors directly

(reviewed by ref. 3). Responses to immunotherapies are distinct from

those seen from other targeted therapies in at least two respects. First,

these responses are being observed in cancer indications of previously

unmet need such as melanoma (4), lung adenocarcinoma (5), and

hematologic malignancies (6). Second, the duration of response to

immunotherapy appears to persist for longer in certain settings than

those observed with targeted therapies (reviewed by ref. 7).

Despite the clinical success of immunotherapy, there are important

questions regarding the initial or eventual failure to control disease,

and the value of targeted versus broader approaches to tumor immu-

nity. Current immunotherapies target specific molecules within the

immune system, such as the checkpoint proteins PD1 and PDL1, and

show responses in only a subset of patients with cancer in any given

indication. Total mutational burden (TMB; ref. 8) and PDL1 pro-

tein (9) levels have been shown to correlate with immunotherapy

response. However, only 30% of the responders are positive based

upon thesemeasures (10), suggesting that amore widespread response

may be achieved by taking a broader approach; for example, by

targeting both innate and adaptive antitumor immunity.

One example of a factorwith broad immunosuppressive effects is the

adenosine signaling axis (11), which has been shown to suppress natural

killer (NK) and CD8þ T-cell cytolytic activity while enhancing sup-

pressive macrophage and dendritic cell polarization as well as Treg and

myeloid-derived suppressor cell (MDSC) proliferation (12). Beginning

with landmark research by Ohta and colleagues (13), a series of

preclinical studies (14–18) have been reported and clinical trials (19–21)

initiated targeting adenosine signaling. In addition, preclinical evidence

supports a role for adenosine axis antagonists in chimeric antigen

receptor T-cell therapy (22), adoptive cell therapy (13), and cancer

vaccines (23). Thus, targeting the adenosine axis may block a broadly

relevant immunosuppressive pathway in cancer (24). Fong and collea-

gues have demonstrated tumor regressions in 24%of patientswith renal

cell cancer treated with an A2AR antagonist (25).

We sought to characterize the pan-cancer role of adenosine in

human tumors, to test the hypothesis that adenosine signaling has a
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negative prognostic link within human tumors, and to identify

segments of disease where this might be most pronounced. Ideally, a

biomarker to address this question would be derived independently

of any particular adenosine axis–targeting agent, be quantitatively

measurable across various tumor indications, and test the hypoth-

esis using existing public molecular databases. Here, we report the

discovery and characterization of a gene expression signature that

meets these criteria and which we use to define the landscape of

adenosine signaling in human cancer with implications for existing

immune checkpoint therapies and adenosine targeting agents in

development.

Materials and Methods
Signature generation and scoring

To define a network of regulatory interactions for the A2AR

receptor, we used two complementary datasets. Natural Language

Processing (NLP) of abstracts and open-access full text from Med-

line and PubMed Central was performed by Biorelate Ltd (https://

www.biorelate.com/) to broadly sweep as much of the literature as

possible. In contrast, knowledge derived purely from manual cura-

tion in the Ingenuity Pathway Analysis tool database (Qiagen) was

used to provide a deeper mining of full text articles from a smaller

set of high-impact journals targeted by that resource.

Biorelate defines a causal (regulatory) interaction as a relation-

ship between two entities (genes or proteins) where the subject

(cause) entity has a directed edge with an object (theme) entity.

Gene entity terms and their relationships from their in-house

dictionaries were matched through their machine learning–

named entity-recognition software, now incorporated within Bior-

elate Galactic AI. Protein entities from human, mouse, and rat were

retained under the expectation that human data would be the most

relevant, while mouse and rat would capture the majority of animal

models used in biomedical research. Causal interactions were then

collapsed such that all events containing the same pair of entities

and the same interaction type were grouped. These groups were

assigned a confidence score that was used to rank select events for

manual verification.

We then filter the combined set of regulatory relationships to

identify genes that are downstream of A2AR (154 genes; 136 from

manual curation and 18 from NLP, with 13 detected in both),

upregulated by A2AR (90 genes; 78 from manual curation and 12

from NLP), robustly expressed in human tumors, defined as having a

median expression greater than the median expression of all genes

(74 genes; 66 from manual curation and 8 from NLP), and, finally, by

their presence on the Nanostring PanCancer Immune Profiling

expression panel (14 genes; 10 from manual curation and 4 from

NLP). This last step ensures that our signature retains maximum

clinical utility given that the Nanostring panel is widely used to profile

formalin-fixed, paraffin-embedded (FFPE) samples from clinical trials

where whole transcriptome profiling is often unavailable. The 14 genes

that meet these criteria and form the signature are: PPARG, CYBB,

COL3A1, FOXP3, LAG3, APP, CD81, GPI, PTGS2, CASP1, FOS,

MAPK1, MAPK3, and CREB1.

