
RESEARCH ARTICLE

Adenovirus Entry From the Apical Surface of

Polarized Epithelia Is Facilitated by the Host

Innate Immune Response

Poornima L. N. Kotha1, Priyanka Sharma1, Abimbola O. Kolawole1, Ran Yan1, Mahmoud

S. Alghamri1, Trisha L. Brockman1, Julian Gomez-Cambronero2, Katherine J. D.

A. Excoffon1
*

1 Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America, 2

Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America

* katherine.excoffon@wright.edu

Abstract

Prevention of viral-induced respiratory disease begins with an understanding of the factors

that increase or decrease susceptibility to viral infection. The primary receptor for most ade-

noviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein

normally localized at the basolateral surface of polarized epithelia and involved in neutrophil

transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identi-

fied at the apical surface of polarized airway epithelia and is implicated in viral infection from

the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facili-

tate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil

chemoattractant, stimulates the protein expression and apical localization of CAREx8 via

activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils

at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-

epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that

adenovirus evolved to co-opt an innate immune response pathway that stimulates the ex-

pression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithe-

lium. In addition, CAREx8 is a new target for the development of novel therapeutics for both

respiratory inflammatory disease and adenoviral infection.

Author Summary

Respiratory viral infection is one of the leading causes of morbidity and mortality world-

wide. Interventions that are able to limit viral infection will enhance human health and

productivity. However, the mechanisms that control our susceptibility to viral infection

and the factors that allow viral pathogens to breach the exterior epithelial barrier to initiate

infection are not well understood. Here we find that adenovirus, a common cold virus and

a potential gene therapy vector, uses a cellular receptor that is induced by the host innate

immune response. Moreover, neutrophils, cells that are meant to protect the host in the
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early phase of an innate immune response, instead facilitate adenovirus infection. It has

been known for over 15 years that adenovirus itself can induce an innate immune response

and specifically induce host cell secretion of IL-8, a critical chemokine that attracts neutro-

phils to sites of infection. However, until now, it has been unclear how IL-8 induction

might benefit the virus. Our data indicate that adenovirus evolved to use our innate de-

fense system to enhance entry into the epithelium and identifies the apical adenovirus re-

ceptor as a new target that may modulate inflammatory disease.

Introduction

Adenoviruses (AdV) are a common cause of upper and lower respiratory tract infections. Al-

though most AdV infections are self-resolving, some may lead to acute respiratory distress syn-

drome, a serious and frequently fatal respiratory condition [1,2]. Epidemic AdV infections

occur in closed communities, among children, and military recruits, and are most severe, often

lethal, in immunosuppressed individuals [1–3]. In addition, AdV is frequently associated with

exacerbation of inflammatory airway diseases such as asthma, cystic fibrosis (CF), and chronic

obstructive pulmonary disease (COPD) [4–7]. No specific therapeutics exist to treat or prevent

AdV infection; thus, the discovery of novel strategies to limit viral infection in susceptible pop-

ulations would be an important advancement.

Human AdV is a non-enveloped double-stranded DNA virus that can be grouped into

seven species (A through G), with>60 types identified [2,8]. All species, except group B, use

the coxsackievirus and adenovirus receptor (CAR) as a primary receptor for cell attachment

via the AdV fiber knob (FK) [9–12]. In polarized epithelial cells, CAR is found below the tight

junction seal that separates the air-exposed apical surface from the basolateral surface [13].

Until recently, it was believed that AdV must breach the epithelial tight junction barrier to ac-

cess CAR and initiate viral infection in the lungs [13]. It is now known that CAR has another

transmembrane isoform that is able to localize at the apical surface of polarized airway epithelia

and mediate AdV infection [14–16]. Whereas the basolateral isoform is composed of the first

seven exons of the human CXADR gene (CAREx7 or hCAR1), the apical isoform occurs via

splicing from a cryptic site within the seventh exon to the eighth and final exon (CAREx8). The

two nearly identical proteins vary only in the last 26 (CAREx7) or 13 aa (CAREx8) of the pro-

teins. The abundance of apical CAREx8 and the amount of AdV infection are tightly regulated

by the cellular scaffold protein MAGI-1 and are increased by side-stream tobacco smoke

[15,16]. Determining other cellular and environmental factors that regulate CAREx8 will pro-

vide insight into what controls the susceptibility of the host epithelium within an individual to

viral infection.

The factors that predispose both healthy and immunocompromised individuals to AdV in-

fection are complex, and likely related to the co-evolution of the host and pathogen. Similar to

many other proinflammatory pathogens, AdV is a proinflammatory virus that can stimulate

the secretion of proinflammatory cytokines, including interleukin-8 (IL-8), by airway macro-

phages and the epithelial cells within the lung epithelium [17,18]. IL-8 exposure in turn favors

AdV infection of the airway epithelium [17]. How the proinflammatory cytokines enhance

AdV infection remains unclear.

IL-8 is a potent neutrophil chemoattractant that initiates transepithelial migration. Previous

studies have shown that basolateral CAREx7 interacts with a neutrophil surface protein, junc-

tional adhesion molecule-like protein (JAML), and that blocking the interaction interferes with

the efficiency of neutrophil transmigration [19]. The extracellular domain of CAR binds to
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JAML, and since the extracellular domain of CAREx7 and CAREx8 are identical, this suggests

that CAREx8 might also bind to neutrophils via JAML. We hypothesized that the apical expres-

sion of CAREx8 is stimulated by IL-8 in order to function as a receptor that tethers neutrophils

at the apical surface of epithelia. We further hypothesized that AdV may have co-opted this po-

tential innate immune function of CAREx8 in order to facilitate AdV entry from the apical sur-

face of a polarized epithelium. Finally, considering that neutrophils mainly target bacterial

pathogens and antibody or complement bound molecules [18], we hypothesize that IL-8 and

neutrophils contribute to AdV infection. Consistent with this, AdV is frequently isolated from

patients with inflammatory respiratory diseases.

In this study, we show for the first time that IL-8 increases the protein synthesis and apical

localization of CAREx8 in polarized cells via activation of the AKT/S6K pathway and inactiva-

tion of GSK3β. Apical CAREx8 tethers infiltrating neutrophils on the apical surface of polarized

epithelia, a novel biological function of CAREx8, and adherent neutrophils at the apical surface

enhance AdV infection. Taken together, AdV uses the host innate immune response, triggered

by either invading microbes or other IL-8 stimulants entering the airway, to facilitate entry into

host cells. Understanding the intricate interplay between the host innate immune system and

different types of pathogens is critical in order to develop targeted therapies that prevent infec-

tion and disease progression.

Results

IL-8 increases airway epithelial cell susceptibility to AdV infection

To investigate the effect of IL-8 on AdV infection in polarized epithelia, we first used polarized

Calu-3 airway epithelial model cells. Polarized Calu-3 epithelia were treated with increasing

concentrations of IL-8 (0–100 ng/ml (0–12.5 nM)) for 4 h, followed by apical infection with re-

combinant, replication-defective, AdV type 5 (AdV5). Quantitative PCR (qPCR) analysis for

AdV5 genomes (Vg) was performed by determining the copy number of the AdV5 hexon gene

relative to a cellular housekeeping gene after DNA extraction. QPCR showed that AdV entry

was increased in response to IL-8 treatment in a dose-dependent manner (Fig. 1A). Viral entry

reached its maximum and plateaued at 3, 10 and 30 ng/ml of IL-8, with*5-fold increase in Vg

when compared to control (0 ng/ml IL-8; p<0.05), followed by a decrease at 100 ng/ml. How-

ever, there was no significant change in the transepithelial resistance (TER) indicating that the

effect of IL-8 on viral entry was not due to decreased integrity of the epithelial junctions

(Fig. 1B). These data suggest that the increase in epithelial susceptibility to AdV entry upon IL-

8 exposure may be due to specific cellular effects, such as increased primary receptor expression

at the apical surface of the polarized epithelium.

IL-8 increases the protein expression and the localization of apical
CAREx8

The primary receptor for AdV5 is CAR; therefore, we investigated the expression of CAR in

the presence of IL-8. In particular, we examined the expression of the apical isoform of CAR,

CAREx8, since it is known to be present at the air-exposed surface of airway epithelia [14]. Po-

larized Calu-3 cells were treated with IL-8 at varying concentrations (Fig. 1C, D) and for vary-

ing time points (Fig. 1E). IL-8 increased the expression of CAREx8 in both a concentration and

time-dependent manner. IL-8 had its maximal effect on CAREx8 expression at 30 ng/ml

(Fig. 1C, D). By contrast, IL-8 did not affect the amount of total CAR, which is predominantly

composed of the basolaterally-sorted CAREx7 isoform [14,15]. IL-8 also did not affect the junc-

tion-adhesion protein E-cadherin or actin (loading control) (Fig. 1C). Consistent with

Adenovirus Hijacks the Innate Immune Response
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Fig 1. IL-8 increases the susceptibility of polarized airway epithelia to AdV entry, apical CAREx8

protein expression, and neutrophil adhesion at the apical surface. The apical surfaces of polarized A-D)
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increased CAREx8 protein levels in lysates, apical-surface specific biotinylation assays showed

that CAREx8 localization at the apical surface increased in response to IL-8 in a dose-dependent

manner, with a maximum increase at 30 ng/ml (Fig. 1D). By contrast, no biotinylated cytosolic

actin was detected. IL-8 had its maximal effect on CAREx8 protein expression between 4–12 h

at 30 ng/ml and returned to baseline levels within 24 h (Fig. 1E). To investigate acute effects on

the epithelium, further experiments were carried out with 30 ng/ml of IL-8 for 4 h. Well-differ-

entiated primary airway epithelia obtained from healthy human donors were used to validate

the results found in Calu-3 epithelia. Similar to Calu-3 epithelia, apical treatment with 30 ng/ml

of IL-8 for 4 h resulted in a robust increase in CAREx8 protein expression (Fig. 1F) and apical lo-

calization (Fig. 1G). As expected, the protein levels of the basolateral junctional-adhesion protein

E-cadherin and cytosolic actin did not change (Fig. 1F) and were not detected upon apical sur-

face-specific biotinylation (Fig. 1G).

IL-8 treatment increases neutrophil adhesion on the apical surface of
polarized primary human airway epithelial cells

Neutrophils at the apical surface of an epithelium play a critical role in pathogen clearance

[20]. Since CAREx8 protein expression in polarized epithelia is activated by the neutrophil che-

moattractant IL-8 and since the extracellular region of epithelial CAREx7 that binds JAML on

the surface of neutrophils is identical to CAREx8, we hypothesized that CAREx8 has a role in

tethering neutrophils to the apical surface of the epithelium. To test this hypothesis, polarized

primary human airway epithelia (Fig. 1H and I) or polarized Calu-3 cells (S1A–S1B Fig) were

pre-stimulated with IL-8. Neutrophils isolated from the healthy human donors were fluores-

cently labelled and added to the apical surface of the epithelia for a neutrophil adhesion assay.

Neutophil binding was determined by total fluorescence integrated density over 5–10 images

per condition. IL-8 treatment resulted in a significant 2–2.5 fold increase in the adhesion of pri-

mary neutrophils. Neutrophil adhesion was completely blocked when the IL-8 pre-stimulated

polarized epithelia were pre-treated with AdV5 fiber knob (FK), the capsid protein that binds

to the extracellular domain of CAR with high affinity (Fig. 1H and I). These data indicate that

CAREx8 is an important component of IL-8 stimulated apical neutrophil adhesion.

Induction of CAREx8 protein expression significantly increases
susceptibility to AdV entry and transduction

To confirm that CAREx8 is responsible for increased AdV5 transduction and that CAREx8 teth-

ers neutrophils at the apical surface of polarized epithelia, model epithelial cells stably express-

ing CAREx8 under a Doxycycline (DOX) inducible promoter were generated. Control cells

stably expressing CAREx7 or mCherry were also generated from the same parental Tet-on

Calu-3 cells or F-I) primary human airway epithelia were exposed to IL-8 for 4 h. A) Mock (0) or IL-8-exposed
Calu-3 epithelia were transduced with AdV5 from the apical surface and analyzed 24 h later for the fold
change in viral genomes (Vg) relative to GAPDH by qPCR. B) TER before or after IL-8 (30 ng/ml) exposure.
C) Western blots for CAREx8, total CAR, actin, and E-cadherin protein expression in lysates or D) CAREX8

and actin after apical surface-specific biotinylation. E) CAREx8 and actin protein expression in lysates from
Calu-3 cells exposed to IL-8 for different lengths of time. The apical surface of polarized primary airway
epithelial cells were exposed to IL-8 and F) CAREx8, actin, and E-cadherin protein expression in lysates or G)
after apical surface-specific biotinylation. H) Polarized primary human airway epithelia were either mock or IL-
8 treated for 4 h. Cells were then either untreated or treated with purified AdV5 FK, as indicated, followed by
an adhesion assay with primary neutrophils stained with calcein green. Bound neutrophils were imaged using
fluorescence microscopy (10X lens, white bar = 150 μm) and I) quantified using Metamorph software. Error
bars represent the SEM from three independent experiments: *p< 0.05, A and B by one-way ANOVA or I, IL-
8 treatment versus untreated or FK treated.

doi:10.1371/journal.ppat.1004696.g001
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MDCK cell line. MDCK cells were chosen because these cells are well characterized, grow

quickly, and polarize rapidly into an epithelium with an expected distribution of cellular pro-

teins [21–23]. Polarized epithelia from cell lines derived from single-cell clones with stable inte-

gration of FLAG-tagged CAREx8, FLAG-tagged CAREx7, or mCherry, under the DOX sensitive