We score transcriptome data with the signature using Gene Set

Variation Analysis [GSVA (26)]. This method is robust to outlying

genes expressed at different orders of magnitude and generates

scores amenable to downstream statistical interpretation. We

observe a strong linear correlation between signatures representing

immune processes/features and tumor purity in The Cancer

Genome Atlas (TCGA; see Supplementary Fig. S1). To account for

this bias, we adjust the signature scores for tumor purity by fitting a

linear regression derived from all samples in TCGA versus tumor

purity and then applying the following correction:

Corrected score¼ uncorrected score� (interceptþ slope� purity)

Analysis of public datasets

Exome sequencing data from TCGA were processed as described

in ref. (27). TCGA RNA sequencing (RNA-seq) data were described

in ref. (28), and associated clinical data were taken from ref. (29).

Copy-number variants made with GISTIC version 2.0.22 were

obtained from the TCGA Firehose. Microsatellite instability (MSI)

subtype information was obtained from ref. (30). Tumor purity data

were obtained from ref. (31).

RNA-seq data fromADORA2A knockout NK cell lines generated in

ref. (32) were obtained from the European Nucleotide Archive

(PRJEB22631). Reads were aligned to the mouse genome (mm10)

using HISAT2 (33), and expression levels were quantified using

Salmon (34).

Published cohorts of immunotherapy-treated subjects with pre-

processed gene expression profiles were obtained from refs. (35, 36)

and scored with GSVA. The anti–CTLA-4 dataset (36) was generated

with a custom nanostring panel that contained only 6 (CASP1, CD81,

CYBB, LAG3, PARG, and PTGS2) of the 14 genes from our signature.

Survival analysis

Survival analyses were performed using the Cox proportional

hazards regression model as implemented in the Survival package

from R (37). For the analysis presented in Fig. 2A and B, tumors were

split into high (>75th), medium (25–75th), and low (<25th) based on

quartiles. In all other survival analyses, adenosine signature scores

were split on 0 with >0 high and <0 low.

Immune cell–type infiltrate scoring

Immune cell infiltrates were determined with a support vector

regression (SVR) approach based on CIBERSORT (38) to define

relative immune cell abundance. To study the association of adenosine

with CD8þ T-cell infiltration, we consider CD8 high tumors to be

greater than the median of CD8A expression across all samples. All

other cell or cell-state signatures were scored using GSVA. NK-cell

exhaustion was determined using expression of KIR3DL1, KIR3DL2,

IL2RA, IL15RA, HAVCR2, and EOMES. Cytotoxicity was determined

Translational Relevance

There are several agents in early clinical trials targeting compo-

nents of the adenosine pathway including A2AR and CD73. The

identification of cancers with a significant adenosine drive is critical

to identify patients who might benefit from these therapies.

However, it is challenging to measure tumor adenosine levels in

a high-throughput manner. Thus novel, clinically tractable bio-

markers are needed. We generate and validate a gene expression

signature that recapitulates adenosine signaling activity. We dem-

onstrate that adenosine signaling is associated with survival across

tumors of all types andwithin specific indications, and that baseline

adenosine signaling scores predict response to immune checkpoint

therapies. The signature reported here therefore has the potential to

inform patient selection strategies for adenosine pathway mod-

ulators and existing immunotherapies.

The Landscape of Adenosine Signaling in Cancer
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using the expression ofNKG7,CST7, PRF1,GZMA,GZMB, and IFNG.

CD8 exhaustion was determined using the signature provided in

ref. (39). IFNG signaling was determined using the signature presented

by ref. (40).

Genetic associations with adenosine

Genetic associations with adenosine signaling were studied for all

genes with a mutation frequency >2% across the cohort being

studied and for all copy-number variants. A linear model with

tumor type, TMB, and MSI status as covariates was fit to the data,

and ANOVA was used to test for significance. Effect sizes were

computed as the Cohen's D effect size where the difference between

means is normalized for the variance within the data. All P values

were adjusted for multiple testing using the Benjamini–Hochberg

procedure.

Mouse models for signature validation

All animal studies were performed according to AstraZeneca

Institutional Animal Care and Use Committee guidelines.

Transcriptional profiling data for the five syngeneic models shown

in Fig. 1A were obtained from ref. (41). Tumor adenosine measure-

ments from syngeneic models were performed as described in Good-

win and colleagues (42).

For the in vivo treatment study shown in Fig. 1B, MC38 cells were

confirmed free ofmycoplasma andmouse pathogens by PCR as part of

a rodent pathogen testing panel (IMPACT, IDEXX Bioresearch).