PTight promoter were characterized and compared in the absence of DOX. Clones were selected

that had similar growth and polarization characteristics, including the ability to form tight

junctions, distribution of apical, basolateral, and tight junction proteins, and polarity of base-

line AdV5 transduction. MDCK cells stably expressing mCherry, FLAG-tagged CAREx8, or

FLAG-tagged CAREx7, demonstrated a DOX-dose dependent increase of mCherry fluorescence

(Fig. 2A), or CAREx8 or CAREx7 protein levels relative to actin (Fig. 2B). To confirm the polari-

ty of protein expression with the polarized MDCK epithelium, apical surface-specific biotinyla-

tion was performed. In contrast to CAREx7 in MDCK-CAREx7 epithelia, CAREx8 protein was

detected at the apical surface of MDCK-CAREx8 epithelia at low doses of DOX and expression

was saturated above 100 ng/ml of DOX (Fig. 2C).

To characterize the susceptibility of the MDCK stable cell lines to AdV infection, cells were

polarized and infected with AdV5-β-Gal from the apical surface. Data from quantitative PCR

(viral genomes, Vg; Fig. 2D) and transduction (β-Gal expression; Fig. 2E) showed a dose-de-

pendent increase in adenoviral entry into MDCK-CAREx8 epithelia exposed to low levels of

DOX, which was not observed in MDCK-CAREx7 and MDCK-mCherry epithelia. These data

show that apical AdV entry and transduction is highly sensitive to the induction of apical

CAREx8 expression in polarized epithelia. Consistent with the findings by Western blot

(Fig. 2B, C), the MDCK-CAREx8 epithelia demonstrated a plateau in viral genome entry and

transduction above 100 ng/ml DOX treatment, suggesting that there may be cellular limits to

the amount of CAREx8 expressed within a cell, the amount of CAREx8 available at the apical

surface, or limitations to viral entry at the apical surface.

CAREx8 tethers neutrophils at the apical epithelial surface

Since IL-8 induces CAREx8 protein expression and increases neutrophil retention at the apical

surface of polarized epithelia (Fig. 1), we hypothesized that induction of CAREx8 protein ex-

pression in the absence of IL-8 would be sufficient to increase the binding of neutrophils at the

apical surface of polarized epithelia. To test this, polarized MDCK-CAREx8,-CAREx7 and-

mCherry epithelial cells were induced with increasing concentrations of DOX for 24 h and a

neutrophil adhesion assay was performed. Increasing apical CAREx8 protein levels in MDCK-

CAREx8 epithelia correlated directly with increased neutrophil adhesion on the epithelial cell

surface (Fig. 3A). By contrast, MDCK-CAREx7 and-mCherry DOX-induced epithelia only

showed baseline neutrophil adhesion (Fig. 3B, C). These data suggest that CAREx8 is able to

tether neutrophils at the apical epithelial cell surface. To confirm that this was a CAREx8-medi-

ated effect, purified AdV5 fiber knob (FK), which has a 500–1000 fold higher affinity for the

overlapping CAR-JAML or CAR-CAR binding site [24–26], was used to compete with the pu-

tative interaction between epithelial apical CAREx8 and neutrophil JAML. AdV5 FK decreased

neutrophil adhesion in a dose-dependent manner in both mock and DOX-induced MDCK-

CAREx8 cells, including a complete block of neutrophil adhesion at the highest concentration

of AdV5 FK (Fig. 3D). In contrast, FK from AdV3, a group B AdV that does not use CAR as a

primary receptor [27], did not block neutrophil adhesion (Fig. 3D). Taken together, these data

show that CAREx8 tethers neutrophils at the apical epithelial cell surface and that AdV may po-

tentially be able to out-compete neutrophils to bind apical CAREx8.

Adenovirus Hijacks the Innate Immune Response
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CAREx8 tethers infiltrating neutrophils at the apical epithelial cell surface

Next, we sought to determine the fate of neutrophils that transmigrate from the physiologically

relevant basal surface to the apical surface in the presence or absence of DOX-induced CAREx8.

To do this, fluorescently-labeled neutrophils were added to the basal surface of epithelia and

stimulated to transmigrate to the apical surface by adding the neutrophil chemoattractive bac-

terial peptide fMLP to the apical surface. Two populations of cells were quantified: 1) neutro-

phils that transmigrated through but remained adhered to the apical epithelial surface and 2)

neutrophils that completely transmigrated through and detached from the epithelium (Fig. 4A,

B respectively). DOX-induced MDCK-CAREx8 epithelia retained*3 times as many transmi-

grated neutrophils on the apical surface as compared to uninduced MDCK-CAREx8 epithelia,

and MDCK-CAREx7, or-mCherry epithelia regardless of DOX-induction or not (Fig. 4A). In

contrast,*3 times as many neutrophils transmigrated through induced MDCK-CAREx7 epi-

thelia relative to all other conditions (Fig. 4B). This is consistent with the known role for baso-

lateral CAREx7 in facilitating neutrophil transepithelial migration [19]. These data confirm that

Fig 2. Induction of CAREx8 expression increases the susceptibility of polarized epithelia to AdV entry
and transduction. A) MDCK-mCherry cells either mock (0) or DOX treated for 24 h were imaged using
fluorescence microscopy (20X, white bar = 30 μm). Hoechst 33342 staining (blue) indicates cellular nuclei. B)
Flag-CAREx8, Flag-CAREx7 protein expression was analyzed in lysates fromMDCK-CAREx8 and-CAREx7

cells, respectively, after mock (0) or DOX induction. C) Apical surface-specific biotinylation of mock- (0) or
DOX-induced polarized-MDCK-CAREx8 or-CAREx7 cells analyzed byWestern blot using an anti-FLAG-tag
Ab. D) Polarized MDCK-stable cells were treated with increasing concentrations of DOX for 24 h, transduced
with AdV5-βGal from the apical surface for 1 h, and analyzed 24 h post-infection for viral entry by qPCR (viral
genomes, Vg) or E) viral transduction via β-gal activity. Error bars represent the SEM from three independent
experiments; *p< 0.05 by two-way ANOVA.

doi:10.1371/journal.ppat.1004696.g002
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CAREx8 is able to enhance the adhesion of transmigrating neutrophils at the apical surface and

also indicate that each CAR isoform plays a distinct role in neutrophil recruitment.