Thawed cells were cultured in DMEM supplemented with 10%

heat-inactivated FBS and 1% L-glutamine (Sigma Aldrich) at 37�C in

a humidified incubator maintained at 5% CO2. Cell counts were

performed prior to implantation by Countess Cell Counter (Invitro-

gen). For subcutaneous implants, 5 � 10�5 MC38 cells/mouse were

resuspended in sterile PBS and injected s.c. into the right flanks of 4- to

6-week-old female C57BL/6 mice (Charles River Labs) in a total

volume of 0.1 mL/mouse.

Mice were randomized into treatment groups at a starting tumor

volume of 50 to 90 mm3. AZD4635 nanosuspension formulation

(Aptuit, Verona) was reconstituted in sterile water and dosed orally

b.i.d. at 50 mg/kg. Tumor volume and body weight were measured

Figure 1.

Signature validation. A, The adeno-

sine signaling signature correlates

(r2 ¼ 0.92, P ¼ 0.018) with absolute

adenosine levels in the tumor micro-

environment in mouse syngeneic

models. B, Effective A2AR inhibition,

as defined by a reduced growth rate,

with a specific small-molecule inhib-

itor (AZD4635) in the MC38 synge-

neic mouse model correlates with

reduced adenosine signature scores

(r2 ¼ �0.62, P ¼ 0.001). C and

D, The adenosine signature correlat-

ed with markers of NK-cell exhaus-

tion (r2 ¼ 0.4, P < 2.2e�16 and OR ¼

3.1, P < 2.2e�16) and CD8 T-cell

exhaustion (r2 ¼ 0.6, P < 2.2e�16 and

OR ¼ 7.8, P < 2.2e�16) in human

tumors from TCGA. E, Adenosine

signaling signature scores are

reduced in A2AR KO CD11bþ CD27�

NK cells versus A2AR wild-type NK

cells from C57BL/6 mice. F, Adeno-

sine signaling scores are reduced

in 5 of 7 patients treated with

AZD4635 in a phase I trial, 4 of which

have concomitant increases in gene

expression signatures measuring

cytolytic activity and IFNG signaling.

Sidders et al.

Clin Cancer Res; 26(9) May 1, 2020 CLINICAL CANCER RESEARCH2178

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/9

/2
1
7
6
/2

0
6
5
4
5
0
/2

1
7
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u

s
t 2

0
2
2



twice weekly after randomization. Growth rate was calculated as the

slope of a linear model fit to the percent change in tumor volume from

day 0 over time.

Human phase IA study of AZD4635

The first-in-human trial, NCT02740985, was conducted to assess

safety, pharmacokinetic (PK), and pharmacodynamic activity of

AZD4635 as monotherapy and in combination with durvalumab in

patients with treatment refractory solid tumors. Predose and on-

treatment tumor biopsieswithin 3weekswere collected from7 subjects

who were treated with AZD4635 monotherapy. Six subjects (ovarian,

sarcoma, pancreatic, colon, myxofibrosarcoma, and cholangiocarci-

noma) were treated with 75 mg, whereas the single remaining subject

(breast) was treated with 100 mg AZD4635 PO in a once-daily dosing

regimen, thus all were at or below the recommended phase 2 dose of

100 mg QD, showed no significant differences in PK, and none of the

subjects in this cohort had a RECIST response to AZD4635.

Total RNA was extracted from tumor tissue macrodissected from

5-mm-thick FFPE sections using the miRNeasy FFPE Kit (QIAGEN).

RNA integrity and quantity were assessed on the TapeStation 2200

Figure 2.

Adenosinemediates survival in tumors of all types fromTCGA.A,OS is significantlyworse (HR¼0.6, Cox PHP< 2.2e�16) in the upper quartile of all tumors fromTCGA

with the highest levels of adenosine signaling.B, Theupper quartile also has a significantlyworse PFS (HR¼0.77, CoxPHP¼0.0000006).C,Tumorswith a highCD8

infiltrate (greater than the median level of CD8A expression) that are also adenosine high show an OS deficit (HR¼ 0.47, Cox PH P < 2.2e�16) compared with CD8-

infiltrated tumors with low adenosine signaling.D, Likewise for PFS, tumors that are both CD8 infiltrated and adenosine high have aworse prognosis compared with

those that are adenosine low (HR ¼ 0.65, Cox PH P ¼ 0.0000002).

The Landscape of Adenosine Signaling in Cancer
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using the RNA ScreenTape System (Agilent). Manufacturer's recom-

mended protocols were followed.

The RNA was subsequently analyzed for gene expression using the

NanoString nCounter FLEX Analysis System and the commercially

available 770-gene, human PanCancer Immune Profiling Panel

(NanoString). Following the manufacturer's standard XT CodeSet

Gene Expression Assays protocol, 25 to 100 ng RNA was hybridized

with Capture and Reporter probes at 65�C for 22 hours. Posthybri-

dization sample processing on the Prep Station using the high-

sensitivity setting was followed by data collection on the Digital

Analyzer scanning at 555 fields of view. Preprocessing of the raw

count data, which included background subtraction of the negative

control probes, positive control normalization, and housekeeping gene

normalization, was performed in the nSolver 4.0 (NanoString) soft-

ware using the geometric means and default parameters. All samples

included in downstream analyses fell within the default nSolver QC

parameters.

Results
A gene expression signature accurately captures adenosine

signaling levels

It is challenging to measure tumor adenosine levels in a high-

throughputmanner, sowe sought to create a gene expression signature

that would recapitulate adenosine signaling and allow us to study the

wealth of existing data from large collections of tumor transcriptomes.

It has previously been shown that causal, or regulatory, protein/gene

interaction knowledge is a powerful substrate for the interpretation of

transcriptomic data (43–45). We thus sought to compile a regulatory

network for the adenosine signaling pathway. Both NLP, as described

previously (46–48), and manually extracted knowledge (49) were used

to define a network of interactions between the A2AR receptor and

downstream entities. Of the four adenosine receptors, A2A was

selected as the basis of our study given that A1 and A3 function to

increase cAMP rather than decrease it, which is necessary for

immune cell suppression (50), whereas A2B has considerably lower

affinity for adenosine (50). We focused on regulatory interactions

where there was evidence that A2AR increased expression of the

downstream entity in the primary scientific literature. We found

172 genes that have been reported to be regulated by A2AR, 90 of

which were reported to be positively regulated by A2AR signaling

activity. We applied additional filters to ensure the genes are

robustly expressed in human tumors and present on a widely used

clinical transcriptomics assay. Our final signature consisted of

14 genes whose concordant activity is indicative of adenosine

signaling: PPARG, CYBB, COL3A1, FOXP3, LAG3, APP, CD81,

GPI, PTGS2, CASP1, FOS, MAPK1, MAPK3, and CREB1.

To confirm the validity and specificity of our signature, we quan-

tified the intratumoral levels of adenosine in five murine syngeneic

models for which we also have transcriptional profiles (41). We find a

significant correlation (r2 ¼ 0.92, P ¼ 0.018) between measured

intratumor adenosine concentrations and adenosine signaling

as captured using our signature (Fig. 1A). We next assessed whether

the adenosine signature tracked with inhibition of the adenosine

receptor in vivo within the MC38 syngeneic model using AZD4635,

an A2AR selective small-molecule currently in clinical develop-

ment (15, 51). We find that our signature correlates (r2 ¼ �0.62,

P ¼ 0.001) with reduced growth rate after A2AR inhibition (Fig. 1B).

Furthermore, knockout of the A2AR receptor (32) abrogated aden-

osine signaling signature scores in CD11bþCD27�NK cells (Fig. 1E).

A key biological effect of adenosine within human tumors is

to suppress immune cell activity (32). In concordance with this,

the adenosine signature scores have a significant association with

NK-cell (r2¼ 0.4, P < 2.2e�16 and OR¼ 3.1, P < 2.2e�16, Fig. 1C) and

CD8þ T-cell (r2¼ 0.6, P < 2.2e�16 and OR¼ 7.8, P < 2.2e�16, Fig. 1D)

exhaustion marker expression in TCGA. Finally, 7 patients with a

variety of solid tumors were treated once daily with AZD4635 in a

phase IA study (NCT02740985) to assess pharmacodynamic changes

in signature scores within humans. Adenosine signaling scores were

reduced in 5 of the 7 (70%) patients, 4 of which also had concordant

increases in gene expression signatures of cytolytic activity and IFNG

signaling. Taken together, these data demonstrate that our proposed

signature is a useful surrogate for adenosine signaling activity when

studying bulk transcriptomes of human and mouse tumors.

Adenosine signaling correlates with survival in human disease

Having established that our signature captures adenosine signaling

activity within tumors, we next explored the association of adenosine

signaling with disease outcomes. Adenosine suppresses a functional

antitumor response and so we would expect tumors with a high

adenosine drive to be more aggressive and have reduced survival. To

confirm this, we used our signature scores to compare survival in

tumors with high adenosine signaling with tumors with low adenosine

signaling across all cancers in TCGA. However, before doing so, we

studied the potential for tumor purity to bias our scores across large

datasets. We observed that low purity trended with greater adenosine

signature scores (Supplementary Fig. S1A).We therefore established a

normalization of signature scores for tumor purity (Supplementary

Fig. S1B and Methods) to remove this bias from further studies of

human tumors in TCGA.

Adenosine signaling high tumors were defined as the upper quartile

of signature scores across all samples, and likewise adenosine low

consisted of the lower quartile. We find that high levels of adenosine

signaling associate with significantly worse overall survival (OS; HR¼

0.6, Cox PH P < 2.2e�16) and progression-free survival (PFS; HR ¼

0.77, Cox PH P¼ 0.0000006) in a pan-cancer model (Fig. 2A and B).