Tethered neutrophils augment viral entry into polarized epithelia

Neutrophils are part of the innate immune system and the first cells recruited to sites of injury

or pathogenic invasion. In order to understand the contribution of neutrophils bound to the

apical surface to AdV infection, increasing amounts of primary human neutrophils (0–1 x 107

Fig 3. Apical CAREx8 protein expression increases apical neutrophil adhesion that is sensitive to AdV5 FK. A neutrophil adhesion assay was
performed on mock (0) or DOX-induced A) MDCK-CAREx8, B)-CAREx7, or C)-mCherry cells. Adhered neutrophils (green) on the surface of the epithelial cells
were captured by fluorescence microscopy (10X; white bar = 100 μm). D) MDCK-CAREx8 either mock (0) or DOX-induced, as indicated, were treated with
AdV5 FK or AdV3 FK immediately prior to performing the neutrophil adhesion assay. Adhered neutrophils were captured by using fluorescence microscopy
and quantitated using Metamorph software. Images and quantitation are representative of 5–10 images from at least 3 separate experiments. Error bars
represent the SEM from three independent experiments; *p< 0.05 or **p< 0.01 by one-way ANOVA. White bar, 100 μM.

doi:10.1371/journal.ppat.1004696.g003
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cells) were allowed to bind to the apical surface of mock-induced or DOX-induced polarized

MDCK-CAREx8 epithelia. Unbound neutrophils were removed by washing and AdV5-β-Gal

was added to the apical surface for 1 h at 37°C. Viral entry was quantified 24 h later by qPCR.

Neutrophils enhanced AdV entry by approximately 2–3 fold (Fig. 5A, white bars) and, consis-

tent with a significant increase in neutrophil binding, AdV entry was increased by an additional

2-fold when CAREx8 expression was induced with DOX (Fig. 5A, grey bars). To determine

whether neutrophil-enhanced AdV entry was dependent on viral dose, 2 X 106 neutrophils

were allowed to bind CAREx8, or control CAREx7 and mCherry, mock-induced or DOX-in-

duced epithelia followed by apical transduction with increasing MOI of AdV5-β-Gal (Fig. 5B-

D). To control for baseline infection, mock-induced epithelia having no neutrophils were also

similarly infected with AdV5-β-Gal. Neutrophils increased apical AdV entry by 3–10-fold in

MDCK-CAREx8 epithelia at all MOI (Fig. 5B). Except at MOI 1, this increase was further am-

plified by at least 3 fold in the presence of DOX, indicating that both neutrophils and the level

of apical CAREx8 play a major role in AdV entry. In the case of uninduced mCherry epithelia

(Fig. 5C), neutrophils significantly increased AdV entry in a similar manner as uninduced

MDCK-CAREx8 cells, while MDCK-CAREx7 epithelia followed this trend (Fig. 5D). However,

no significant change in AdV entry occurred in the presence of DOX indicating the importance

of CAREx8 expression. Taken together, these data show that neutrophils facilitate viral entry

into the polarized MDCK epithelium, particularly upon induction of apical CAREx8 expression.

To confirm that the effect of neutrophils on AdV entry depends on CAR, polarized MDCK-

CAREx8 cells were treated with either AdV5 FK or AdV3 FK, followed by neutrophil adhesion

and infection with AdV5-β-Gal. We observed that AdV5 FK blocked AdV5-β-Gal entry by

*7-fold in the absence of adhered neutrophils (p<0.0001, Fig. 5E). In the presence of adhered

neutrophils, AdV5 FK, but not AdV3 FK, blocked AdV5-β-Gal entry by*25-fold (p<0.0001).

The difference in fold change reflects the increased AdV-β-Gal entry in the presence of neutro-

phils. These results indicate that neutrophils promote adenoviral entry via CAREx8. To further

confirm that neutrophils were not simply disrupting the epithelial tight junction, TER was

measured in the presence or absence of apically adhered neutrophils. Interestingly, a trend to-

wards increased transepithelial resistance was observed when compared to MDCK-CAREx8

cells without neutrophils (Fig. 5F). A lack of tight junction disruption is consistent with the evi-

dence that increasing the basolateral CAREx7 isoform does not further augment viral infection

in the presence of neutrophils (Figs. 2B and 5D).

Fig 4. Apical CAREx8 protein expression increases apical adhesion of infiltrating neutrophils.
Neutrophil transmigration assays were performed in the basal-to-apical direction in MDCK stable cells
exposed to the neutrophil chemoattractive peptide fMLP on the apical surface. A) % neutrophil adhesion and
B) % neutrophil transmigration were quantitated by measuring the fluorescence intensity of fluorescently-
labeled neutrophils imaged by fluorescence microscopy. Error bars represent the SEM from three
independent experiments; *p< 0.05 or **p< 0.01 by one-way ANOVA.

doi:10.1371/journal.ppat.1004696.g004
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Fig 5. Neutrophils adhered to the apical surface of polarized-MDCK cells augment AdV entry without decreasing the TER. A) MDCK-CAREx8 cells
were either mock- or DOX-induced. A neutrophil adhesion assay was performed with increasing numbers of neutrophils, as indicated. Immediately post-
neutrophil adhesion, MDCK-CAREx8 epithelia were infected with AdV5-β-gal for 1 h from the apical surface. 24 h later, viral entry was determined by qPCR
analysis. Fold change in viral genomes, relative to AdV5-βGal entry in the absence of DOX and neutrophils, is shown. AdV entry from the apical surface was
quantitated by qPCR analysis of polarized B) MDCK-CAREx8 C) MDCK-mCherry and D) MDCK-CAREx7 cells that were uninduced (circles), uninduced with
adhered neutrophils (squares), or induced with DOX for 24 h prior to neutrophil adhesion (triangles). E) AdV5-β-gal entry from the apical surface of MDCK-
CAREx8 epithelia in the presence or absence of neutrophils and AdV5 FK or AdV3 FK. F) TER of mock- or Dox-induced MDCK-CAREx8 epithelia was

Adenovirus Hijacks the Innate Immune Response
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IL-8 regulates CAREx8 expression by post-transcriptional mechanisms

To determine the mechanism by which IL-8 stimulates endogenous CAREx8 protein expres-

sion, transcription of CAREx8-specific mRNA was first investigated in polarized Calu-3 cells

(S2A Fig) and in polarized primary human airway epithelia (Fig. 6A). CAREx8, CAREx7, and E-

cadherin mRNA levels did not significantly change within 4 h of IL-8 treatment (Fig. 6A) or

when treated with different IL-8 concentrations (S2A Fig) indicating that the increase in

CAREx8 was by post-transcriptional mechanisms. Accordingly, co-treatment of polarized Calu-

3 (S2B Fig) or primary human airway epithelia (Fig. 6B, quantitated in S3A Fig) with IL-8 and

the protein synthesis inhibitor cycloheximide (CHX) abolished the IL-8 mediated increase in

CAREx8 expression indicating that IL-8 acutely stimulates de novo CAREx8 protein synthesis.