This association remains if the data are split by tertiles (OS HR¼ 0.75,

Cox PHP¼ 0.000000006; PFSHR¼ 0.83, CoxPHP¼ 0.000025) or on

the median (OS HR ¼ 0.81, Cox PH P ¼ 0.0000002; PFS HR ¼ 0.86,

Cox PH P ¼ 0.00007).

Considerable progress has been made in the characterization of

the tumor microenvironment from the perspective of immune cell

infiltration. However, it remains unclear why some apparently “hot”

tumors with an otherwise adequate infiltration of immune cells do

not appear to mount an effective antitumor response. We first

assessed the relationship of adenosine signaling to immune cell

infiltrates inferred from bulk RNA-seq in TCGA using a support

vector regression approach based upon the CIBERSORT algo-

rithm (38). There are no strong associations, but we observe weak

negative correlations with activated NK-cell and T follicular helper

cell scores and a positive correlation with resting NK-cell and

macrophage scores (Supplementary Fig. S3A). We therefore studied

the ability of adenosine to modulate the activity of existing immune

infiltrates by studying only tumors with a high level of CD8þ T-cell

infiltration, defined as greater than the median of CD8A expression

across all samples. We found a dramatic survival deficit in tumors

that are both CD8 high and adenosine high versus tumors that

are CD8 high but adenosine low, for both OS (HR ¼ 0.47, Cox PH

P < 2.2e�16) and PFS (HR ¼ 0.65, Cox PH P ¼ 0.0000002; Fig. 2C

and D). Further, the survival deficit between adenosine high and

low tumors is reduced or ablated in CD8 low tumors (OS Cox PH

P ¼ 0.001, PFS Cox PH P ¼ 0.05).

Sidders et al.
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Adenosine signaling in individual tumor types

We next studied the adenosine signaling profile of each tumor

type from TCGA individually. All tumor types exhibit a wide range

of adenosine signaling levels, and all have some individuals with

high adenosine signaling (Fig. 3A). Kidney renal clear cell carci-

noma (KIRC) has the highest levels of adenosine signaling on

average across all tumor types, whereas thymoma (THYM) has the

lowest (Fig. 3A). Consistent with this observation, adenosine is

known to play an important role within the kidney where it

regulates a variety of physiologic functions and is present at

significant extracellular concentrations (52). Interestingly, adeno-

sine also plays a role in the thymus, regulating the thymocyte

selection process (53).

Concordantly reduced OS and PFS in adenosine high tumors are

seen in 13 individual diseases (Fig. 3C), with four having an HR < 0.7

for both survival measures: uveal melanoma (UVM, OS HR ¼ 0.08,

PFS HR ¼ 0.38), cervical (CESC, OS HR ¼ 0.70, PFS HR ¼ 0.69),

pancreatic (PAAD, OS HR ¼ 0.74, PFS HR ¼ 0.68), and thyroid

(THCA, OS HR¼ 0.75, PFS HR¼ 0.52). However, UVM (HR¼ 0.08,

P ¼ 0.016) is the only case where OS is statistically significant for an

individual tumor type (Fig. 3B). Similarly, glioblastoma (GBM, HR¼

0.66, P¼ 0.02), thyroid carcinoma (THCA, HR¼ 0.52, P¼ 0.03), and

UVM (HR ¼ 0.37, P ¼ 0.05) are the only diseases where adenosine

signaling is statistically associated with worse PFS. Interestingly,

diffuse large B-cell lymphoma (DLBCL) tumors with high levels of

adenosine signaling are associated with improved PFS (DLBC, HR ¼

5.19, P ¼ 0.02), although notably not concordant with OS.

Genetic correlates of adenosine signaling

Adenosine signaling is not correlated with TMB at a pan-cancer

level (r2 ¼ 0.02); however, MSI high tumors have significantly higher

levels of adenosine signaling (Fig. 4C, P ¼ 5e�16). We therefore

derived a linear model that incorporated MSI as a covariate with

which to identify single-nucleotide variants (SNV) associated with

adenosine signaling. Our analysis identifies 23 mutated genes that

associate with adenosine signaling (at q < 0.1) when all samples are

Figure 3.

Adenosine signaling levels vary across tumor types. A, Adenosine signaling across the tumor types of TCGA varies and is lowest in thymoma and highest in

kidney renal clear cell carcinoma. B, Adenosine signaling association with OS in each tumor type from TCGA. C, Adenosine signaling association with PFS in

each tumor type from TCGA. In B and C, boxes represent the HR when the upper quartile is compared with the lowest quartile, with whiskers describing the

95% confidence interval (CI).
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considered in a pan-cancer model: 9 with enhanced adenosine sig-

naling and 14 with reduced adenosine signaling (Fig. 4A and Sup-

plementary Table S1).