IL-8 activates AKT and S6K to upregulate CAREx8 protein expression

We then asked which signaling proteins downstream of IL-8 stimulation are involved in the

IL-8-mediated post-transcriptional increase of CAREx8. It is known that IL-8 activates AKT,

leading to the downstream activation of ribosomal S6 protein kinase (S6K) and protein transla-

tion [28]. Consistent with this, a robust activation of both AKT (phospho-AKT-T308; Figs. 6C

and S3B) and S6K (phospho-S6K T389; Figs. 6D and S3C) was observed in response to IL-8

treatment. To determine whether the IL-8-mediated increased CAREx8 protein expression is

downstream of AKT and S6K activation, polarized epithelia were incubated with IL-8, chemi-

cal inhibitors for AKT (Ly294002; Figs. 6E and S3D) or S6K (RO318220; Figs. 6F and S3E), or

a combination of IL-8 and each inhibitor. Whereas IL-8 increased CAREx8 protein expression

and each inhibitor alone did not affect CAREx8 protein expression, the inhibitors were able to

block the IL-8-mediated increase in CAREx8 protein levels (Figs. 6E, F, S3D, S3E). To further

test the role of S6K in the regulation of CAREx8 protein expression, Myc-tagged S6K was ex-

pressed in Calu-3 cells by plasmid transfection (Figs. 6G and S3F). Overexpression of Myc-S6K

increased CAREx8 protein expression to a level similar to IL-8 treatment. Interestingly, we did

not observe an additive effect between Myc-S6K and IL-8 treatment indicating that S6K is a

major regulator of CAREx8 protein translation, and potentially that the amount of CAREx8

mRNA is limited. Taken together, these data show that IL-8 regulates the expression of CAREx8

via the AKT/S6K pathway.

IL-8 inactivates GSK3β to upregulate CAREx8 protein expression

GSK3β is a multifunctional, constitutively active kinase that plays a role in multiple cellular

pathways, including post-transcriptional regulation of protein expression [29]. We have previ-

ously shown that GSK3β negatively regulates CAREx8 expression and inhibition of GSK3β in-

creases CAREx8 protein levels [16]. Although to our knowledge, GSK3β is not a known target

of IL-8 signaling pathways, we investigated the activity of GSK3β upon IL-8 treatment. IL-8

treatment of polarized epithelia increased the inactivated form of GSK3β (phospho-GSK3β-S9;

Figs. 6H and S3G). To further validate the involvement of GSK3β inhibition in the increase of

CAREx8 protein expression, epithelia were treated with GSK3β inhibitors (SB415286 or LiCl)

for 4 h in the presence or absence of IL-8. We observed that both GSK3β inhibitors increased

CAREx8 protein expression to a level similar to that observed with IL-8 treatment (Figs. 6I and

S3H). No further increase in CAREx8 protein expression was observed with the addition of

measured in the presence or absence of neutrophils. Error bars represent standard error of the mean (SEM) from three independent experiments. No
significant difference was detected by one-way ANOVA. Error bars represent the SEM from three independent experiments; *p< 0.05 or **p< 0.001 by
one-way ANOVA and Bonferroni post hoc test.

doi:10.1371/journal.ppat.1004696.g005
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Fig 6. IL-8 activates AKT/S6K and inactivates GSK3β to increase CAREx8 protein synthesis and AdV entry. A) The apical surfaces of polarized primary
airway epithelial cells were either mock (0, white bars) or IL-8 (30 ng/ml, gray bars) treated for the indicated time and analyzed for CAREx8, CAREx7, or E-
cadherin (E-cad) gene expression by qPCR, relative to GAPDH. B) The apical surfaces of polarized primary airway epithelial cells were mock (0) or IL-8
treated in the presence or absence of cycloheximide (CHX) and lysates were analyzed for CAREx8 and actin protein expression. Activation state of C) AKT,

Adenovirus Hijacks the Innate Immune Response
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GSK3β inhibitor to IL-8. Taken together, these data indicate that IL-8 regulates CAREx8 protein

expression by inhibiting GSK3β.

GSK3β inhibition is dominant over S6K inhibition in the presence of IL-8

Since inhibition of S6K reverses the stimulatory effect of IL-8 on CAREx8 protein expression

(Fig. 6F) and inhibition of GSK3β augments CAREx8 protein expression to the same extent as

IL-8 treatment (Fig. 6I), we asked whether these two signaling proteins lay in the same or dif-

ferent pathways. Polarized cells were treated with IL-8 while inhibiting GSK3β (SB415286) and

S6K (RO318220), individually and combined, and compared to mock treated cells. The data

showed an increase in CAREx8 protein levels upon treatment with the combination of IL-8,

GSK3β inhibitor and S6K inhibitor (Figs. 6J, lane 4, and S3I) indicating that blocking GSK3β

relieves the inhibition of CAREx8 protein translation that is either downstream of or indepen-

dent from the S6K pathway.

AKT, S6K, and GSK3β affect apical AdV infection of polarized epithelia

To determine whether the effects of the above pathways on CAREx8 protein expression alter

AdV infection, polarized epithelia were treated with IL-8 alone or in the presence of inhibitors

for AKT (Ly294002), S6K (RO318220), or GSK3β (SB415286) for 4 h. Inhibitors and IL-8 were

removed and AdV5β-Gal was added to the apical surface for 1 h at 37°C. Viral entry was quan-

tified by qPCR 24 h later (Fig. 6K). Consistent with decreased CAREx8 protein expression upon

inhibition of AKT and S6K, viral entry decreased and S6K inhibition completely reversed the

effect of IL-8 stimulation (first four bars, Fig. 6K). Consistent with the finding that GSK3β inhi-

bition does not further increase CAREx8 protein expression upon IL-8 treatment, viral entry

was identical with or without GSK3β inhibitor (Fig. 6K, last bar compared to second bar).

Given the above data, and taken together with current literature, we propose the model that ac-

tivation of AKT by IL-8 exposure activates S6K which either directly, or via inactivation of

GSK3β, is able to augment translation of the pool of mRNA present for CAREx8 (Fig. 6L).

Discussion

Viruses are sophisticated biological entities that can often initially infect epithelial cells without

damaging the tight junction barrier integrity [13,30]. In the absence of preexisting immunity,

viruses have evolved mechanisms to avoid inciting a robust inflammatory response and epithe-

lial damage until replication has occurred so that progeny virions can co-opt the inflammatory

response to enhance viral dissemination. Many inflammatory factors have been shown to mod-

ulate viral infections [31] and AdV infections are common in patients with inflammatory respi-

ratory diseases such as COPD, CF, and asthma [4–7]. In this study, we show that the level of

the apical AdV receptor, CAREx8, is a major predictor of the susceptibility of an epithelium to

D) S6K and H) GSK3β was analyzed after IL-8 treatment by probing for the pAKT T308, pS6K T389, and pGSK3β S9 respectively. Lysates from polarized
cells treated with IL-8 in the presence or absence of chemical inhibitors for E) AKT (Ly294002, 30 μM), F) S6K (RO3118220, 300 nM), I) GSK3β (SB415286,
45 μM, or LiCl, 10 mM), or J) a combination of S6K (RO3118220, 300 nM) and GSK3β (SB415286, 45 μM) were investigated for CAREx8 and actin protein
expression. G) Polarized cells were either transfected or not with myc-tagged S6K plasmid prior to mock (0) or IL-8 treatment followed by the analysis of
CAREx8 and actin protein expression from cell lysates. K) Polarized cells exposed to IL-8 in the presence or absence of the indicated chemical inhibitors
for 4 h were washed and transduced with AdV5-βGal for 1 h. Genomic DNA was isolated 24 h post-transduction and analyzed for the fold change in Vg
normalized to GAPDH and relative to mock. Error bars represent the SEM from three independent experiments: **p< 0.001 by one way ANOVA and
Bonferroni post hoc test. L) A schematic of a predicted model showing that 1) IL-8 binds to the IL-8 receptor (CXCR1/2) and 2) activates AKT. 3) Activated
AKT (pAKT T308) further activates S6K (pS6K T389) and 4) activated AKT directly and/or via inhibition of GSK3β (pGSK3β S9) stimulates CAREx8 protein
synthesis. 5) Newly synthesized CAREx8 traffics to the apical surface and 6) can mediate apical AdV infection.

doi:10.1371/journal.ppat.1004696.g006
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AdV infection and that IL-8 and neutrophils, components of the innate immune system, en-

hance AdV entry.

The proinflammatory cytokine IL-8 has previously been shown to increase the susceptibility

of an airway epithelium to AdV infection potentially by translocation of an AdV5 co-receptor,

αvβ3 integrin, to the apical surface of airway epithelia [17]. Consistent with this, we found that

IL-8 exposure increased the levels of AdV5 co-receptor β1 integrin [32] at the apical surface of

Calu-3 cells (S4A Fig). Several co-receptors have been described for AdV5 and integrins have

specifically been shown to facilitate adenoviral endocytosis and endosomal escape [32–34].

However, CAR is the primary receptor that mediates efficient virus attachment, a crucial step

that occurs prior to integrin binding and viral entry [9,32–35]. We show for the first time that

physiologically relevant levels of IL-8 stimulate the protein expression and the apical localiza-

tion of the primary apical AdV receptor, CAREx8, in polarized human airway epithelia. Conse-

quently, this enhances Ad5 FK-sensitive AdV infection from the apical surface of the

epithelium (Figs. 1A and 5E). Interestingly, the IL-8-mediated effect was reduced at 100 ng/ml

concentration. This finding is consistent with physiological studies that have demonstrated a

bell-shaped dose response to IL-8 for neutrophil migration due to receptor saturation and de-

sensitization [36]. It is also possible that IL-8-mediated signaling may undergo negative feed-

back to inhibit IL-8 signaling by downregulating the IL-8 receptor [37]. IL-8 appears to be

CAREx8-specific since it did not affect the expression of total CAR, which is predominantly

CAREx7 [14]. This is consistent with these two CAR isoforms having different biological func-

tions within a polarized epithelium. IL-8 also has an acute effect that stimulates maximal

CAREx8 expression between 4–12 h (Fig. 1E), suggesting that CAREx8might be crucial in facili-

tating early innate immunological responses. It is possible that prolonged IL-8-mediated sig-

naling or apical CAREx8 expression would lead to excessive levels of neutrophils at the apical

surface, and adverse immunological complications due to prolonged inflammation. Future

work will focus on elucidating the effect of CAREx8 on inflammation and bacterial clearance,

particularly in the presence of inflammatory diseases, such as CF.

We hypothesized that the endogenous biological function of CAREx8 at the apical epithelial

cell surface is to tether infiltrating neutrophils transmigrating from the basolateral interstitial

space. We report for the first time that stimulation of cells with IL-8 or overexpression of

CAREx8 increases neutrophil adhesion at the apical surface of epithelia (Figs. 1H, 3 and S1).

Consistent with a major role for apical CAREx8 in neutrophil adhesion to the apical surface,

neutrophil binding could be blocked completely by AdV5 FK, but not by FK from a non-CAR

binding AdV (Fig. 3D). Moreover, apical surface adhesion of CHO cells, normally lacking CAR

and JAML expression, to polarized MDCK cells was significantly enhanced by over expression

of CAREx8 or JAML. This indicates that cells expressing either adhesion molecule could adhere

to apical CAR (S4B Fig). Future studies will compare the importance of CAREx8 to epithelial

ICAM-1, which is the major rhinovirus receptor and has been identified as a neutrophil bind-

ing partner when epithelia are stimulated by IFNγ and TNFα [38,39]. Finally, we show that

neutrophils transmigrating through the epithelium bind to the apical surface upon induction

of CAREx8 (Fig. 4A). Taken together, an endogenous biological function of CAREx8 is to tether

infiltrating neutrophils at the epithelial apical surface.

Enhanced adhesion of neutrophils to the epithelial apical surface may serve several impor-

tant biological functions. For example, retention would prevent transmigrating neutrophils

from being washed away into the airway lumen, and local retention in the region of IL-8 secre-

tion would maintain focused inflammation that would prevent damage to neighboring regions.

Retention would also allow neutrophils to achieve the critical concentration required to effi-

ciently kill invading pathogens [20] and form a defensive barricade that prevents further infec-

tion of the epithelium. It is also possible that apical CAREx8 contributes to tight junction
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integrity as neutrophils break through to the apical surface. Each of these possibilities will be

examined in future work.

Although neutrophils are normally expected to facilitate the clearance of microbial patho-

gens, we have discovered a new repercussion for the accumulation of neutrophils at the epithe-

lial apical surface: adhered neutrophils enhance AdV infection (Fig. 5). We observed that upon

addition of neutrophils there is nearly a log increase in the AdV5 FK-sensitive viral entry

(Fig. 5B-E). This effect appears to be CAREx8 specific since an additional increase in AdV entry

was not observed when the expression of CAREx7 or mCherry was turned on in MDCK-

CAREx7 and MDCK-mCherry cells, respectively. We propose that AdV may have evolved to

co-opt the innate immune response of the host in order to enhance entry into polarized epithe-

lia. This is consistent with the fact that AdV early protein E1A stimulates the host cell to secrete

IL-8 [6,40]. In addition, it is possible that under pathological conditions, such as CF, where ex-

cess neutrophils accumulate on the cell surface, AdV entry might be augmented even further.