Six adenosine-associated genes have an established role in cancer

pathogenesis, being members of the cancer gene census (54, 55),

including VHL, ACVR2A, FIP1L1, and NSD1 which all correlate

with increased adenosine signaling, and GATA3 and STK11 that

associate with reduced adenosine signaling (Supplementary Fig. S3).

VHL has the largest effect size and is thought to be an E3 ubiquitin

ligase that suppresses HIF1a expression. Consequently, VHL loss-of-

function mutations lead to constitutive expression of HIF1a which

upregulates CD73 and CD39, thereby enhancing the production of

adenosine (56). This previously described mechanism gives us further

confidence in the relevance of our signature.

GATA3 is an important transcription factor associated with breast

cancer and as a key regulator of CD4þ T-cell development with some

evidence to suggest its activity is regulated by adenosine in other

settings (57).

The tumor suppressor STK11 has recently been shown to drive

primary resistance to checkpoint inhibition (58), and the negative

Figure 4.

Genetic correlates of adenosine sig-

naling. A, Adenosine signaling in pan-

cancer disease segments defined by

nonsynonymous mutations at the

gene level was compared with non-

mutated samples. Multiple testing cor-

rected P values (q) are shown versus

the Cohen's D effect size where

values > 0 indicate higher levels in the

mutant segment. B, As for A, but each

tumor type was studied independent-

ly. C, Adenosine signaling in MSI ver-

sus non-MSI tumors from TCGA; MSI

tumors have significantly higher levels

of adenosine signaling.
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association with adenosine signaling identified here most likely

reflects the immunologically cold/excluded tumor microenviron-

ment for which an immunosuppressive phenotype has not been

activated. This raises the interesting possibility that the other

negatively associated genetic segments might also exhibit resistance

to immunotherapy. Notably, the most significantly associated

genetic mutations are in NPRL3 which is part of the GATOR1

complex, which, like LKB1 via AMPK, feeds into the mTOR

signaling pathway (59, 60).

We found 55 SNVs associated with adenosine within an individual

tumor type (q < 0.05, Fig. 4B and Supplementary Table S2), com-

prising 25 from kidney renal papillary cell carcinoma, 23 from breast

cancer, 3 from kidney renal clear cell carcinoma, and 1 each from lung

adenocarcinoma (STK11), prostate adenocarcinoma (RABL6), stom-

ach adenocarcinoma (TP53), and head and neck squamous cell

carcinoma (BRD7). Seven of these associations feature cancer census

genes: TP53 in BRCA and STAD, GATA3 in BRCA, CDH1 in BRCA,

VHL in KIRC, FIP1L1 in KIRP, and STK11 in LUAD (Supplementary

Fig. S4).

Somatic copy-number alterations (SCNA) are also associated with

adenosine signaling.Note that 124 SCNAare significant (q< 0.05)with

11 having an effect size greater than 0.5 (Table 1 and Supplementary

Fig. S5). This includes a deletion on chromosome 3 which removes

VHL and replicates the observation seen with SNVs.

Adenosine signaling is associated with TGFb

TGFBR2 and ACVR2A mutations are among the most significant

associations with adenosine levels in a pan-cancer model even after

correction for MSI status. Both are members of the TGFb super-

family encoding the TGFb receptor and the structurally related

activin growth factor receptor, respectively. TGFb signaling has a

complex and highly context-dependent association with cancer

biology. As a tumor suppressor, TGFb mutation promotes tumor-

igenesis, but its loss has also been shown to increase chemokine

signaling resulting in infiltration of myeloid-derived suppressor

cells which themselves produce TGFb and eventually drive immu-

nosuppression, thereby promoting tumor growth (61). Our result

raises the possibility that this suppression is driven largely through

the adenosine axis.

To further explore this relationship, we conducted a deeper study of

the association between adenosine and TGFb. Thorsson and collea-

gues (62) defined six primary immune subtypes of cancer including a

TGFb-dominant group, cluster 6 (“C6”). We find that adenosine

signaling is significantly higher in this group compared with the other

five immune subtypes (Fig. 5A). We further expanded our analysis to

include the 43 members of the TGFb superfamily (63) and find that

mutations in any of these genes are associated with a higher level of

adenosine signaling (Fig. 5B). Finally, tumors that are both adenosine

high and mutant in a TGFb superfamily member have worse OS

compared with tumors that are adenosine low and TGFb wild-type

(HR¼ 0.43, P < 2.2e�16), or those that are either TGFbmutant (HR¼

0.74) or adenosine high (HR ¼ 0.72; Fig. 5C).

Adenosine signaling is prognostic for immunotherapy response

To test the clinical utility of the signature and the extent

to which adenosine affects immune checkpoint therapy, we studied

cohorts of patients treated with checkpoint inhibitors. Prat and

colleagues generated gene expression profiles of 65 patients from a

variety of solid tumors that were treated with anti-PD1 therapy (35).