There could be several mechanisms by which the neutrophils might be promoting viral infec-

tion. For example, it is possible that the apically adhered neutrophils cause epithelial cell signal-

ing which culminates in the loosening of the junctions to enable increased neutrophil

recruitment [38]. This is not likely given that AdV infection is highly efficient from the basolat-

eral surface and overexpression of basolateral CAREx7 does not enhance apical AdV infection

(Fig. 5D). Moreover, there was no change in TER in the presence of adhered neutrophils

(Fig. 5F). Neutrophils are known to secrete IL-8 [41] and therefore may stimulate apical

CAREx8 synthesis and localization. While this would accommodate additional infiltrating neu-

trophils, AdV FK has greater affinity for CAR than neutrophil JAML and would be able to take

advantage of the additional receptors to enter the epithelium. Apically adhered neutrophils

may also release inflammatory mediators that alter fluid phase endocytosis from the apical sur-

face to facilitate viral entry. Future experiments will focus on elucidating the exact mechanism

(s) behind neutrophil-enhanced viral entry. Understanding this may lead to novel therapies to

inhibit AdV infection or reduce the toxic effects of chronic inflammation.

Several major steps of the mechanisms underlying the IL-8-mediated increase in CAREx8 ex-

pression have been identified. IL-8 regulates CAREx8 expression by post-transcription mecha-

nisms (Figs. 6 and S3). Other mechanisms, such as protein stabilization, an increase in the half-

life of CAREx8, or enhanced trafficking to the apical surface, may also contribute to the effect of

IL-8 and will be examined in the future. However, the reversal of the effect of IL-8 by protein

synthesis inhibition and the effect of plasmid-expressed S6K, an enzyme known to directly

upregulate the expression of several proteins by post-transcriptional mechanisms [28,42], dem-

onstrate an important role for IL-8 signaling in de novo CAREx8 protein synthesis.

Our data show that IL-8 triggers the activation of AKT and activation of its proximal target,

S6K. This is consistent with previous studies demonstrating that IL-8 signaling via AKT and

S6K post-transcriptionally upregulates the protein synthesis of cyclin D1 [28,42]. In addition,

consistent with our previous studies that show that GSK3β negatively regulates CAREx8 expres-

sion [16], we demonstrate that IL-8 signaling results in the inhibition of GSK3β (Fig. 6H) and

upregulation of CAREx8 expression. To our knowledge, this is the first time that GSK3β inhibi-

tion has been shown to occur upon IL-8 exposure. Based on our data and the literature, GSK3β

inhibition is most likely downstream of S6K activation [43]. Importantly, we demonstrated

that the treatment of Calu-3 cells with IL-8 in the presence of AKT/S6K inhibitors decreases

AdV entry, while the inhibition of GSK3β augments AdV entry.

Taken together (Fig. 7), these data indicate that IL-8, potentially derived from stimulated

resident macrophages or the epithelium itself, activates specific signaling pathways within po-

larized epithelial cells (Fig. 6L) that lead to increased apical CAREx8 and retention of transmi-

grating neutrophils at the apical surface. AdV has likely evolved to hijack this innate pathway
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and induced apical CAREx8 expression for entry into a polarized epithelium from the apical

surface. Previously, it was assumed that AdV must breach the tight junction barrier to access

its primary receptor. This study provides a novel mechanism and an explanation as to how the

virus can infect the intact epithelium without breaching the barrier. Further elucidating these

mechanisms in both healthy and diseased individuals will yield a greater understanding of the

susceptibility of the airway epithelium to invading viral pathogens and interventions that re-

verse this effect. Moreover, if CAREx8 is upregulated in diseased conditions, novel therapies

that target the CAR-neutrophil interaction may present a new anti-inflammatory treatment for

inflammatory airway disease.

Materials and Methods

Ethics statement

Primary human airway tracheal epithelial cells were isolated from the lungs of healthy human

donors under IRB approval by the Institutional Review Board of the University of Iowa (IRB

ID No. 9507432) and according to the principles expressed in the Declaration of Helsinki. Pri-

mary human airway epithelia were isolated from discarded and de-identified trachea and bron-

chi of donor lungs and were analyzed anonymously. This study used discarded lung tissue,

thus the IRB deemed consent was not needed.

Fig 7. Schematic of IL-8-mediated enhancement of AdV entry into polarized epithelia. 1) Pathogenic
microbes that invade the airway 2) cause both the resident macrophages and the epithelial cells to secrete IL-
8. 3) IL-8 exposure causes intracellular signaling within the epithelial cells that augments de novo protein
synthesis and apical localization of CAREx8. 4) IL-8 simultaneously recruits neutrophils that transmigrate
through the epithelium from the basal surface to the apical surface and 5) bind to CAREx8 at the apical surface
of the epithelium. 6) AdV entering the airway hijacks the host innate immune response and apical CAREx8 to
gain entry into the host cell.

doi:10.1371/journal.ppat.1004696.g007
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Cell culture and reagents

Calu-3 cells, cultured as described [16], or MDCK, cultured as described [44], were plated on 6

and 24 well dishes (Thermo Fisher Scientific), respectively, and allowed to polarize for at least

4 days, or 12 mmmillicells (Millipore) with 0.4 μm pores for standard polarization experiments

or with 3 μm pores for transmigration studies at a density of 2.5 X 105 cells/millicell and grown

at the air-liquid interface until TER was>600 O•cm2 as measured by a chopstick ohmmeter

(World Precision Instruments, Sarasota, FL). Primary human airway tracheal epithelial cells

were a kind gift from Dr. Joseph Zabner, University of Iowa Cells and Tissues Core, Iowa City,

IA. Primary airway epithelial cells, cultured and expanded as described [45], were seeded on

millicells and allowed to differentiate, as described [14,46], for>2 weeks and TER>600O•cm2.

Myc-tagged S6K was cloned into pRK5 plasmid under the CMV promoter. IL-8 was purchased

from Gold Biotechnology (St. Louis, MO), cycloheximide was from Sigma, and all other inhibi-

tors were from Tocris Bioscience (Bristol, United Kingdom). Plasmid for HA-tagged AdV5 FK

was a kind gift from Dr. Glen Nemerow and Tina-Marie Mullen (The Scripps Research Insti-

tute, CA). Purified AdV3 FK was a kind gift from Dr. André Lieber (University of Washington,

Seattle, WA). Total CAR (1605p) and CAREx8-specific (5678p) Abs have previously been de-

scribed [44]. Ab for actin was from Sigma, E-cadherin from Life Technologies, FLAG from

AbCam, AKT, S6K, GSK3β, and phosphospecific antibodies from Cell Signaling Technology

(Danvers, MA).

AdV5-β-Gal infection, viral entry, and β-galactosidase assay

Viruses were purchased from the University of Iowa Gene Transfer Vector Core. Epithelia

were infected with recombinant AdV5-β-Gal at a multiplicity of infection (MOI) of 100 plaque

forming units (pfu) per cell, or as indicated in the text, for 1 h at 37°C, washed with PBS, and

lysed 24 h later for β-Gal protein expression and DNA isolation for qPCR for the AdV5 hexon

gene, GAPDH, or MDCK actin, as previously described [16] and detailed Supplemental Experi-

mental Procedures (S1 Text). AdV5-β-Gal is replication defective and the copy number of the

AdV5 hexon gene 24 h post-infection is indicative of the total number of AdV5 genomes pres-

ent in a cell. Consistent with previous studies [47], no significant amount of cell surface bound

AdV5 is observed after 24 h, as measured by the trypsinization of virus off of epithelia prior to

DNA extraction, indicating that the viral DNA isolated by this assay is within the epithelial

cells (S4C Fig).