Chen and colleagues profiled 53 patients with metastatic melanoma

that were treated with anti–CTLA-4 therapy (36). We find

that responders to immune checkpoint therapy, as classified by

their best overall response, have lower levels of baseline tumor

adenosine signaling than do patients which progress on both anti-

PD1 therapy (Fig. 6A) and anti–CTLA-4 therapy (Fig. 6C). We

used logistic regression to model the probability of a patient being a

complete responder (CR), partial responder (PR), or having stable

disease (SD) versus progressive disease (PD) in these cohorts.

A signature score just below 0 (�0.01368) equates to a 50% probability

of being a responder, and a signature score of �0.4 equates to a 75%

probability of being a responder (Supplementary Fig. S7).

In the anti–CTLA-4 dataset, only 6 genes from our 14-gene

signature are present on the panel used. To study the effect this might

have we scored the anti-PD1 dataset with the same 6 genes. The overall

trend of results is retained, but the sensitivity of the signature is

reduced (PD vs. SD 6 gene P ¼ 0.072 vs. 14 gene P ¼ 0.076, and PD

vs. PR/CR 6 gene P ¼ 0.13 vs. 14 gene P ¼ 0.0027).

There is also a highly significant association between adenosine

signaling at baseline and PFS on anti-PD1 therapy (Fig. 6B; HR¼ 0.29,

Cox PH P ¼ 0.00012). Interestingly, expression of the gene encoding

PDL1 (CD274), which is highly correlated with PDL1 IHC measure-

ments (35), does not associate with PFS in the same dataset (HR¼ 0.8,

Cox PH P ¼ 0.47). Furthermore, combining adenosine and CD274

expression does not enhance the ability to predict immunotherapy

response beyond adenosine alone (Fig. 6B and Supplementary

Fig. S6). These results would suggest that baseline levels of adenosine

Table 1. Copy-number variants associated with adenosine signaling with Cohen's D effect size > 0.5.

Location Effect size q Type Census genes in locus

chr3 32098168:37495009 1.54 0.0017 DEL CCR4, MLH1

chr3 1:17201156 1.42 0.0370 DEL FANCD2, FBLN2, PPARG, RAF1, SRGAP3, VHL, XPC

chr6 119669222:171115067 0.83 0.0413 DEL ARID1B, BCLAF1, ECT2L, ESR1, EZR, FGFR1OP, LATS1,

MLLT4, MYB, PTPRK, QKI, RSPO3, SGK1, TNFAIP3

chr19 39363864:39953130 0.57 0.0096 AMP none

chr3 12384543:12494277 0.56 0.0000001 AMP none

chr19 30036025:30321189 0.54 0.0104 AMP CCNE1

chr19 30183172:30321189 0.54 0.0104 AMP none

chr1 1:29140747 0.51 0.0012 DEL ARHGEF10L, ARID1A, CAMTA1, CASP9, ID3, MDS2, MTOR,

PAX7, PRDM16, PRDM2, RPL22, SDHB, SKI, SPEN, TNFRSF14

chr1 150637495:150740723 �0.89 0.0104 AMP none

chr1 228801039:249250621 �0.90 0.0099 AMP AKT3, FH, RGS7

chr8 113630879:139984811 �0.94 0.0017 AMP CSMD3, EXT1, FAM135B, MYC, NDRG1, RAD21
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are an important correlate of response to immunotherapy and that our

signature might complement PDL1 as a marker in this regard for the

existing checkpoint inhibitors and potentially as A2AR inhibitors

progress through the clinic.

Discussion
We sought to characterize the pan-cancer role of adenosine

in human tumors, to test the hypothesis that adenosine signaling has

a negative prognostic link within human tumors, and to identify

segments of disease where this might be most pronounced. We

therefore report the derivation and validation of a gene expression

signature that recapitulates adenosine signaling and with which we

address these questions.

Our data show that adenosine signaling levels vary across the tumor

types of TCGA and that this is associated with suppression of anti-

tumor immunity in tumors where an otherwise adequate CD8þ T-cell

infiltrate is present. This observation has important implications for

the way in which wemodel and identify functional antitumor immune

responses. Significant progress has been made in the identification of

Figure 5.

Adenosine signaling associateswith TGFb.A,Adenosine signaling levels are significantly higher in the TGFb-driven tumor cluster (C6) fromThorsson and colleagues.

B, Tumors from TCGA mutated in one of the 43 TGFb superfamily members have higher levels of adenosine signaling versus TGFb superfamily wild-type tumors.

C, Tumors that are adenosine high and TGFb superfamily mutant haveworseOS comparedwith tumors that are adenosine low and TGF-bwild-type (HR¼0.43, Cox

PH P < 2.2e�16), or those that are either TGFb mutant (HR ¼ 0.74) or adenosine high (HR ¼ 0.72).

Figure 6.

Adenosine signaling is predictive for response to immunotherapy. A, Baseline tumor expression profiles from patients with a variety of solid tumors are higher in

progressors versus responders to anti-PD1 therapy (either pembrolizumab or nivolumab) from Prat and colleagues (35). B, On-treatment PFS is also significantly

reduced in adenosine signaling high tumors (HR ¼ 0.29, Cox PH P ¼ 0.00012) but not in CD274 mRNA high tumors (HR ¼ 0.8, Cox PH P ¼ 0.47). Combining

adenosine signature score and CD274 expression does not improve prognosis compared with the adenosine signature alone. C, Baseline tumor expression

profiles from patients with metastatic melanoma are higher in nonresponders from Chen and colleagues (36) despite only 6 genes from our 14 gene signature

being present on the panel used.
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immune infiltrates alone that associate with outcomes (e.g., the

Immunoscore; ref. 64), yet our results suggest that orthogonal mea-

sures of immunosuppressive effectors could enhance these measures.

We also identify genetic segments of disease that associate with

higher adenosine signaling including MSI tumors and specific genetic

variation in TGFb. These mutations have potential as markers for

adenosine-targeted therapies and are consistent with the concept that

adenosine signaling acts to suppress the inflammatory response to

highly immunogenic tumors (65). The relationship between adenosine

signaling and TGFb associates adenosine with fibroblast biology and

reflects early clinical data from the anti-CD73 monoclonal antibody

Oleclumab (ASCO) in pancreatic cancer, an indication known to be

rich in cancer-associated fibroblasts (66).

Finally, we demonstrate that adenosine correlates with survival

across tumors of all types and within specific indications. Further-

more, baseline adenosine signaling scores appear to predict

response to immune checkpoint therapies. We show that this is

independent of PDL1 expression and that adenosine signaling does

not correlate with TMB. Further investigation is therefore war-

ranted to establish the potential utility of adenosine signaling as

an additional measure to identify patients likely to respond to

checkpoint therapy. In addition, these findings support the devel-

opment of adenosine targeting agents for use in combination with

existing checkpoint inhibitors. However, it requires further clinical

validation using an agent targeting the adenosine axis to be con-

sidered predictive of response to this class of agents as opposed to

prognostic in the presence of intact adenosine signaling. As our

signature has been derived independently of any specific molecular

agent targeting the adenosine pathway, it may have utility across a

broad spectrum of candidate drugs currently in development.

Our results present several unexpected findings. First, the CT26

mouse model and MSI high human tumors are sensitive to immune

checkpoint inhibitors, while the MC38 mouse model has shown

variable responsiveness to immune checkpoint inhibition, yet we

find both associated with high adenosine signaling (Figs. 1A

and 4C). In addition, not all tumor types with high adenosine

signaling on average appear to exhibit a survival deficit. Further,

although reduced adenosine signaling enriches for responders to

checkpoint inhibition, not all adenosine low patients respond and

vice versa. Immune checkpoint inhibitor sensitivity is likely deter-

mined by many factors in addition to adenosine. For example, the

presence of CD8þ T cells, expression of PDL1, and high TMB are all

associated with checkpoint response (67, 68). It is also likely that an

immune infiltration/response must occur prior to a state of aden-

osine-mediated repression. As such, adenosine is another factor that

contributes to the balance between those that induce antitumor

immunity and those that are immunosuppressive. Further works to

characterize the tipping point in this balance are necessary.

The signature described here may be limited by the decision to only

include genes within a commercially available RNA expression panel.

This decision ensures the translatability of the signature to ongoing

clinical studies as well as direct comparison with other reported gene

expression systems (69, 70). However, expansion and further devel-

opment of the signature using a broader panel of transcripts could

enhance the sensitivity of the signature. A second area which falls

outside of the scope of this report but may well be relevant here

involves other branches of adenosine biology beyond A2AR. For

example, inflammatory signaling through ATP (71) or other nodes

of the larger adenine nucleotide signaling axis (72). Finally, a group

from Corvus Pharmaceuticals has taken an orthogonal approach to

generating an adenosine-related gene signature. Here, the authors

identified genes upregulated by NECA, an adenosine analog, and

suppressed by CPI-444, an A2AR antagonist (69). The two signatures

have just one gene in common (PTGS2) which may reflect the

compound-specific nature of the CPI-444 signature.

In conclusion, the expression signature reported here is a useful

clinical tool that establishes the adenosine pathway as a keymediator of

a successful antitumor immune response, demonstrates the prognostic

potential for existing immunotherapies of quantifying adenosine

drive, and informs patient selection strategies for adenosine pathway

modulators currently in development.
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