Cell surface biotinylation and western blot analysis

Western blot analysis and cell surface biotinylation with Sulfo-NHS-SS-Biotin (Thermo Scien-

tific) were performed as previously described [14–16] and as detailed in the Supplemental Ex-

perimental Procedures.

Generation of MDCK stable cells

The Lenti-X Tet-On advanced inducible expression system was used according to the manufac-

turer’s protocol (Clontech Laboratories) and as detailed in Supplemental Experimental

Procedures.

Neutrophil adhesion and transmigration assay

MDCK-CAREx8,-CAREx7 and-mCherry cells, either mock- or DOX-induced, were polarized

on a 24-well dish or on millicells, as above. Neutrophils were isolated, as described previously

[48], from the peripheral blood of healthy donors who signed an Institutional Review Board-
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approved consent form. A neutrophil adhesion assay was performed as described [49]. Briefly,

freshly isolated neutrophils from the peripheral blood of healthy human donors were stained

with 1.5 μM calcein green for 30 min at 37°C. Stained neutrophils in 300 μl HBSS were added

to the apical epithelial cell surface, spun down at 140 x g for 4 min without any centrifuge

break, and allowed to adhere for 15 min at 37°C in a CO2 incubator prior to washing and imag-

ing or addition of AdV5-β-Gal. Neutrophil binding to the apical surface of the epithelium is

stable for 1–2 h after which they detach. After 1 h AdV5-β-Gal infection, epithelia are washed

multiple times to ensure removal of neutrophils prior DNA extraction 24 h post infection. To

block neutrophil adhesion or AdV5-β-Gal infection, the epithelial cells were incubated with ei-

ther purified AdV5 FK or AdV3 FK for 10 min at room temperature prior to the addition of

the neutrophils, as above, and washed 3 times with HBSS+/+ to remove the unbound neutro-

phils. Neutrophils were imaged using fluorescence microscopy (Nikon Eclipse TE 2000–5) and

the fluorescence intensity was quantified using the Metamorph software program (Metamorph

Meta Imaging Series 6.1). Polarized Calu-3 cells on the 24 well dish were treated with IL-8

(30 ng/ml) for 4 h and washed to remove IL-8 prior to neutrophil adhesion assay as described

above.

Neutrophil transmigration assay was performed, as previously described [50], in the physio-

logically relevant basal-to-apical surface direction. Briefly, 106 fluorescently-labelled neutro-

phils were added to the upper chamber (basolateral surface) of MDCK-stable cells polarized

on millicells (3 μM pore) in an inverted fashion [51] and stimulated to migrate in response to

100 nM n-formyl-methionyl-leucyl-phenylalanine (fMLP; AbCam) added to the apical surface

for 1 h at 37°C. Post-neutrophil transmigration, the neutrophils that successfully transmigrated

to the bottom chamber (transmigrated neutrophils) were imaged with a fluorescence micro-

scope. Apically-adhered neutrophils were detached, as previously described [49]. Briefly, milli-

cells were transferred to a fresh 24-well dish, spun at 50 x g for 5 min, imaged and quantified

as above.

Statistical analysis

All experiments were performed in triplicate. Microsoft Excel, Graph Pad Prism V5, or SPSS

were used to perform statistical analyses. Statistical significance was evaluated using ANOVA

or t-test, as indicated.

Supporting Information

S1 Fig. IL-8 induces neutrophil adhesion on the surface of polarized Calu-3 cells. A) Polar-

ized Calu-3 cells were either mock or IL-8 treated for 4 h followed by an adhesion assay with

primary neutrophils stained with calcein green. A) Bound neutrophils were imaged by fluores-

cence microscopy (10X; white bar = 150 μm) and B) quantified using Metamorph software.

Error bars represent the SEM from three independent experiments: ��p< 0.001 by student’s t-

test.

(TIF)

S2 Fig. IL-8 does not affect CAREx8 mRNA levels but stimulates its protein synthesis in

Calu-3 cells. A) The apical surfaces of polarized Calu-3 cells were treated with increasing con-

centrations of IL-8 for 4 h before mRNA was isolated, cDNA synthesized, and analyzed for

changes in the gene expression relative to GAPDH using qPCR analysis. Error bars represent

standard error of the mean (SEM) from three independent experiments. No significant differ-

ence was found by one-way ANOVA. B) Polarized Calu-3 cells were treated with IL-8 in the

presence or absence of cycloheximide (CHX) for 4 h. and cell lysates analyzed for CAREx8 and
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actin protein expression.

(TIF)

S3 Fig. Quantitation of the blots in Fig. 6. A) Treatment of airway epithelial cells with IL-8

results in a significant increase in the expression of CAREx8 which is inhibited by the protein

synthesis inhibitor CHX. IL-8 also increased the levels of B) pAKT-T308 and C) pS6K T389.

The IL-8-mediated increase in CAREx8 is blocked by the AKT and S6K inhibitors D) Ly294002

and E) R0318220, respectively. F) Overexpression of Myc-S6K plasmid resulted in the signifi-

cant increase in the expression of CAREx8 which was further stimulated in the presence of IL-8.

G) IL-8 increased the levels of pGSK3βS9. H) Treatment of airway epithelial cells with GSK3β

inhibitor SB415286 and LiCl stimulated CAREx8 protein expression. I) IL-8 in the presence of

both S6K and GSK3β inhibitors, RO318220 and SB415286, cause a significant increase in CAREx8

expression. Error bars represent the SEM from three independent experiments: �p< 0.05 by stu-

dent’s t-test or one-way ANOVA and Bonferroni post hoc test.

(TIF)

S4 Fig. A) Polarized Calu-3 cells were either untreated or treated with IL-8 for 4 h followed

by apical cell surface biotinylation to examine the protein expression of Integrin β1 and

CAREx8.Whole cell lysate was probed with actin to demonstrate equal loading. B) CHO cells

were mock transfected (CHO) or transfected with CAREx8 or JAML and labeled with calcein

green for an adhesion assay on polarized MDCK cells as described for neutrophils. C) Polarized

MDCK-CAREx8 cells were uninfected or infected with AdV5-β-Gal for 1 h and untreated or

treated with trypsin before DNA isolation 24 h post infection. qPCR analysis for AdV5 Hexon

is relative to uninfected cells.

(TIF)

S1 Text. Supplemental methods.

(DOCX)
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